ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.78
Committed: Thu Nov 8 21:08:56 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.77: +18 -16 lines
Log Message:
add ev_feed_event

File Contents

# Content
1 /*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #ifndef EV_STANDALONE
32 # include "config.h"
33
34 # if HAVE_CLOCK_GETTIME
35 # define EV_USE_MONOTONIC 1
36 # define EV_USE_REALTIME 1
37 # endif
38
39 # if HAVE_SELECT && HAVE_SYS_SELECT_H
40 # define EV_USE_SELECT 1
41 # endif
42
43 # if HAVE_POLL && HAVE_POLL_H
44 # define EV_USE_POLL 1
45 # endif
46
47 # if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48 # define EV_USE_EPOLL 1
49 # endif
50
51 # if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52 # define EV_USE_KQUEUE 1
53 # endif
54
55 #endif
56
57 #include <math.h>
58 #include <stdlib.h>
59 #include <fcntl.h>
60 #include <stddef.h>
61
62 #include <stdio.h>
63
64 #include <assert.h>
65 #include <errno.h>
66 #include <sys/types.h>
67 #include <time.h>
68
69 #include <signal.h>
70
71 #ifndef WIN32
72 # include <unistd.h>
73 # include <sys/time.h>
74 # include <sys/wait.h>
75 #endif
76 /**/
77
78 #ifndef EV_USE_MONOTONIC
79 # define EV_USE_MONOTONIC 1
80 #endif
81
82 #ifndef EV_USE_SELECT
83 # define EV_USE_SELECT 1
84 #endif
85
86 #ifndef EV_USE_POLL
87 # define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88 #endif
89
90 #ifndef EV_USE_EPOLL
91 # define EV_USE_EPOLL 0
92 #endif
93
94 #ifndef EV_USE_KQUEUE
95 # define EV_USE_KQUEUE 0
96 #endif
97
98 #ifndef EV_USE_WIN32
99 # ifdef WIN32
100 # define EV_USE_WIN32 0 /* it does not exist, use select */
101 # undef EV_USE_SELECT
102 # define EV_USE_SELECT 1
103 # else
104 # define EV_USE_WIN32 0
105 # endif
106 #endif
107
108 #ifndef EV_USE_REALTIME
109 # define EV_USE_REALTIME 1
110 #endif
111
112 /**/
113
114 #ifndef CLOCK_MONOTONIC
115 # undef EV_USE_MONOTONIC
116 # define EV_USE_MONOTONIC 0
117 #endif
118
119 #ifndef CLOCK_REALTIME
120 # undef EV_USE_REALTIME
121 # define EV_USE_REALTIME 0
122 #endif
123
124 /**/
125
126 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131 #include "ev.h"
132
133 #if __GNUC__ >= 3
134 # define expect(expr,value) __builtin_expect ((expr),(value))
135 # define inline inline
136 #else
137 # define expect(expr,value) (expr)
138 # define inline static
139 #endif
140
141 #define expect_false(expr) expect ((expr) != 0, 0)
142 #define expect_true(expr) expect ((expr) != 0, 1)
143
144 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145 #define ABSPRI(w) ((w)->priority - EV_MINPRI)
146
147 typedef struct ev_watcher *W;
148 typedef struct ev_watcher_list *WL;
149 typedef struct ev_watcher_time *WT;
150
151 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152
153 #include "ev_win32.c"
154
155 /*****************************************************************************/
156
157 static void (*syserr_cb)(const char *msg);
158
159 void ev_set_syserr_cb (void (*cb)(const char *msg))
160 {
161 syserr_cb = cb;
162 }
163
164 static void
165 syserr (const char *msg)
166 {
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177 }
178
179 static void *(*alloc)(void *ptr, long size);
180
181 void ev_set_allocator (void *(*cb)(void *ptr, long size))
182 {
183 alloc = cb;
184 }
185
186 static void *
187 ev_realloc (void *ptr, long size)
188 {
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198 }
199
200 #define ev_malloc(size) ev_realloc (0, (size))
201 #define ev_free(ptr) ev_realloc ((ptr), 0)
202
203 /*****************************************************************************/
204
205 typedef struct
206 {
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210 } ANFD;
211
212 typedef struct
213 {
214 W w;
215 int events;
216 } ANPENDING;
217
218 #if EV_MULTIPLICITY
219
220 struct ev_loop
221 {
222 # define VAR(name,decl) decl;
223 # include "ev_vars.h"
224 };
225 # undef VAR
226 # include "ev_wrap.h"
227
228 #else
229
230 # define VAR(name,decl) static decl;
231 # include "ev_vars.h"
232 # undef VAR
233
234 #endif
235
236 /*****************************************************************************/
237
238 inline ev_tstamp
239 ev_time (void)
240 {
241 #if EV_USE_REALTIME
242 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9;
245 #else
246 struct timeval tv;
247 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6;
249 #endif
250 }
251
252 inline ev_tstamp
253 get_clock (void)
254 {
255 #if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic))
257 {
258 struct timespec ts;
259 clock_gettime (CLOCK_MONOTONIC, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9;
261 }
262 #endif
263
264 return ev_time ();
265 }
266
267 ev_tstamp
268 ev_now (EV_P)
269 {
270 return rt_now;
271 }
272
273 #define array_roundsize(type,n) ((n) | 4 & ~3)
274
275 #define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \
277 { \
278 int newcnt = cur; \
279 do \
280 { \
281 newcnt = array_roundsize (type, newcnt << 1); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 }
289
290 #define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298 /* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299 /* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300 #define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303 #define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
305
306 /*****************************************************************************/
307
308 static void
309 anfds_init (ANFD *base, int count)
310 {
311 while (count--)
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316
317 ++base;
318 }
319 }
320
321 void
322 ev_feed_event (EV_P_ void *w, int revents)
323 {
324 W w_ = (W)w;
325
326 if (w_->pending)
327 {
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 return;
330 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336 }
337
338 static void
339 queue_events (EV_P_ W *events, int eventcnt, int type)
340 {
341 int i;
342
343 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type);
345 }
346
347 static void
348 fd_event (EV_P_ int fd, int events)
349 {
350 ANFD *anfd = anfds + fd;
351 struct ev_io *w;
352
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
354 {
355 int ev = w->events & events;
356
357 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev);
359 }
360 }
361
362 /*****************************************************************************/
363
364 static void
365 fd_reify (EV_P)
366 {
367 int i;
368
369 for (i = 0; i < fdchangecnt; ++i)
370 {
371 int fd = fdchanges [i];
372 ANFD *anfd = anfds + fd;
373 struct ev_io *w;
374
375 int events = 0;
376
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
378 events |= w->events;
379
380 anfd->reify = 0;
381
382 method_modify (EV_A_ fd, anfd->events, events);
383 anfd->events = events;
384 }
385
386 fdchangecnt = 0;
387 }
388
389 static void
390 fd_change (EV_P_ int fd)
391 {
392 if (anfds [fd].reify)
393 return;
394
395 anfds [fd].reify = 1;
396
397 ++fdchangecnt;
398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
399 fdchanges [fdchangecnt - 1] = fd;
400 }
401
402 static void
403 fd_kill (EV_P_ int fd)
404 {
405 struct ev_io *w;
406
407 while ((w = (struct ev_io *)anfds [fd].head))
408 {
409 ev_io_stop (EV_A_ w);
410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
411 }
412 }
413
414 static int
415 fd_valid (int fd)
416 {
417 #ifdef WIN32
418 return !!win32_get_osfhandle (fd);
419 #else
420 return fcntl (fd, F_GETFD) != -1;
421 #endif
422 }
423
424 /* called on EBADF to verify fds */
425 static void
426 fd_ebadf (EV_P)
427 {
428 int fd;
429
430 for (fd = 0; fd < anfdmax; ++fd)
431 if (anfds [fd].events)
432 if (!fd_valid (fd) == -1 && errno == EBADF)
433 fd_kill (EV_A_ fd);
434 }
435
436 /* called on ENOMEM in select/poll to kill some fds and retry */
437 static void
438 fd_enomem (EV_P)
439 {
440 int fd;
441
442 for (fd = anfdmax; fd--; )
443 if (anfds [fd].events)
444 {
445 fd_kill (EV_A_ fd);
446 return;
447 }
448 }
449
450 /* usually called after fork if method needs to re-arm all fds from scratch */
451 static void
452 fd_rearm_all (EV_P)
453 {
454 int fd;
455
456 /* this should be highly optimised to not do anything but set a flag */
457 for (fd = 0; fd < anfdmax; ++fd)
458 if (anfds [fd].events)
459 {
460 anfds [fd].events = 0;
461 fd_change (EV_A_ fd);
462 }
463 }
464
465 /*****************************************************************************/
466
467 static void
468 upheap (WT *heap, int k)
469 {
470 WT w = heap [k];
471
472 while (k && heap [k >> 1]->at > w->at)
473 {
474 heap [k] = heap [k >> 1];
475 ((W)heap [k])->active = k + 1;
476 k >>= 1;
477 }
478
479 heap [k] = w;
480 ((W)heap [k])->active = k + 1;
481
482 }
483
484 static void
485 downheap (WT *heap, int N, int k)
486 {
487 WT w = heap [k];
488
489 while (k < (N >> 1))
490 {
491 int j = k << 1;
492
493 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
494 ++j;
495
496 if (w->at <= heap [j]->at)
497 break;
498
499 heap [k] = heap [j];
500 ((W)heap [k])->active = k + 1;
501 k = j;
502 }
503
504 heap [k] = w;
505 ((W)heap [k])->active = k + 1;
506 }
507
508 /*****************************************************************************/
509
510 typedef struct
511 {
512 WL head;
513 sig_atomic_t volatile gotsig;
514 } ANSIG;
515
516 static ANSIG *signals;
517 static int signalmax;
518
519 static int sigpipe [2];
520 static sig_atomic_t volatile gotsig;
521 static struct ev_io sigev;
522
523 static void
524 signals_init (ANSIG *base, int count)
525 {
526 while (count--)
527 {
528 base->head = 0;
529 base->gotsig = 0;
530
531 ++base;
532 }
533 }
534
535 static void
536 sighandler (int signum)
537 {
538 #if WIN32
539 signal (signum, sighandler);
540 #endif
541
542 signals [signum - 1].gotsig = 1;
543
544 if (!gotsig)
545 {
546 int old_errno = errno;
547 gotsig = 1;
548 #ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550 #else
551 write (sigpipe [1], &signum, 1);
552 #endif
553 errno = old_errno;
554 }
555 }
556
557 static void
558 sigcb (EV_P_ struct ev_io *iow, int revents)
559 {
560 WL w;
561 int signum;
562
563 #ifdef WIN32
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565 #else
566 read (sigpipe [0], &revents, 1);
567 #endif
568 gotsig = 0;
569
570 for (signum = signalmax; signum--; )
571 if (signals [signum].gotsig)
572 {
573 signals [signum].gotsig = 0;
574
575 for (w = signals [signum].head; w; w = w->next)
576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
577 }
578 }
579
580 static void
581 siginit (EV_P)
582 {
583 #ifndef WIN32
584 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
585 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
586
587 /* rather than sort out wether we really need nb, set it */
588 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
589 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
590 #endif
591
592 ev_io_set (&sigev, sigpipe [0], EV_READ);
593 ev_io_start (EV_A_ &sigev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */
595 }
596
597 /*****************************************************************************/
598
599 static struct ev_child *childs [PID_HASHSIZE];
600
601 #ifndef WIN32
602
603 static struct ev_signal childev;
604
605 #ifndef WCONTINUED
606 # define WCONTINUED 0
607 #endif
608
609 static void
610 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
611 {
612 struct ev_child *w;
613
614 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
615 if (w->pid == pid || !w->pid)
616 {
617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
618 w->rpid = pid;
619 w->rstatus = status;
620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
621 }
622 }
623
624 static void
625 childcb (EV_P_ struct ev_signal *sw, int revents)
626 {
627 int pid, status;
628
629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
630 {
631 /* make sure we are called again until all childs have been reaped */
632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
633
634 child_reap (EV_A_ sw, pid, pid, status);
635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
636 }
637 }
638
639 #endif
640
641 /*****************************************************************************/
642
643 #if EV_USE_KQUEUE
644 # include "ev_kqueue.c"
645 #endif
646 #if EV_USE_EPOLL
647 # include "ev_epoll.c"
648 #endif
649 #if EV_USE_POLL
650 # include "ev_poll.c"
651 #endif
652 #if EV_USE_SELECT
653 # include "ev_select.c"
654 #endif
655
656 int
657 ev_version_major (void)
658 {
659 return EV_VERSION_MAJOR;
660 }
661
662 int
663 ev_version_minor (void)
664 {
665 return EV_VERSION_MINOR;
666 }
667
668 /* return true if we are running with elevated privileges and should ignore env variables */
669 static int
670 enable_secure (void)
671 {
672 #ifdef WIN32
673 return 0;
674 #else
675 return getuid () != geteuid ()
676 || getgid () != getegid ();
677 #endif
678 }
679
680 int
681 ev_method (EV_P)
682 {
683 return method;
684 }
685
686 static void
687 loop_init (EV_P_ int methods)
688 {
689 if (!method)
690 {
691 #if EV_USE_MONOTONIC
692 {
693 struct timespec ts;
694 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
695 have_monotonic = 1;
696 }
697 #endif
698
699 rt_now = ev_time ();
700 mn_now = get_clock ();
701 now_floor = mn_now;
702 rtmn_diff = rt_now - mn_now;
703
704 if (methods == EVMETHOD_AUTO)
705 if (!enable_secure () && getenv ("LIBEV_METHODS"))
706 methods = atoi (getenv ("LIBEV_METHODS"));
707 else
708 methods = EVMETHOD_ANY;
709
710 method = 0;
711 #if EV_USE_WIN32
712 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
713 #endif
714 #if EV_USE_KQUEUE
715 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
716 #endif
717 #if EV_USE_EPOLL
718 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
719 #endif
720 #if EV_USE_POLL
721 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
722 #endif
723 #if EV_USE_SELECT
724 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
725 #endif
726
727 ev_watcher_init (&sigev, sigcb);
728 ev_set_priority (&sigev, EV_MAXPRI);
729 }
730 }
731
732 void
733 loop_destroy (EV_P)
734 {
735 int i;
736
737 #if EV_USE_WIN32
738 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
739 #endif
740 #if EV_USE_KQUEUE
741 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
742 #endif
743 #if EV_USE_EPOLL
744 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
745 #endif
746 #if EV_USE_POLL
747 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
748 #endif
749 #if EV_USE_SELECT
750 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
751 #endif
752
753 for (i = NUMPRI; i--; )
754 array_free (pending, [i]);
755
756 /* have to use the microsoft-never-gets-it-right macro */
757 array_free_microshit (fdchange);
758 array_free_microshit (timer);
759 array_free_microshit (periodic);
760 array_free_microshit (idle);
761 array_free_microshit (prepare);
762 array_free_microshit (check);
763
764 method = 0;
765 }
766
767 static void
768 loop_fork (EV_P)
769 {
770 #if EV_USE_EPOLL
771 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
772 #endif
773 #if EV_USE_KQUEUE
774 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
775 #endif
776
777 if (ev_is_active (&sigev))
778 {
779 /* default loop */
780
781 ev_ref (EV_A);
782 ev_io_stop (EV_A_ &sigev);
783 close (sigpipe [0]);
784 close (sigpipe [1]);
785
786 while (pipe (sigpipe))
787 syserr ("(libev) error creating pipe");
788
789 siginit (EV_A);
790 }
791
792 postfork = 0;
793 }
794
795 #if EV_MULTIPLICITY
796 struct ev_loop *
797 ev_loop_new (int methods)
798 {
799 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
800
801 memset (loop, 0, sizeof (struct ev_loop));
802
803 loop_init (EV_A_ methods);
804
805 if (ev_method (EV_A))
806 return loop;
807
808 return 0;
809 }
810
811 void
812 ev_loop_destroy (EV_P)
813 {
814 loop_destroy (EV_A);
815 ev_free (loop);
816 }
817
818 void
819 ev_loop_fork (EV_P)
820 {
821 postfork = 1;
822 }
823
824 #endif
825
826 #if EV_MULTIPLICITY
827 struct ev_loop default_loop_struct;
828 static struct ev_loop *default_loop;
829
830 struct ev_loop *
831 #else
832 static int default_loop;
833
834 int
835 #endif
836 ev_default_loop (int methods)
837 {
838 if (sigpipe [0] == sigpipe [1])
839 if (pipe (sigpipe))
840 return 0;
841
842 if (!default_loop)
843 {
844 #if EV_MULTIPLICITY
845 struct ev_loop *loop = default_loop = &default_loop_struct;
846 #else
847 default_loop = 1;
848 #endif
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 {
854 siginit (EV_A);
855
856 #ifndef WIN32
857 ev_signal_init (&childev, childcb, SIGCHLD);
858 ev_set_priority (&childev, EV_MAXPRI);
859 ev_signal_start (EV_A_ &childev);
860 ev_unref (EV_A); /* child watcher should not keep loop alive */
861 #endif
862 }
863 else
864 default_loop = 0;
865 }
866
867 return default_loop;
868 }
869
870 void
871 ev_default_destroy (void)
872 {
873 #if EV_MULTIPLICITY
874 struct ev_loop *loop = default_loop;
875 #endif
876
877 #ifndef WIN32
878 ev_ref (EV_A); /* child watcher */
879 ev_signal_stop (EV_A_ &childev);
880 #endif
881
882 ev_ref (EV_A); /* signal watcher */
883 ev_io_stop (EV_A_ &sigev);
884
885 close (sigpipe [0]); sigpipe [0] = 0;
886 close (sigpipe [1]); sigpipe [1] = 0;
887
888 loop_destroy (EV_A);
889 }
890
891 void
892 ev_default_fork (void)
893 {
894 #if EV_MULTIPLICITY
895 struct ev_loop *loop = default_loop;
896 #endif
897
898 if (method)
899 postfork = 1;
900 }
901
902 /*****************************************************************************/
903
904 static int
905 any_pending (EV_P)
906 {
907 int pri;
908
909 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri])
911 return 1;
912
913 return 0;
914 }
915
916 static void
917 call_pending (EV_P)
918 {
919 int pri;
920
921 for (pri = NUMPRI; pri--; )
922 while (pendingcnt [pri])
923 {
924 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
925
926 if (p->w)
927 {
928 p->w->pending = 0;
929 p->w->cb (EV_A_ p->w, p->events);
930 }
931 }
932 }
933
934 static void
935 timers_reify (EV_P)
936 {
937 while (timercnt && ((WT)timers [0])->at <= mn_now)
938 {
939 struct ev_timer *w = timers [0];
940
941 assert (("inactive timer on timer heap detected", ev_is_active (w)));
942
943 /* first reschedule or stop timer */
944 if (w->repeat)
945 {
946 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
947 ((WT)w)->at = mn_now + w->repeat;
948 downheap ((WT *)timers, timercnt, 0);
949 }
950 else
951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
952
953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
954 }
955 }
956
957 static void
958 periodics_reify (EV_P)
959 {
960 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
961 {
962 struct ev_periodic *w = periodics [0];
963
964 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
965
966 /* first reschedule or stop timer */
967 if (w->reschedule_cb)
968 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
970
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
972 downheap ((WT *)periodics, periodiccnt, 0);
973 }
974 else if (w->interval)
975 {
976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
978 downheap ((WT *)periodics, periodiccnt, 0);
979 }
980 else
981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
982
983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
984 }
985 }
986
987 static void
988 periodics_reschedule (EV_P)
989 {
990 int i;
991
992 /* adjust periodics after time jump */
993 for (i = 0; i < periodiccnt; ++i)
994 {
995 struct ev_periodic *w = periodics [i];
996
997 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now);
999 else if (w->interval)
1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1001 }
1002
1003 /* now rebuild the heap */
1004 for (i = periodiccnt >> 1; i--; )
1005 downheap ((WT *)periodics, periodiccnt, i);
1006 }
1007
1008 inline int
1009 time_update_monotonic (EV_P)
1010 {
1011 mn_now = get_clock ();
1012
1013 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1014 {
1015 rt_now = rtmn_diff + mn_now;
1016 return 0;
1017 }
1018 else
1019 {
1020 now_floor = mn_now;
1021 rt_now = ev_time ();
1022 return 1;
1023 }
1024 }
1025
1026 static void
1027 time_update (EV_P)
1028 {
1029 int i;
1030
1031 #if EV_USE_MONOTONIC
1032 if (expect_true (have_monotonic))
1033 {
1034 if (time_update_monotonic (EV_A))
1035 {
1036 ev_tstamp odiff = rtmn_diff;
1037
1038 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1039 {
1040 rtmn_diff = rt_now - mn_now;
1041
1042 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1043 return; /* all is well */
1044
1045 rt_now = ev_time ();
1046 mn_now = get_clock ();
1047 now_floor = mn_now;
1048 }
1049
1050 periodics_reschedule (EV_A);
1051 /* no timer adjustment, as the monotonic clock doesn't jump */
1052 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1053 }
1054 }
1055 else
1056 #endif
1057 {
1058 rt_now = ev_time ();
1059
1060 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1061 {
1062 periodics_reschedule (EV_A);
1063
1064 /* adjust timers. this is easy, as the offset is the same for all */
1065 for (i = 0; i < timercnt; ++i)
1066 ((WT)timers [i])->at += rt_now - mn_now;
1067 }
1068
1069 mn_now = rt_now;
1070 }
1071 }
1072
1073 void
1074 ev_ref (EV_P)
1075 {
1076 ++activecnt;
1077 }
1078
1079 void
1080 ev_unref (EV_P)
1081 {
1082 --activecnt;
1083 }
1084
1085 static int loop_done;
1086
1087 void
1088 ev_loop (EV_P_ int flags)
1089 {
1090 double block;
1091 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1092
1093 do
1094 {
1095 /* queue check watchers (and execute them) */
1096 if (expect_false (preparecnt))
1097 {
1098 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1099 call_pending (EV_A);
1100 }
1101
1102 /* we might have forked, so reify kernel state if necessary */
1103 if (expect_false (postfork))
1104 loop_fork (EV_A);
1105
1106 /* update fd-related kernel structures */
1107 fd_reify (EV_A);
1108
1109 /* calculate blocking time */
1110
1111 /* we only need this for !monotonic clock or timers, but as we basically
1112 always have timers, we just calculate it always */
1113 #if EV_USE_MONOTONIC
1114 if (expect_true (have_monotonic))
1115 time_update_monotonic (EV_A);
1116 else
1117 #endif
1118 {
1119 rt_now = ev_time ();
1120 mn_now = rt_now;
1121 }
1122
1123 if (flags & EVLOOP_NONBLOCK || idlecnt)
1124 block = 0.;
1125 else
1126 {
1127 block = MAX_BLOCKTIME;
1128
1129 if (timercnt)
1130 {
1131 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1132 if (block > to) block = to;
1133 }
1134
1135 if (periodiccnt)
1136 {
1137 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1138 if (block > to) block = to;
1139 }
1140
1141 if (block < 0.) block = 0.;
1142 }
1143
1144 method_poll (EV_A_ block);
1145
1146 /* update rt_now, do magic */
1147 time_update (EV_A);
1148
1149 /* queue pending timers and reschedule them */
1150 timers_reify (EV_A); /* relative timers called last */
1151 periodics_reify (EV_A); /* absolute timers called first */
1152
1153 /* queue idle watchers unless io or timers are pending */
1154 if (idlecnt && !any_pending (EV_A))
1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1156
1157 /* queue check watchers, to be executed first */
1158 if (checkcnt)
1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1160
1161 call_pending (EV_A);
1162 }
1163 while (activecnt && !loop_done);
1164
1165 if (loop_done != 2)
1166 loop_done = 0;
1167 }
1168
1169 void
1170 ev_unloop (EV_P_ int how)
1171 {
1172 loop_done = how;
1173 }
1174
1175 /*****************************************************************************/
1176
1177 inline void
1178 wlist_add (WL *head, WL elem)
1179 {
1180 elem->next = *head;
1181 *head = elem;
1182 }
1183
1184 inline void
1185 wlist_del (WL *head, WL elem)
1186 {
1187 while (*head)
1188 {
1189 if (*head == elem)
1190 {
1191 *head = elem->next;
1192 return;
1193 }
1194
1195 head = &(*head)->next;
1196 }
1197 }
1198
1199 inline void
1200 ev_clear_pending (EV_P_ W w)
1201 {
1202 if (w->pending)
1203 {
1204 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1205 w->pending = 0;
1206 }
1207 }
1208
1209 inline void
1210 ev_start (EV_P_ W w, int active)
1211 {
1212 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1213 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1214
1215 w->active = active;
1216 ev_ref (EV_A);
1217 }
1218
1219 inline void
1220 ev_stop (EV_P_ W w)
1221 {
1222 ev_unref (EV_A);
1223 w->active = 0;
1224 }
1225
1226 /*****************************************************************************/
1227
1228 void
1229 ev_io_start (EV_P_ struct ev_io *w)
1230 {
1231 int fd = w->fd;
1232
1233 if (ev_is_active (w))
1234 return;
1235
1236 assert (("ev_io_start called with negative fd", fd >= 0));
1237
1238 ev_start (EV_A_ (W)w, 1);
1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1240 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1241
1242 fd_change (EV_A_ fd);
1243 }
1244
1245 void
1246 ev_io_stop (EV_P_ struct ev_io *w)
1247 {
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (!ev_is_active (w))
1250 return;
1251
1252 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1253 ev_stop (EV_A_ (W)w);
1254
1255 fd_change (EV_A_ w->fd);
1256 }
1257
1258 void
1259 ev_timer_start (EV_P_ struct ev_timer *w)
1260 {
1261 if (ev_is_active (w))
1262 return;
1263
1264 ((WT)w)->at += mn_now;
1265
1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1267
1268 ev_start (EV_A_ (W)w, ++timercnt);
1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1270 timers [timercnt - 1] = w;
1271 upheap ((WT *)timers, timercnt - 1);
1272
1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1274 }
1275
1276 void
1277 ev_timer_stop (EV_P_ struct ev_timer *w)
1278 {
1279 ev_clear_pending (EV_A_ (W)w);
1280 if (!ev_is_active (w))
1281 return;
1282
1283 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1284
1285 if (((W)w)->active < timercnt--)
1286 {
1287 timers [((W)w)->active - 1] = timers [timercnt];
1288 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1289 }
1290
1291 ((WT)w)->at = w->repeat;
1292
1293 ev_stop (EV_A_ (W)w);
1294 }
1295
1296 void
1297 ev_timer_again (EV_P_ struct ev_timer *w)
1298 {
1299 if (ev_is_active (w))
1300 {
1301 if (w->repeat)
1302 {
1303 ((WT)w)->at = mn_now + w->repeat;
1304 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1305 }
1306 else
1307 ev_timer_stop (EV_A_ w);
1308 }
1309 else if (w->repeat)
1310 ev_timer_start (EV_A_ w);
1311 }
1312
1313 void
1314 ev_periodic_start (EV_P_ struct ev_periodic *w)
1315 {
1316 if (ev_is_active (w))
1317 return;
1318
1319 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1321 else if (w->interval)
1322 {
1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1324 /* this formula differs from the one in periodic_reify because we do not always round up */
1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1326 }
1327
1328 ev_start (EV_A_ (W)w, ++periodiccnt);
1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1330 periodics [periodiccnt - 1] = w;
1331 upheap ((WT *)periodics, periodiccnt - 1);
1332
1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1334 }
1335
1336 void
1337 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1338 {
1339 ev_clear_pending (EV_A_ (W)w);
1340 if (!ev_is_active (w))
1341 return;
1342
1343 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1344
1345 if (((W)w)->active < periodiccnt--)
1346 {
1347 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1348 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1349 }
1350
1351 ev_stop (EV_A_ (W)w);
1352 }
1353
1354 void
1355 ev_periodic_again (EV_P_ struct ev_periodic *w)
1356 {
1357 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w);
1359 }
1360
1361 void
1362 ev_idle_start (EV_P_ struct ev_idle *w)
1363 {
1364 if (ev_is_active (w))
1365 return;
1366
1367 ev_start (EV_A_ (W)w, ++idlecnt);
1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1369 idles [idlecnt - 1] = w;
1370 }
1371
1372 void
1373 ev_idle_stop (EV_P_ struct ev_idle *w)
1374 {
1375 ev_clear_pending (EV_A_ (W)w);
1376 if (ev_is_active (w))
1377 return;
1378
1379 idles [((W)w)->active - 1] = idles [--idlecnt];
1380 ev_stop (EV_A_ (W)w);
1381 }
1382
1383 void
1384 ev_prepare_start (EV_P_ struct ev_prepare *w)
1385 {
1386 if (ev_is_active (w))
1387 return;
1388
1389 ev_start (EV_A_ (W)w, ++preparecnt);
1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1391 prepares [preparecnt - 1] = w;
1392 }
1393
1394 void
1395 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1396 {
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1402 ev_stop (EV_A_ (W)w);
1403 }
1404
1405 void
1406 ev_check_start (EV_P_ struct ev_check *w)
1407 {
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++checkcnt);
1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1413 checks [checkcnt - 1] = w;
1414 }
1415
1416 void
1417 ev_check_stop (EV_P_ struct ev_check *w)
1418 {
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 checks [((W)w)->active - 1] = checks [--checkcnt];
1424 ev_stop (EV_A_ (W)w);
1425 }
1426
1427 #ifndef SA_RESTART
1428 # define SA_RESTART 0
1429 #endif
1430
1431 void
1432 ev_signal_start (EV_P_ struct ev_signal *w)
1433 {
1434 #if EV_MULTIPLICITY
1435 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1436 #endif
1437 if (ev_is_active (w))
1438 return;
1439
1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1441
1442 ev_start (EV_A_ (W)w, 1);
1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1445
1446 if (!((WL)w)->next)
1447 {
1448 #if WIN32
1449 signal (w->signum, sighandler);
1450 #else
1451 struct sigaction sa;
1452 sa.sa_handler = sighandler;
1453 sigfillset (&sa.sa_mask);
1454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1455 sigaction (w->signum, &sa, 0);
1456 #endif
1457 }
1458 }
1459
1460 void
1461 ev_signal_stop (EV_P_ struct ev_signal *w)
1462 {
1463 ev_clear_pending (EV_A_ (W)w);
1464 if (!ev_is_active (w))
1465 return;
1466
1467 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1468 ev_stop (EV_A_ (W)w);
1469
1470 if (!signals [w->signum - 1].head)
1471 signal (w->signum, SIG_DFL);
1472 }
1473
1474 void
1475 ev_child_start (EV_P_ struct ev_child *w)
1476 {
1477 #if EV_MULTIPLICITY
1478 assert (("child watchers are only supported in the default loop", loop == default_loop));
1479 #endif
1480 if (ev_is_active (w))
1481 return;
1482
1483 ev_start (EV_A_ (W)w, 1);
1484 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1485 }
1486
1487 void
1488 ev_child_stop (EV_P_ struct ev_child *w)
1489 {
1490 ev_clear_pending (EV_A_ (W)w);
1491 if (ev_is_active (w))
1492 return;
1493
1494 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1495 ev_stop (EV_A_ (W)w);
1496 }
1497
1498 /*****************************************************************************/
1499
1500 struct ev_once
1501 {
1502 struct ev_io io;
1503 struct ev_timer to;
1504 void (*cb)(int revents, void *arg);
1505 void *arg;
1506 };
1507
1508 static void
1509 once_cb (EV_P_ struct ev_once *once, int revents)
1510 {
1511 void (*cb)(int revents, void *arg) = once->cb;
1512 void *arg = once->arg;
1513
1514 ev_io_stop (EV_A_ &once->io);
1515 ev_timer_stop (EV_A_ &once->to);
1516 ev_free (once);
1517
1518 cb (revents, arg);
1519 }
1520
1521 static void
1522 once_cb_io (EV_P_ struct ev_io *w, int revents)
1523 {
1524 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1525 }
1526
1527 static void
1528 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1529 {
1530 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1531 }
1532
1533 void
1534 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1535 {
1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1537
1538 if (!once)
1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1540 else
1541 {
1542 once->cb = cb;
1543 once->arg = arg;
1544
1545 ev_watcher_init (&once->io, once_cb_io);
1546 if (fd >= 0)
1547 {
1548 ev_io_set (&once->io, fd, events);
1549 ev_io_start (EV_A_ &once->io);
1550 }
1551
1552 ev_watcher_init (&once->to, once_cb_to);
1553 if (timeout >= 0.)
1554 {
1555 ev_timer_set (&once->to, timeout, 0.);
1556 ev_timer_start (EV_A_ &once->to);
1557 }
1558 }
1559 }
1560