ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.42
Committed: Sat Nov 24 10:19:14 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.41: +2 -2 lines
Log Message:
include embedding doc in main doc

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.42 <meta name="created" content="Sat Nov 24 11:19:13 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19     <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20     <li><a href="#FEATURES">FEATURES</a></li>
21     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
24 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
25     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
26 root 1.37 <ul><li><a href="#SUMMARY_OF_GENERIC_WATCHER_FUNCTIONS">SUMMARY OF GENERIC WATCHER FUNCTIONS</a></li>
27     <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
28 root 1.1 </ul>
29     </li>
30     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
31 root 1.11 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable</a></li>
32 root 1.10 <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally recurring timeouts</a></li>
33 root 1.14 <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron</a></li>
34 root 1.10 <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled</a></li>
35     <li><a href="#code_ev_child_code_wait_for_pid_stat"><code>ev_child</code> - wait for pid status changes</a></li>
36     <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do</a></li>
37 root 1.17 <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop</a></li>
38 root 1.36 <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough</a></li>
39 root 1.1 </ul>
40     </li>
41     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
42 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
43     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
44 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
45     <ul><li><a href="#FILESETS">FILESETS</a>
46     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
47     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
48     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
49     </ul>
50     </li>
51     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
52     <li><a href="#EXAMPLES">EXAMPLES</a></li>
53     </ul>
54     </li>
55 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
56     </li>
57     </ul><hr />
58     <!-- INDEX END -->
59    
60     <h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p>
61     <div id="NAME_CONTENT">
62     <p>libev - a high performance full-featured event loop written in C</p>
63    
64     </div>
65     <h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
66     <div id="SYNOPSIS_CONTENT">
67     <pre> #include &lt;ev.h&gt;
68    
69     </pre>
70    
71     </div>
72     <h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
73     <div id="DESCRIPTION_CONTENT">
74     <p>Libev is an event loop: you register interest in certain events (such as a
75     file descriptor being readable or a timeout occuring), and it will manage
76 root 1.4 these event sources and provide your program with events.</p>
77 root 1.1 <p>To do this, it must take more or less complete control over your process
78     (or thread) by executing the <i>event loop</i> handler, and will then
79     communicate events via a callback mechanism.</p>
80     <p>You register interest in certain events by registering so-called <i>event
81     watchers</i>, which are relatively small C structures you initialise with the
82     details of the event, and then hand it over to libev by <i>starting</i> the
83     watcher.</p>
84    
85     </div>
86     <h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
87     <div id="FEATURES_CONTENT">
88     <p>Libev supports select, poll, the linux-specific epoll and the bsd-specific
89     kqueue mechanisms for file descriptor events, relative timers, absolute
90     timers with customised rescheduling, signal events, process status change
91     events (related to SIGCHLD), and event watchers dealing with the event
92 root 1.5 loop mechanism itself (idle, prepare and check watchers). It also is quite
93 root 1.7 fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
94     it to libevent for example).</p>
95 root 1.1
96     </div>
97     <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
98     <div id="CONVENTIONS_CONTENT">
99     <p>Libev is very configurable. In this manual the default configuration
100     will be described, which supports multiple event loops. For more info
101 root 1.7 about various configuration options please have a look at the file
102 root 1.1 <cite>README.embed</cite> in the libev distribution. If libev was configured without
103     support for multiple event loops, then all functions taking an initial
104     argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
105     will not have this argument.</p>
106    
107     </div>
108 root 1.18 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
109     <div id="TIME_REPRESENTATION_CONTENT">
110 root 1.2 <p>Libev represents time as a single floating point number, representing the
111     (fractional) number of seconds since the (POSIX) epoch (somewhere near
112     the beginning of 1970, details are complicated, don't ask). This type is
113 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
114 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
115     it, you should treat it as such.</p>
116    
117    
118    
119    
120 root 1.18
121     </div>
122     <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
123     <div id="GLOBAL_FUNCTIONS_CONTENT">
124 root 1.21 <p>These functions can be called anytime, even before initialising the
125     library in any way.</p>
126 root 1.1 <dl>
127     <dt>ev_tstamp ev_time ()</dt>
128     <dd>
129 root 1.28 <p>Returns the current time as libev would use it. Please note that the
130     <code>ev_now</code> function is usually faster and also often returns the timestamp
131     you actually want to know.</p>
132 root 1.1 </dd>
133     <dt>int ev_version_major ()</dt>
134     <dt>int ev_version_minor ()</dt>
135     <dd>
136     <p>You can find out the major and minor version numbers of the library
137     you linked against by calling the functions <code>ev_version_major</code> and
138     <code>ev_version_minor</code>. If you want, you can compare against the global
139     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
140     version of the library your program was compiled against.</p>
141 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
142 root 1.1 as this indicates an incompatible change. Minor versions are usually
143     compatible to older versions, so a larger minor version alone is usually
144     not a problem.</p>
145 root 1.35 <p>Example: make sure we haven't accidentally been linked against the wrong
146     version:</p>
147     <pre> assert ((&quot;libev version mismatch&quot;,
148     ev_version_major () == EV_VERSION_MAJOR
149     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
150    
151     </pre>
152 root 1.1 </dd>
153 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
154     <dd>
155     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
156     value) compiled into this binary of libev (independent of their
157     availability on the system you are running on). See <code>ev_default_loop</code> for
158     a description of the set values.</p>
159 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
160     a must have and can we have a torrent of it please!!!11</p>
161     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
162     ev_supported_backends () &amp; EVBACKEND_EPOLL));
163    
164     </pre>
165 root 1.32 </dd>
166     <dt>unsigned int ev_recommended_backends ()</dt>
167     <dd>
168     <p>Return the set of all backends compiled into this binary of libev and also
169     recommended for this platform. This set is often smaller than the one
170     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
171     most BSDs and will not be autodetected unless you explicitly request it
172     (assuming you know what you are doing). This is the set of backends that
173 root 1.34 libev will probe for if you specify no backends explicitly.</p>
174 root 1.32 </dd>
175 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
176     <dd>
177     <p>Returns the set of backends that are embeddable in other event loops. This
178     is the theoretical, all-platform, value. To find which backends
179     might be supported on the current system, you would need to look at
180     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
181     recommended ones.</p>
182     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
183     </dd>
184 root 1.1 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
185     <dd>
186     <p>Sets the allocation function to use (the prototype is similar to the
187 root 1.7 realloc C function, the semantics are identical). It is used to allocate
188     and free memory (no surprises here). If it returns zero when memory
189     needs to be allocated, the library might abort or take some potentially
190     destructive action. The default is your system realloc function.</p>
191 root 1.1 <p>You could override this function in high-availability programs to, say,
192     free some memory if it cannot allocate memory, to use a special allocator,
193     or even to sleep a while and retry until some memory is available.</p>
194 root 1.35 <p>Example: replace the libev allocator with one that waits a bit and then
195     retries: better than mine).</p>
196     <pre> static void *
197     persistent_realloc (void *ptr, long size)
198     {
199     for (;;)
200     {
201     void *newptr = realloc (ptr, size);
202    
203     if (newptr)
204     return newptr;
205    
206     sleep (60);
207     }
208     }
209    
210     ...
211     ev_set_allocator (persistent_realloc);
212    
213     </pre>
214 root 1.1 </dd>
215     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
216     <dd>
217     <p>Set the callback function to call on a retryable syscall error (such
218     as failed select, poll, epoll_wait). The message is a printable string
219     indicating the system call or subsystem causing the problem. If this
220     callback is set, then libev will expect it to remedy the sitution, no
221 root 1.7 matter what, when it returns. That is, libev will generally retry the
222 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
223     (such as abort).</p>
224 root 1.35 <p>Example: do the same thing as libev does internally:</p>
225     <pre> static void
226     fatal_error (const char *msg)
227     {
228     perror (msg);
229     abort ();
230     }
231    
232     ...
233     ev_set_syserr_cb (fatal_error);
234    
235     </pre>
236 root 1.1 </dd>
237     </dl>
238    
239     </div>
240     <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p>
241     <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
242     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
243     types of such loops, the <i>default</i> loop, which supports signals and child
244     events, and dynamically created loops which do not.</p>
245     <p>If you use threads, a common model is to run the default event loop
246 root 1.18 in your main thread (or in a separate thread) and for each thread you
247 root 1.7 create, you also create another event loop. Libev itself does no locking
248     whatsoever, so if you mix calls to the same event loop in different
249     threads, make sure you lock (this is usually a bad idea, though, even if
250 root 1.9 done correctly, because it's hideous and inefficient).</p>
251 root 1.1 <dl>
252     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
253     <dd>
254     <p>This will initialise the default event loop if it hasn't been initialised
255     yet and return it. If the default loop could not be initialised, returns
256     false. If it already was initialised it simply returns it (and ignores the
257 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
258 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
259     function.</p>
260     <p>The flags argument can be used to specify special behaviour or specific
261 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
262     <p>The following flags are supported:</p>
263 root 1.1 <p>
264     <dl>
265 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
266 root 1.1 <dd>
267 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
268 root 1.1 thing, believe me).</p>
269     </dd>
270 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
271 root 1.1 <dd>
272 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
273     or setgid) then libev will <i>not</i> look at the environment variable
274     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
275     override the flags completely if it is found in the environment. This is
276     useful to try out specific backends to test their performance, or to work
277     around bugs.</p>
278 root 1.1 </dd>
279 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
280 root 1.29 <dd>
281     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
282     libev tries to roll its own fd_set with no limits on the number of fds,
283     but if that fails, expect a fairly low limit on the number of fds when
284     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
285     the fastest backend for a low number of fds.</p>
286     </dd>
287 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
288 root 1.29 <dd>
289     <p>And this is your standard poll(2) backend. It's more complicated than
290     select, but handles sparse fds better and has no artificial limit on the
291     number of fds you can use (except it will slow down considerably with a
292     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
293     </dd>
294 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
295 root 1.29 <dd>
296     <p>For few fds, this backend is a bit little slower than poll and select,
297     but it scales phenomenally better. While poll and select usually scale like
298     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
299     either O(1) or O(active_fds).</p>
300     <p>While stopping and starting an I/O watcher in the same iteration will
301     result in some caching, there is still a syscall per such incident
302     (because the fd could point to a different file description now), so its
303     best to avoid that. Also, dup()ed file descriptors might not work very
304     well if you register events for both fds.</p>
305 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
306     need to use non-blocking I/O or other means to avoid blocking when no data
307     (or space) is available.</p>
308 root 1.29 </dd>
309 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
310 root 1.29 <dd>
311     <p>Kqueue deserves special mention, as at the time of this writing, it
312     was broken on all BSDs except NetBSD (usually it doesn't work with
313     anything but sockets and pipes, except on Darwin, where of course its
314 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
315     unless you explicitly specify it explicitly in the flags (i.e. using
316     <code>EVBACKEND_KQUEUE</code>).</p>
317 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
318     kernel is more efficient (which says nothing about its actual speed, of
319     course). While starting and stopping an I/O watcher does not cause an
320     extra syscall as with epoll, it still adds up to four event changes per
321     incident, so its best to avoid that.</p>
322     </dd>
323 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
324 root 1.29 <dd>
325     <p>This is not implemented yet (and might never be).</p>
326     </dd>
327 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
328 root 1.29 <dd>
329     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
330     it's really slow, but it still scales very well (O(active_fds)).</p>
331 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
332     notifications, so you need to use non-blocking I/O or other means to avoid
333     blocking when no data (or space) is available.</p>
334 root 1.29 </dd>
335 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
336 root 1.29 <dd>
337 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
338     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
339 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
340 root 1.1 </dd>
341     </dl>
342     </p>
343 root 1.29 <p>If one or more of these are ored into the flags value, then only these
344     backends will be tried (in the reverse order as given here). If none are
345     specified, most compiled-in backend will be tried, usually in reverse
346     order of their flag values :)</p>
347 root 1.34 <p>The most typical usage is like this:</p>
348     <pre> if (!ev_default_loop (0))
349     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
350    
351     </pre>
352     <p>Restrict libev to the select and poll backends, and do not allow
353     environment settings to be taken into account:</p>
354     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
355    
356     </pre>
357     <p>Use whatever libev has to offer, but make sure that kqueue is used if
358     available (warning, breaks stuff, best use only with your own private
359     event loop and only if you know the OS supports your types of fds):</p>
360     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
361    
362     </pre>
363 root 1.1 </dd>
364     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
365     <dd>
366     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
367     always distinct from the default loop. Unlike the default loop, it cannot
368     handle signal and child watchers, and attempts to do so will be greeted by
369     undefined behaviour (or a failed assertion if assertions are enabled).</p>
370 root 1.35 <p>Example: try to create a event loop that uses epoll and nothing else.</p>
371     <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
372     if (!epoller)
373     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
374    
375     </pre>
376 root 1.1 </dd>
377     <dt>ev_default_destroy ()</dt>
378     <dd>
379     <p>Destroys the default loop again (frees all memory and kernel state
380 root 1.38 etc.). None of the active event watchers will be stopped in the normal
381     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
382     responsibility to either stop all watchers cleanly yoursef <i>before</i>
383     calling this function, or cope with the fact afterwards (which is usually
384     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
385     for example).</p>
386 root 1.1 </dd>
387     <dt>ev_loop_destroy (loop)</dt>
388     <dd>
389     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
390     earlier call to <code>ev_loop_new</code>.</p>
391     </dd>
392     <dt>ev_default_fork ()</dt>
393     <dd>
394     <p>This function reinitialises the kernel state for backends that have
395     one. Despite the name, you can call it anytime, but it makes most sense
396     after forking, in either the parent or child process (or both, but that
397     again makes little sense).</p>
398 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
399     only if you want to use the event library in both processes. If you just
400     fork+exec, you don't have to call it.</p>
401 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
402 root 1.1 it just in case after a fork. To make this easy, the function will fit in
403     quite nicely into a call to <code>pthread_atfork</code>:</p>
404     <pre> pthread_atfork (0, 0, ev_default_fork);
405    
406     </pre>
407 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
408     without calling this function, so if you force one of those backends you
409     do not need to care.</p>
410 root 1.1 </dd>
411     <dt>ev_loop_fork (loop)</dt>
412     <dd>
413     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
414     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
415     after fork, and how you do this is entirely your own problem.</p>
416     </dd>
417 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
418 root 1.1 <dd>
419 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
420 root 1.1 use.</p>
421     </dd>
422 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
423 root 1.1 <dd>
424     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
425 root 1.35 received events and started processing them. This timestamp does not
426     change as long as callbacks are being processed, and this is also the base
427     time used for relative timers. You can treat it as the timestamp of the
428     event occuring (or more correctly, libev finding out about it).</p>
429 root 1.1 </dd>
430     <dt>ev_loop (loop, int flags)</dt>
431     <dd>
432     <p>Finally, this is it, the event handler. This function usually is called
433     after you initialised all your watchers and you want to start handling
434     events.</p>
435 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
436     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
437 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
438     relying on all watchers to be stopped when deciding when a program has
439     finished (especially in interactive programs), but having a program that
440     automatically loops as long as it has to and no longer by virtue of
441     relying on its watchers stopping correctly is a thing of beauty.</p>
442 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
443     those events and any outstanding ones, but will not block your process in
444 root 1.9 case there are no events and will return after one iteration of the loop.</p>
445 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
446     neccessary) and will handle those and any outstanding ones. It will block
447 root 1.9 your process until at least one new event arrives, and will return after
448 root 1.34 one iteration of the loop. This is useful if you are waiting for some
449     external event in conjunction with something not expressible using other
450     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
451     usually a better approach for this kind of thing.</p>
452     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
453     <pre> * If there are no active watchers (reference count is zero), return.
454     - Queue prepare watchers and then call all outstanding watchers.
455     - If we have been forked, recreate the kernel state.
456     - Update the kernel state with all outstanding changes.
457     - Update the &quot;event loop time&quot;.
458     - Calculate for how long to block.
459     - Block the process, waiting for any events.
460     - Queue all outstanding I/O (fd) events.
461     - Update the &quot;event loop time&quot; and do time jump handling.
462     - Queue all outstanding timers.
463     - Queue all outstanding periodics.
464     - If no events are pending now, queue all idle watchers.
465     - Queue all check watchers.
466     - Call all queued watchers in reverse order (i.e. check watchers first).
467     Signals and child watchers are implemented as I/O watchers, and will
468     be handled here by queueing them when their watcher gets executed.
469     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
470     were used, return, otherwise continue with step *.
471 root 1.28
472     </pre>
473 root 1.35 <p>Example: queue some jobs and then loop until no events are outsanding
474     anymore.</p>
475     <pre> ... queue jobs here, make sure they register event watchers as long
476     ... as they still have work to do (even an idle watcher will do..)
477     ev_loop (my_loop, 0);
478     ... jobs done. yeah!
479    
480     </pre>
481 root 1.1 </dd>
482     <dt>ev_unloop (loop, how)</dt>
483     <dd>
484 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
485     has processed all outstanding events). The <code>how</code> argument must be either
486 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
487 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
488 root 1.1 </dd>
489     <dt>ev_ref (loop)</dt>
490     <dt>ev_unref (loop)</dt>
491     <dd>
492 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
493     loop: Every watcher keeps one reference, and as long as the reference
494     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
495     a watcher you never unregister that should not keep <code>ev_loop</code> from
496     returning, ev_unref() after starting, and ev_ref() before stopping it. For
497     example, libev itself uses this for its internal signal pipe: It is not
498     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
499     no event watchers registered by it are active. It is also an excellent
500     way to do this for generic recurring timers or from within third-party
501     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
502 root 1.35 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
503     running when nothing else is active.</p>
504     <pre> struct dv_signal exitsig;
505     ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
506     ev_signal_start (myloop, &amp;exitsig);
507     evf_unref (myloop);
508    
509     </pre>
510     <p>Example: for some weird reason, unregister the above signal handler again.</p>
511     <pre> ev_ref (myloop);
512     ev_signal_stop (myloop, &amp;exitsig);
513    
514     </pre>
515 root 1.1 </dd>
516     </dl>
517    
518     </div>
519     <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
520     <div id="ANATOMY_OF_A_WATCHER_CONTENT">
521     <p>A watcher is a structure that you create and register to record your
522     interest in some event. For instance, if you want to wait for STDIN to
523 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
524 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
525     {
526     ev_io_stop (w);
527     ev_unloop (loop, EVUNLOOP_ALL);
528     }
529    
530     struct ev_loop *loop = ev_default_loop (0);
531     struct ev_io stdin_watcher;
532     ev_init (&amp;stdin_watcher, my_cb);
533     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
534     ev_io_start (loop, &amp;stdin_watcher);
535     ev_loop (loop, 0);
536    
537     </pre>
538     <p>As you can see, you are responsible for allocating the memory for your
539     watcher structures (and it is usually a bad idea to do this on the stack,
540     although this can sometimes be quite valid).</p>
541     <p>Each watcher structure must be initialised by a call to <code>ev_init
542     (watcher *, callback)</code>, which expects a callback to be provided. This
543     callback gets invoked each time the event occurs (or, in the case of io
544     watchers, each time the event loop detects that the file descriptor given
545     is readable and/or writable).</p>
546     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
547     with arguments specific to this watcher type. There is also a macro
548     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
549     (watcher *, callback, ...)</code>.</p>
550     <p>To make the watcher actually watch out for events, you have to start it
551     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
552     *)</code>), and you can stop watching for events at any time by calling the
553     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
554     <p>As long as your watcher is active (has been started but not stopped) you
555     must not touch the values stored in it. Most specifically you must never
556 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
557 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
558     registered watcher structure as second, and a bitset of received events as
559     third argument.</p>
560 root 1.14 <p>The received events usually include a single bit per event type received
561 root 1.1 (you can receive multiple events at the same time). The possible bit masks
562     are:</p>
563     <dl>
564 root 1.10 <dt><code>EV_READ</code></dt>
565     <dt><code>EV_WRITE</code></dt>
566 root 1.1 <dd>
567 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
568 root 1.1 writable.</p>
569     </dd>
570 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
571 root 1.1 <dd>
572 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
573 root 1.1 </dd>
574 root 1.10 <dt><code>EV_PERIODIC</code></dt>
575 root 1.1 <dd>
576 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
577 root 1.1 </dd>
578 root 1.10 <dt><code>EV_SIGNAL</code></dt>
579 root 1.1 <dd>
580 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
581 root 1.1 </dd>
582 root 1.10 <dt><code>EV_CHILD</code></dt>
583 root 1.1 <dd>
584 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
585 root 1.1 </dd>
586 root 1.10 <dt><code>EV_IDLE</code></dt>
587 root 1.1 <dd>
588 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
589 root 1.1 </dd>
590 root 1.10 <dt><code>EV_PREPARE</code></dt>
591     <dt><code>EV_CHECK</code></dt>
592 root 1.1 <dd>
593 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
594     to gather new events, and all <code>ev_check</code> watchers are invoked just after
595 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
596     received events. Callbacks of both watcher types can start and stop as
597     many watchers as they want, and all of them will be taken into account
598 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
599 root 1.1 <code>ev_loop</code> from blocking).</p>
600     </dd>
601 root 1.10 <dt><code>EV_ERROR</code></dt>
602 root 1.1 <dd>
603     <p>An unspecified error has occured, the watcher has been stopped. This might
604     happen because the watcher could not be properly started because libev
605     ran out of memory, a file descriptor was found to be closed or any other
606     problem. You best act on it by reporting the problem and somehow coping
607     with the watcher being stopped.</p>
608     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
609     for example it might indicate that a fd is readable or writable, and if
610     your callbacks is well-written it can just attempt the operation and cope
611     with the error from read() or write(). This will not work in multithreaded
612     programs, though, so beware.</p>
613     </dd>
614     </dl>
615    
616     </div>
617 root 1.37 <h2 id="SUMMARY_OF_GENERIC_WATCHER_FUNCTIONS">SUMMARY OF GENERIC WATCHER FUNCTIONS</h2>
618     <div id="SUMMARY_OF_GENERIC_WATCHER_FUNCTIONS-2">
619     <p>In the following description, <code>TYPE</code> stands for the watcher type,
620     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
621     <dl>
622     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
623     <dd>
624     <p>This macro initialises the generic portion of a watcher. The contents
625     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
626     the generic parts of the watcher are initialised, you <i>need</i> to call
627     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
628     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
629     which rolls both calls into one.</p>
630     <p>You can reinitialise a watcher at any time as long as it has been stopped
631     (or never started) and there are no pending events outstanding.</p>
632     <p>The callbakc is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
633     int revents)</code>.</p>
634     </dd>
635     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
636     <dd>
637     <p>This macro initialises the type-specific parts of a watcher. You need to
638     call <code>ev_init</code> at least once before you call this macro, but you can
639     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
640     macro on a watcher that is active (it can be pending, however, which is a
641     difference to the <code>ev_init</code> macro).</p>
642     <p>Although some watcher types do not have type-specific arguments
643     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
644     </dd>
645     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
646     <dd>
647     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
648     calls into a single call. This is the most convinient method to initialise
649     a watcher. The same limitations apply, of course.</p>
650     </dd>
651     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
652     <dd>
653     <p>Starts (activates) the given watcher. Only active watchers will receive
654     events. If the watcher is already active nothing will happen.</p>
655     </dd>
656     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
657     <dd>
658     <p>Stops the given watcher again (if active) and clears the pending
659     status. It is possible that stopped watchers are pending (for example,
660     non-repeating timers are being stopped when they become pending), but
661     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
662     you want to free or reuse the memory used by the watcher it is therefore a
663     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
664     </dd>
665     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
666     <dd>
667     <p>Returns a true value iff the watcher is active (i.e. it has been started
668     and not yet been stopped). As long as a watcher is active you must not modify
669     it.</p>
670     </dd>
671     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
672     <dd>
673     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
674     events but its callback has not yet been invoked). As long as a watcher
675     is pending (but not active) you must not call an init function on it (but
676     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
677     libev (e.g. you cnanot <code>free ()</code> it).</p>
678     </dd>
679     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
680     <dd>
681     <p>Returns the callback currently set on the watcher.</p>
682     </dd>
683     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
684     <dd>
685     <p>Change the callback. You can change the callback at virtually any time
686     (modulo threads).</p>
687     </dd>
688     </dl>
689    
690    
691    
692    
693    
694     </div>
695 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
696     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
697     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
698 root 1.14 and read at any time, libev will completely ignore it. This can be used
699 root 1.1 to associate arbitrary data with your watcher. If you need more data and
700     don't want to allocate memory and store a pointer to it in that data
701     member, you can also &quot;subclass&quot; the watcher type and provide your own
702     data:</p>
703     <pre> struct my_io
704     {
705     struct ev_io io;
706     int otherfd;
707     void *somedata;
708     struct whatever *mostinteresting;
709     }
710    
711     </pre>
712     <p>And since your callback will be called with a pointer to the watcher, you
713     can cast it back to your own type:</p>
714     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
715     {
716     struct my_io *w = (struct my_io *)w_;
717     ...
718     }
719    
720     </pre>
721     <p>More interesting and less C-conformant ways of catsing your callback type
722     have been omitted....</p>
723    
724    
725    
726    
727    
728     </div>
729     <h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
730     <div id="WATCHER_TYPES_CONTENT">
731     <p>This section describes each watcher in detail, but will not repeat
732     information given in the last section.</p>
733    
734 root 1.35
735    
736    
737    
738 root 1.1 </div>
739 root 1.11 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable</h2>
740     <div id="code_ev_io_code_is_this_file_descrip-2">
741 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
742 root 1.1 in each iteration of the event loop (This behaviour is called
743     level-triggering because you keep receiving events as long as the
744 root 1.14 condition persists. Remember you can stop the watcher if you don't want to
745 root 1.1 act on the event and neither want to receive future events).</p>
746 root 1.25 <p>In general you can register as many read and/or write event watchers per
747 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
748     descriptors to non-blocking mode is also usually a good idea (but not
749     required if you know what you are doing).</p>
750     <p>You have to be careful with dup'ed file descriptors, though. Some backends
751     (the linux epoll backend is a notable example) cannot handle dup'ed file
752     descriptors correctly if you register interest in two or more fds pointing
753 root 1.26 to the same underlying file/socket etc. description (that is, they share
754     the same underlying &quot;file open&quot;).</p>
755 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
756 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
757     <code>EVBACKEND_POLL</code>).</p>
758 root 1.1 <dl>
759     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
760     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
761     <dd>
762 root 1.10 <p>Configures an <code>ev_io</code> watcher. The fd is the file descriptor to rceeive
763 root 1.1 events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_READ |
764     EV_WRITE</code> to receive the given events.</p>
765 root 1.33 <p>Please note that most of the more scalable backend mechanisms (for example
766     epoll and solaris ports) can result in spurious readyness notifications
767     for file descriptors, so you practically need to use non-blocking I/O (and
768     treat callback invocation as hint only), or retest separately with a safe
769     interface before doing I/O (XLib can do this), or force the use of either
770     <code>EVBACKEND_SELECT</code> or <code>EVBACKEND_POLL</code>, which don't suffer from this
771     problem. Also note that it is quite easy to have your callback invoked
772     when the readyness condition is no longer valid even when employing
773     typical ways of handling events, so its a good idea to use non-blocking
774     I/O unconditionally.</p>
775 root 1.1 </dd>
776     </dl>
777 root 1.35 <p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
778     readable, but only once. Since it is likely line-buffered, you could
779     attempt to read a whole line in the callback:</p>
780     <pre> static void
781     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
782     {
783     ev_io_stop (loop, w);
784     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
785     }
786    
787     ...
788     struct ev_loop *loop = ev_default_init (0);
789     struct ev_io stdin_readable;
790     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
791     ev_io_start (loop, &amp;stdin_readable);
792     ev_loop (loop, 0);
793    
794    
795    
796    
797     </pre>
798 root 1.1
799     </div>
800 root 1.10 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally recurring timeouts</h2>
801     <div id="code_ev_timer_code_relative_and_opti-2">
802 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
803     given time, and optionally repeating in regular intervals after that.</p>
804     <p>The timers are based on real time, that is, if you register an event that
805 root 1.25 times out after an hour and you reset your system clock to last years
806 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
807 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
808 root 1.1 monotonic clock option helps a lot here).</p>
809 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
810     time. This is usually the right thing as this timestamp refers to the time
811 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
812     you suspect event processing to be delayed and you <i>need</i> to base the timeout
813 root 1.25 on the current time, use something like this to adjust for this:</p>
814 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
815    
816     </pre>
817 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
818     but if multiple timers become ready during the same loop iteration then
819     order of execution is undefined.</p>
820 root 1.1 <dl>
821     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
822     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
823     <dd>
824     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
825     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
826     timer will automatically be configured to trigger again <code>repeat</code> seconds
827     later, again, and again, until stopped manually.</p>
828     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
829     configure a timer to trigger every 10 seconds, then it will trigger at
830     exactly 10 second intervals. If, however, your program cannot keep up with
831 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
832 root 1.1 timer will not fire more than once per event loop iteration.</p>
833     </dd>
834     <dt>ev_timer_again (loop)</dt>
835     <dd>
836     <p>This will act as if the timer timed out and restart it again if it is
837     repeating. The exact semantics are:</p>
838     <p>If the timer is started but nonrepeating, stop it.</p>
839     <p>If the timer is repeating, either start it if necessary (with the repeat
840     value), or reset the running timer to the repeat value.</p>
841     <p>This sounds a bit complicated, but here is a useful and typical
842     example: Imagine you have a tcp connection and you want a so-called idle
843     timeout, that is, you want to be called when there have been, say, 60
844     seconds of inactivity on the socket. The easiest way to do this is to
845 root 1.10 configure an <code>ev_timer</code> with after=repeat=60 and calling ev_timer_again each
846 root 1.1 time you successfully read or write some data. If you go into an idle
847     state where you do not expect data to travel on the socket, you can stop
848     the timer, and again will automatically restart it if need be.</p>
849     </dd>
850     </dl>
851 root 1.35 <p>Example: create a timer that fires after 60 seconds.</p>
852     <pre> static void
853     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
854     {
855     .. one minute over, w is actually stopped right here
856     }
857    
858     struct ev_timer mytimer;
859     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
860     ev_timer_start (loop, &amp;mytimer);
861    
862     </pre>
863     <p>Example: create a timeout timer that times out after 10 seconds of
864     inactivity.</p>
865     <pre> static void
866     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
867     {
868     .. ten seconds without any activity
869     }
870    
871     struct ev_timer mytimer;
872     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
873     ev_timer_again (&amp;mytimer); /* start timer */
874     ev_loop (loop, 0);
875    
876     // and in some piece of code that gets executed on any &quot;activity&quot;:
877     // reset the timeout to start ticking again at 10 seconds
878     ev_timer_again (&amp;mytimer);
879    
880    
881    
882    
883     </pre>
884 root 1.1
885     </div>
886 root 1.14 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron</h2>
887 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
888 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
889     (and unfortunately a bit complex).</p>
890 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
891 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
892     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
893 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
894     + 10.</code>) and then reset your system clock to the last year, then it will
895 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
896 root 1.1 roughly 10 seconds later and of course not if you reset your system time
897     again).</p>
898     <p>They can also be used to implement vastly more complex timers, such as
899     triggering an event on eahc midnight, local time.</p>
900 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
901     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
902     during the same loop iteration then order of execution is undefined.</p>
903 root 1.1 <dl>
904     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
905     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
906     <dd>
907     <p>Lots of arguments, lets sort it out... There are basically three modes of
908     operation, and we will explain them from simplest to complex:</p>
909     <p>
910     <dl>
911     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
912     <dd>
913     <p>In this configuration the watcher triggers an event at the wallclock time
914     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
915     that is, if it is to be run at January 1st 2011 then it will run when the
916     system time reaches or surpasses this time.</p>
917     </dd>
918     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
919     <dd>
920     <p>In this mode the watcher will always be scheduled to time out at the next
921     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
922     of any time jumps.</p>
923     <p>This can be used to create timers that do not drift with respect to system
924     time:</p>
925     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
926    
927     </pre>
928     <p>This doesn't mean there will always be 3600 seconds in between triggers,
929     but only that the the callback will be called when the system time shows a
930 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
931 root 1.1 by 3600.</p>
932     <p>Another way to think about it (for the mathematically inclined) is that
933 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
934 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
935     </dd>
936     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
937     <dd>
938     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
939     ignored. Instead, each time the periodic watcher gets scheduled, the
940     reschedule callback will be called with the watcher as first, and the
941     current time as second argument.</p>
942 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
943     ever, or make any event loop modifications</i>. If you need to stop it,
944     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
945     starting a prepare watcher).</p>
946 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
947     ev_tstamp now)</code>, e.g.:</p>
948 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
949     {
950     return now + 60.;
951     }
952    
953     </pre>
954     <p>It must return the next time to trigger, based on the passed time value
955     (that is, the lowest time value larger than to the second argument). It
956     will usually be called just before the callback will be triggered, but
957     might be called at other times, too.</p>
958 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
959 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
960 root 1.1 <p>This can be used to create very complex timers, such as a timer that
961     triggers on each midnight, local time. To do this, you would calculate the
962 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
963     you do this is, again, up to you (but it is not trivial, which is the main
964     reason I omitted it as an example).</p>
965 root 1.1 </dd>
966     </dl>
967     </p>
968     </dd>
969     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
970     <dd>
971     <p>Simply stops and restarts the periodic watcher again. This is only useful
972     when you changed some parameters or the reschedule callback would return
973     a different time than the last time it was called (e.g. in a crond like
974     program when the crontabs have changed).</p>
975     </dd>
976     </dl>
977 root 1.35 <p>Example: call a callback every hour, or, more precisely, whenever the
978     system clock is divisible by 3600. The callback invocation times have
979     potentially a lot of jittering, but good long-term stability.</p>
980     <pre> static void
981     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
982     {
983     ... its now a full hour (UTC, or TAI or whatever your clock follows)
984     }
985    
986     struct ev_periodic hourly_tick;
987     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
988     ev_periodic_start (loop, &amp;hourly_tick);
989    
990     </pre>
991     <p>Example: the same as above, but use a reschedule callback to do it:</p>
992     <pre> #include &lt;math.h&gt;
993    
994     static ev_tstamp
995     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
996     {
997     return fmod (now, 3600.) + 3600.;
998     }
999    
1000     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1001    
1002     </pre>
1003     <p>Example: call a callback every hour, starting now:</p>
1004     <pre> struct ev_periodic hourly_tick;
1005     ev_periodic_init (&amp;hourly_tick, clock_cb,
1006     fmod (ev_now (loop), 3600.), 3600., 0);
1007     ev_periodic_start (loop, &amp;hourly_tick);
1008    
1009    
1010    
1011    
1012     </pre>
1013 root 1.1
1014     </div>
1015 root 1.10 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled</h2>
1016     <div id="code_ev_signal_code_signal_me_when_a-2">
1017 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1018     signal one or more times. Even though signals are very asynchronous, libev
1019 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1020 root 1.1 normal event processing, like any other event.</p>
1021 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1022 root 1.1 first watcher gets started will libev actually register a signal watcher
1023     with the kernel (thus it coexists with your own signal handlers as long
1024     as you don't register any with libev). Similarly, when the last signal
1025     watcher for a signal is stopped libev will reset the signal handler to
1026     SIG_DFL (regardless of what it was set to before).</p>
1027     <dl>
1028     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1029     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1030     <dd>
1031     <p>Configures the watcher to trigger on the given signal number (usually one
1032     of the <code>SIGxxx</code> constants).</p>
1033     </dd>
1034     </dl>
1035    
1036 root 1.36
1037    
1038    
1039    
1040 root 1.1 </div>
1041 root 1.10 <h2 id="code_ev_child_code_wait_for_pid_stat"><code>ev_child</code> - wait for pid status changes</h2>
1042     <div id="code_ev_child_code_wait_for_pid_stat-2">
1043 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1044     some child status changes (most typically when a child of yours dies).</p>
1045     <dl>
1046     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1047     <dt>ev_child_set (ev_child *, int pid)</dt>
1048     <dd>
1049     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1050     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1051     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1052 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1053     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1054     process causing the status change.</p>
1055 root 1.1 </dd>
1056     </dl>
1057 root 1.35 <p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1058     <pre> static void
1059     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1060     {
1061     ev_unloop (loop, EVUNLOOP_ALL);
1062     }
1063    
1064     struct ev_signal signal_watcher;
1065     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1066     ev_signal_start (loop, &amp;sigint_cb);
1067    
1068    
1069    
1070    
1071     </pre>
1072 root 1.1
1073     </div>
1074 root 1.10 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do</h2>
1075     <div id="code_ev_idle_code_when_you_ve_got_no-2">
1076 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1077     (prepare, check and other idle watchers do not count). That is, as long
1078     as your process is busy handling sockets or timeouts (or even signals,
1079     imagine) it will not be triggered. But when your process is idle all idle
1080     watchers are being called again and again, once per event loop iteration -
1081     until stopped, that is, or your process receives more events and becomes
1082     busy.</p>
1083 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1084     active, the process will not block when waiting for new events.</p>
1085     <p>Apart from keeping your process non-blocking (which is a useful
1086     effect on its own sometimes), idle watchers are a good place to do
1087     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1088     event loop has handled all outstanding events.</p>
1089     <dl>
1090     <dt>ev_idle_init (ev_signal *, callback)</dt>
1091     <dd>
1092     <p>Initialises and configures the idle watcher - it has no parameters of any
1093     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1094     believe me.</p>
1095     </dd>
1096     </dl>
1097 root 1.35 <p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
1098     callback, free it. Alos, use no error checking, as usual.</p>
1099     <pre> static void
1100     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1101     {
1102     free (w);
1103     // now do something you wanted to do when the program has
1104     // no longer asnything immediate to do.
1105     }
1106    
1107     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1108     ev_idle_init (idle_watcher, idle_cb);
1109     ev_idle_start (loop, idle_cb);
1110    
1111    
1112    
1113    
1114     </pre>
1115 root 1.1
1116     </div>
1117 root 1.17 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop</h2>
1118 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1119 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1120 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1121 root 1.14 afterwards.</p>
1122 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1123     their use is somewhat advanced. This could be used, for example, to track
1124     variable changes, implement your own watchers, integrate net-snmp or a
1125     coroutine library and lots more.</p>
1126 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1127 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1128     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1129     provide just this functionality). Then, in the check watcher you check for
1130     any events that occured (by checking the pending status of all watchers
1131     and stopping them) and call back into the library. The I/O and timer
1132 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1133 root 1.14 because you never know, you know?).</p>
1134     <p>As another example, the Perl Coro module uses these hooks to integrate
1135 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1136     during each prepare and only letting the process block if no coroutines
1137 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1138     with priority higher than or equal to the event loop and one coroutine
1139     of lower priority, but only once, using idle watchers to keep the event
1140     loop from blocking if lower-priority coroutines are active, thus mapping
1141     low-priority coroutines to idle/background tasks).</p>
1142 root 1.1 <dl>
1143     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1144     <dt>ev_check_init (ev_check *, callback)</dt>
1145     <dd>
1146     <p>Initialises and configures the prepare or check watcher - they have no
1147     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1148 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1149 root 1.1 </dd>
1150     </dl>
1151 root 1.35 <p>Example: *TODO*.</p>
1152    
1153    
1154    
1155    
1156 root 1.1
1157     </div>
1158 root 1.36 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough</h2>
1159     <div id="code_ev_embed_code_when_one_backend_-2">
1160     <p>This is a rather advanced watcher type that lets you embed one event loop
1161 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1162     loop, other types of watchers might be handled in a delayed or incorrect
1163     fashion and must not be used).</p>
1164 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1165     prioritise I/O.</p>
1166     <p>As an example for a bug workaround, the kqueue backend might only support
1167     sockets on some platform, so it is unusable as generic backend, but you
1168     still want to make use of it because you have many sockets and it scales
1169     so nicely. In this case, you would create a kqueue-based loop and embed it
1170     into your default loop (which might use e.g. poll). Overall operation will
1171     be a bit slower because first libev has to poll and then call kevent, but
1172     at least you can use both at what they are best.</p>
1173     <p>As for prioritising I/O: rarely you have the case where some fds have
1174     to be watched and handled very quickly (with low latency), and even
1175     priorities and idle watchers might have too much overhead. In this case
1176     you would put all the high priority stuff in one loop and all the rest in
1177     a second one, and embed the second one in the first.</p>
1178 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1179     there might be events pending in the embedded loop. The callback must then
1180     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1181     their callbacks (you could also start an idle watcher to give the embedded
1182     loop strictly lower priority for example). You can also set the callback
1183     to <code>0</code>, in which case the embed watcher will automatically execute the
1184     embedded loop sweep.</p>
1185 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1186     callback will be invoked whenever some events have been handled. You can
1187     set the callback to <code>0</code> to avoid having to specify one if you are not
1188     interested in that.</p>
1189     <p>Also, there have not currently been made special provisions for forking:
1190     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1191     but you will also have to stop and restart any <code>ev_embed</code> watchers
1192     yourself.</p>
1193     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1194     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1195     portable one.</p>
1196     <p>So when you want to use this feature you will always have to be prepared
1197     that you cannot get an embeddable loop. The recommended way to get around
1198     this is to have a separate variables for your embeddable loop, try to
1199     create it, and if that fails, use the normal loop for everything:</p>
1200     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1201     struct ev_loop *loop_lo = 0;
1202     struct ev_embed embed;
1203    
1204     // see if there is a chance of getting one that works
1205     // (remember that a flags value of 0 means autodetection)
1206     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1207     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1208     : 0;
1209    
1210     // if we got one, then embed it, otherwise default to loop_hi
1211     if (loop_lo)
1212     {
1213     ev_embed_init (&amp;embed, 0, loop_lo);
1214     ev_embed_start (loop_hi, &amp;embed);
1215     }
1216     else
1217     loop_lo = loop_hi;
1218    
1219     </pre>
1220     <dl>
1221 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1222     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1223 root 1.36 <dd>
1224 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1225     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1226     invoked automatically, otherwise it is the responsibility of the callback
1227     to invoke it (it will continue to be called until the sweep has been done,
1228     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1229     </dd>
1230     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1231     <dd>
1232     <p>Make a single, non-blocking sweep over the embedded loop. This works
1233     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1234     apropriate way for embedded loops.</p>
1235 root 1.36 </dd>
1236     </dl>
1237    
1238    
1239    
1240    
1241    
1242     </div>
1243 root 1.1 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
1244     <div id="OTHER_FUNCTIONS_CONTENT">
1245 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1246 root 1.1 <dl>
1247     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1248     <dd>
1249     <p>This function combines a simple timer and an I/O watcher, calls your
1250     callback on whichever event happens first and automatically stop both
1251     watchers. This is useful if you want to wait for a single event on an fd
1252 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1253 root 1.1 more watchers yourself.</p>
1254 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1255     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1256     <code>events</code> set will be craeted and started.</p>
1257 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1258 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1259     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1260     dubious value.</p>
1261     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1262 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1263 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1264     value passed to <code>ev_once</code>:</p>
1265 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1266     {
1267     if (revents &amp; EV_TIMEOUT)
1268 root 1.14 /* doh, nothing entered */;
1269 root 1.1 else if (revents &amp; EV_READ)
1270 root 1.14 /* stdin might have data for us, joy! */;
1271 root 1.1 }
1272    
1273 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1274 root 1.1
1275     </pre>
1276     </dd>
1277 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1278 root 1.1 <dd>
1279     <p>Feeds the given event set into the event loop, as if the specified event
1280 root 1.14 had happened for the specified watcher (which must be a pointer to an
1281     initialised but not necessarily started event watcher).</p>
1282 root 1.1 </dd>
1283 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1284 root 1.1 <dd>
1285 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1286     the given events it.</p>
1287 root 1.1 </dd>
1288 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1289 root 1.1 <dd>
1290 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1291     loop!).</p>
1292 root 1.1 </dd>
1293     </dl>
1294    
1295 root 1.35
1296    
1297    
1298    
1299 root 1.1 </div>
1300 root 1.23 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
1301     <div id="LIBEVENT_EMULATION_CONTENT">
1302 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1303     emulate the internals of libevent, so here are some usage hints:</p>
1304     <dl>
1305     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1306     <dt>* The following members are fully supported: ev_base, ev_callback,
1307     ev_arg, ev_fd, ev_res, ev_events.</dt>
1308     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1309     maintained by libev, it does not work exactly the same way as in libevent (consider
1310     it a private API).</dt>
1311     <dt>* Priorities are not currently supported. Initialising priorities
1312     will fail and all watchers will have the same priority, even though there
1313     is an ev_pri field.</dt>
1314     <dt>* Other members are not supported.</dt>
1315     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1316     to use the libev header file and library.</dt>
1317     </dl>
1318 root 1.23
1319     </div>
1320     <h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
1321     <div id="C_SUPPORT_CONTENT">
1322 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1323     you to use some convinience methods to start/stop watchers and also change
1324     the callback model to a model using method callbacks on objects.</p>
1325     <p>To use it,</p>
1326     <pre> #include &lt;ev++.h&gt;
1327    
1328     </pre>
1329     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1330     and puts all of its definitions (many of them macros) into the global
1331     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1332     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1333     <code>EV_MULTIPLICITY</code>.</p>
1334     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1335     <dl>
1336     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1337     <dd>
1338     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1339     macros from <cite>ev.h</cite>.</p>
1340     </dd>
1341     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1342     <dd>
1343     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1344     </dd>
1345     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1346     <dd>
1347     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1348     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1349     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1350     defines by many implementations.</p>
1351     <p>All of those classes have these methods:</p>
1352     <p>
1353     <dl>
1354     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1355     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1356     <dt>ev::TYPE::~TYPE</dt>
1357     <dd>
1358     <p>The constructor takes a pointer to an object and a method pointer to
1359     the event handler callback to call in this class. The constructor calls
1360     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1361     before starting it. If you do not specify a loop then the constructor
1362     automatically associates the default loop with this watcher.</p>
1363     <p>The destructor automatically stops the watcher if it is active.</p>
1364     </dd>
1365     <dt>w-&gt;set (struct ev_loop *)</dt>
1366     <dd>
1367     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1368     do this when the watcher is inactive (and not pending either).</p>
1369     </dd>
1370     <dt>w-&gt;set ([args])</dt>
1371     <dd>
1372     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1373     called at least once. Unlike the C counterpart, an active watcher gets
1374     automatically stopped and restarted.</p>
1375     </dd>
1376     <dt>w-&gt;start ()</dt>
1377     <dd>
1378     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1379     constructor already takes the loop.</p>
1380     </dd>
1381     <dt>w-&gt;stop ()</dt>
1382     <dd>
1383     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1384     </dd>
1385     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1386     <dd>
1387     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1388     <code>ev_TYPE_again</code> function.</p>
1389     </dd>
1390     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1391     <dd>
1392     <p>Invokes <code>ev_embed_sweep</code>.</p>
1393     </dd>
1394     </dl>
1395     </p>
1396     </dd>
1397     </dl>
1398     <p>Example: Define a class with an IO and idle watcher, start one of them in
1399     the constructor.</p>
1400     <pre> class myclass
1401     {
1402     ev_io io; void io_cb (ev::io &amp;w, int revents);
1403     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1404    
1405     myclass ();
1406     }
1407    
1408     myclass::myclass (int fd)
1409     : io (this, &amp;myclass::io_cb),
1410     idle (this, &amp;myclass::idle_cb)
1411     {
1412     io.start (fd, ev::READ);
1413     }
1414    
1415     </pre>
1416 root 1.23
1417     </div>
1418 root 1.40 <h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1419     <div id="EMBEDDING_CONTENT">
1420     <p>Libev can (and often is) directly embedded into host
1421     applications. Examples of applications that embed it include the Deliantra
1422     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1423     and rxvt-unicode.</p>
1424     <p>The goal is to enable you to just copy the neecssary files into your
1425     source directory without having to change even a single line in them, so
1426     you can easily upgrade by simply copying (or having a checked-out copy of
1427     libev somewhere in your source tree).</p>
1428    
1429     </div>
1430     <h2 id="FILESETS">FILESETS</h2>
1431     <div id="FILESETS_CONTENT">
1432     <p>Depending on what features you need you need to include one or more sets of files
1433     in your app.</p>
1434    
1435     </div>
1436     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1437     <div id="CORE_EVENT_LOOP_CONTENT">
1438     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1439     configuration (no autoconf):</p>
1440     <pre> #define EV_STANDALONE 1
1441     #include &quot;ev.c&quot;
1442    
1443     </pre>
1444     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1445     single C source file only to provide the function implementations. To use
1446     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1447     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1448     where you can put other configuration options):</p>
1449     <pre> #define EV_STANDALONE 1
1450     #include &quot;ev.h&quot;
1451    
1452     </pre>
1453     <p>Both header files and implementation files can be compiled with a C++
1454     compiler (at least, thats a stated goal, and breakage will be treated
1455     as a bug).</p>
1456     <p>You need the following files in your source tree, or in a directory
1457     in your include path (e.g. in libev/ when using -Ilibev):</p>
1458     <pre> ev.h
1459     ev.c
1460     ev_vars.h
1461     ev_wrap.h
1462    
1463     ev_win32.c required on win32 platforms only
1464    
1465     ev_select.c only when select backend is enabled (which is is by default)
1466     ev_poll.c only when poll backend is enabled (disabled by default)
1467     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1468     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1469     ev_port.c only when the solaris port backend is enabled (disabled by default)
1470    
1471     </pre>
1472     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1473     to compile a single file.</p>
1474    
1475     </div>
1476     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1477     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1478     <p>To include the libevent compatibility API, also include:</p>
1479     <pre> #include &quot;event.c&quot;
1480    
1481     </pre>
1482     <p>in the file including <cite>ev.c</cite>, and:</p>
1483     <pre> #include &quot;event.h&quot;
1484    
1485     </pre>
1486     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1487     <p>You need the following additional files for this:</p>
1488     <pre> event.h
1489     event.c
1490    
1491     </pre>
1492    
1493     </div>
1494     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1495     <div id="AUTOCONF_SUPPORT_CONTENT">
1496     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1497     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1498     <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> off. <cite>ev.c</cite> will then include
1499     <cite>config.h</cite> and configure itself accordingly.</p>
1500     <p>For this of course you need the m4 file:</p>
1501     <pre> libev.m4
1502    
1503     </pre>
1504    
1505     </div>
1506     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1507     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1508     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1509     before including any of its files. The default is not to build for multiplicity
1510     and only include the select backend.</p>
1511     <dl>
1512     <dt>EV_STANDALONE</dt>
1513     <dd>
1514     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1515     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1516     implementations for some libevent functions (such as logging, which is not
1517     supported). It will also not define any of the structs usually found in
1518     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1519     </dd>
1520     <dt>EV_USE_MONOTONIC</dt>
1521     <dd>
1522     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1523     monotonic clock option at both compiletime and runtime. Otherwise no use
1524     of the monotonic clock option will be attempted. If you enable this, you
1525     usually have to link against librt or something similar. Enabling it when
1526     the functionality isn't available is safe, though, althoguh you have
1527     to make sure you link against any libraries where the <code>clock_gettime</code>
1528     function is hiding in (often <cite>-lrt</cite>).</p>
1529     </dd>
1530     <dt>EV_USE_REALTIME</dt>
1531     <dd>
1532     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1533     realtime clock option at compiletime (and assume its availability at
1534     runtime if successful). Otherwise no use of the realtime clock option will
1535     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1536     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1537     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1538     </dd>
1539     <dt>EV_USE_SELECT</dt>
1540     <dd>
1541     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1542     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1543     other method takes over, select will be it. Otherwise the select backend
1544     will not be compiled in.</p>
1545     </dd>
1546     <dt>EV_SELECT_USE_FD_SET</dt>
1547     <dd>
1548     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1549     structure. This is useful if libev doesn't compile due to a missing
1550     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1551     exotic systems. This usually limits the range of file descriptors to some
1552     low limit such as 1024 or might have other limitations (winsocket only
1553     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1554     influence the size of the <code>fd_set</code> used.</p>
1555     </dd>
1556     <dt>EV_SELECT_IS_WINSOCKET</dt>
1557     <dd>
1558     <p>When defined to <code>1</code>, the select backend will assume that
1559     select/socket/connect etc. don't understand file descriptors but
1560     wants osf handles on win32 (this is the case when the select to
1561     be used is the winsock select). This means that it will call
1562     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1563     it is assumed that all these functions actually work on fds, even
1564     on win32. Should not be defined on non-win32 platforms.</p>
1565     </dd>
1566     <dt>EV_USE_POLL</dt>
1567     <dd>
1568     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1569     backend. Otherwise it will be enabled on non-win32 platforms. It
1570     takes precedence over select.</p>
1571     </dd>
1572     <dt>EV_USE_EPOLL</dt>
1573     <dd>
1574     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1575     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1576     otherwise another method will be used as fallback. This is the
1577     preferred backend for GNU/Linux systems.</p>
1578     </dd>
1579     <dt>EV_USE_KQUEUE</dt>
1580     <dd>
1581     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1582     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1583     otherwise another method will be used as fallback. This is the preferred
1584     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1585     supports some types of fds correctly (the only platform we found that
1586     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1587     not be used unless explicitly requested. The best way to use it is to find
1588 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1589 root 1.40 kqueue loop.</p>
1590     </dd>
1591     <dt>EV_USE_PORT</dt>
1592     <dd>
1593     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1594     10 port style backend. Its availability will be detected at runtime,
1595     otherwise another method will be used as fallback. This is the preferred
1596     backend for Solaris 10 systems.</p>
1597     </dd>
1598     <dt>EV_USE_DEVPOLL</dt>
1599     <dd>
1600     <p>reserved for future expansion, works like the USE symbols above.</p>
1601     </dd>
1602     <dt>EV_H</dt>
1603     <dd>
1604     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1605     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1606     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1607     </dd>
1608     <dt>EV_CONFIG_H</dt>
1609     <dd>
1610     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
1611     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
1612     <code>EV_H</code>, above.</p>
1613     </dd>
1614     <dt>EV_EVENT_H</dt>
1615     <dd>
1616     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
1617     of how the <cite>event.h</cite> header can be found.</p>
1618     </dd>
1619     <dt>EV_PROTOTYPES</dt>
1620     <dd>
1621     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
1622     prototypes, but still define all the structs and other symbols. This is
1623     occasionally useful if you want to provide your own wrapper functions
1624     around libev functions.</p>
1625     </dd>
1626     <dt>EV_MULTIPLICITY</dt>
1627     <dd>
1628     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
1629     will have the <code>struct ev_loop *</code> as first argument, and you can create
1630     additional independent event loops. Otherwise there will be no support
1631     for multiple event loops and there is no first event loop pointer
1632     argument. Instead, all functions act on the single default loop.</p>
1633     </dd>
1634     <dt>EV_PERIODICS</dt>
1635     <dd>
1636     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported,
1637     otherwise not. This saves a few kb of code.</p>
1638     </dd>
1639     <dt>EV_COMMON</dt>
1640     <dd>
1641     <p>By default, all watchers have a <code>void *data</code> member. By redefining
1642     this macro to a something else you can include more and other types of
1643     members. You have to define it each time you include one of the files,
1644     though, and it must be identical each time.</p>
1645     <p>For example, the perl EV module uses something like this:</p>
1646     <pre> #define EV_COMMON \
1647     SV *self; /* contains this struct */ \
1648     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
1649    
1650     </pre>
1651     </dd>
1652     <dt>EV_CB_DECLARE(type)</dt>
1653     <dt>EV_CB_INVOKE(watcher,revents)</dt>
1654     <dt>ev_set_cb(ev,cb)</dt>
1655     <dd>
1656     <p>Can be used to change the callback member declaration in each watcher,
1657     and the way callbacks are invoked and set. Must expand to a struct member
1658     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
1659     their default definitions. One possible use for overriding these is to
1660     avoid the ev_loop pointer as first argument in all cases, or to use method
1661     calls instead of plain function calls in C++.</p>
1662    
1663     </div>
1664     <h2 id="EXAMPLES">EXAMPLES</h2>
1665     <div id="EXAMPLES_CONTENT">
1666     <p>For a real-world example of a program the includes libev
1667     verbatim, you can have a look at the EV perl module
1668     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
1669     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
1670     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
1671     will be compiled. It is pretty complex because it provides its own header
1672     file.</p>
1673     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
1674     that everybody includes and which overrides some autoconf choices:</p>
1675 root 1.41 <pre> #define EV_USE_POLL 0
1676     #define EV_MULTIPLICITY 0
1677     #define EV_PERIODICS 0
1678     #define EV_CONFIG_H &lt;config.h&gt;
1679 root 1.40
1680 root 1.41 #include &quot;ev++.h&quot;
1681 root 1.40
1682     </pre>
1683     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
1684 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
1685     #include &quot;ev.c&quot;
1686 root 1.40
1687     </pre>
1688    
1689     </div>
1690 root 1.1 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
1691     <div id="AUTHOR_CONTENT">
1692 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
1693 root 1.1
1694     </div>
1695     </div></body>
1696     </html>