ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.46
Committed: Mon Nov 26 09:52:14 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.45: +65 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.46 <meta name="created" content="Mon Nov 26 10:52:13 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19     <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20     <li><a href="#FEATURES">FEATURES</a></li>
21     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
24 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
25     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
26 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
27 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
28 root 1.1 </ul>
29     </li>
30     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
31 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
36     <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
37     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
38     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
39 root 1.1 </ul>
40     </li>
41     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
42 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
43     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
44 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
45     <ul><li><a href="#FILESETS">FILESETS</a>
46     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
47     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
48     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
49     </ul>
50     </li>
51     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
52     <li><a href="#EXAMPLES">EXAMPLES</a></li>
53     </ul>
54     </li>
55 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
56     </li>
57     </ul><hr />
58     <!-- INDEX END -->
59    
60     <h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p>
61     <div id="NAME_CONTENT">
62     <p>libev - a high performance full-featured event loop written in C</p>
63    
64     </div>
65     <h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
66     <div id="SYNOPSIS_CONTENT">
67     <pre> #include &lt;ev.h&gt;
68    
69     </pre>
70    
71     </div>
72     <h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
73     <div id="DESCRIPTION_CONTENT">
74     <p>Libev is an event loop: you register interest in certain events (such as a
75     file descriptor being readable or a timeout occuring), and it will manage
76 root 1.4 these event sources and provide your program with events.</p>
77 root 1.1 <p>To do this, it must take more or less complete control over your process
78     (or thread) by executing the <i>event loop</i> handler, and will then
79     communicate events via a callback mechanism.</p>
80     <p>You register interest in certain events by registering so-called <i>event
81     watchers</i>, which are relatively small C structures you initialise with the
82     details of the event, and then hand it over to libev by <i>starting</i> the
83     watcher.</p>
84    
85     </div>
86     <h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
87     <div id="FEATURES_CONTENT">
88     <p>Libev supports select, poll, the linux-specific epoll and the bsd-specific
89     kqueue mechanisms for file descriptor events, relative timers, absolute
90     timers with customised rescheduling, signal events, process status change
91     events (related to SIGCHLD), and event watchers dealing with the event
92 root 1.5 loop mechanism itself (idle, prepare and check watchers). It also is quite
93 root 1.7 fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
94     it to libevent for example).</p>
95 root 1.1
96     </div>
97     <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
98     <div id="CONVENTIONS_CONTENT">
99     <p>Libev is very configurable. In this manual the default configuration
100     will be described, which supports multiple event loops. For more info
101 root 1.7 about various configuration options please have a look at the file
102 root 1.1 <cite>README.embed</cite> in the libev distribution. If libev was configured without
103     support for multiple event loops, then all functions taking an initial
104     argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
105     will not have this argument.</p>
106    
107     </div>
108 root 1.18 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
109     <div id="TIME_REPRESENTATION_CONTENT">
110 root 1.2 <p>Libev represents time as a single floating point number, representing the
111     (fractional) number of seconds since the (POSIX) epoch (somewhere near
112     the beginning of 1970, details are complicated, don't ask). This type is
113 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
114 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
115     it, you should treat it as such.</p>
116    
117    
118    
119    
120 root 1.18
121     </div>
122     <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
123     <div id="GLOBAL_FUNCTIONS_CONTENT">
124 root 1.21 <p>These functions can be called anytime, even before initialising the
125     library in any way.</p>
126 root 1.1 <dl>
127     <dt>ev_tstamp ev_time ()</dt>
128     <dd>
129 root 1.28 <p>Returns the current time as libev would use it. Please note that the
130     <code>ev_now</code> function is usually faster and also often returns the timestamp
131     you actually want to know.</p>
132 root 1.1 </dd>
133     <dt>int ev_version_major ()</dt>
134     <dt>int ev_version_minor ()</dt>
135     <dd>
136     <p>You can find out the major and minor version numbers of the library
137     you linked against by calling the functions <code>ev_version_major</code> and
138     <code>ev_version_minor</code>. If you want, you can compare against the global
139     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
140     version of the library your program was compiled against.</p>
141 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
142 root 1.1 as this indicates an incompatible change. Minor versions are usually
143     compatible to older versions, so a larger minor version alone is usually
144     not a problem.</p>
145 root 1.35 <p>Example: make sure we haven't accidentally been linked against the wrong
146     version:</p>
147     <pre> assert ((&quot;libev version mismatch&quot;,
148     ev_version_major () == EV_VERSION_MAJOR
149     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
150    
151     </pre>
152 root 1.1 </dd>
153 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
154     <dd>
155     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
156     value) compiled into this binary of libev (independent of their
157     availability on the system you are running on). See <code>ev_default_loop</code> for
158     a description of the set values.</p>
159 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
160     a must have and can we have a torrent of it please!!!11</p>
161     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
162     ev_supported_backends () &amp; EVBACKEND_EPOLL));
163    
164     </pre>
165 root 1.32 </dd>
166     <dt>unsigned int ev_recommended_backends ()</dt>
167     <dd>
168     <p>Return the set of all backends compiled into this binary of libev and also
169     recommended for this platform. This set is often smaller than the one
170     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
171     most BSDs and will not be autodetected unless you explicitly request it
172     (assuming you know what you are doing). This is the set of backends that
173 root 1.34 libev will probe for if you specify no backends explicitly.</p>
174 root 1.32 </dd>
175 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
176     <dd>
177     <p>Returns the set of backends that are embeddable in other event loops. This
178     is the theoretical, all-platform, value. To find which backends
179     might be supported on the current system, you would need to look at
180     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
181     recommended ones.</p>
182     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
183     </dd>
184 root 1.1 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
185     <dd>
186     <p>Sets the allocation function to use (the prototype is similar to the
187 root 1.7 realloc C function, the semantics are identical). It is used to allocate
188     and free memory (no surprises here). If it returns zero when memory
189     needs to be allocated, the library might abort or take some potentially
190     destructive action. The default is your system realloc function.</p>
191 root 1.1 <p>You could override this function in high-availability programs to, say,
192     free some memory if it cannot allocate memory, to use a special allocator,
193     or even to sleep a while and retry until some memory is available.</p>
194 root 1.35 <p>Example: replace the libev allocator with one that waits a bit and then
195     retries: better than mine).</p>
196     <pre> static void *
197     persistent_realloc (void *ptr, long size)
198     {
199     for (;;)
200     {
201     void *newptr = realloc (ptr, size);
202    
203     if (newptr)
204     return newptr;
205    
206     sleep (60);
207     }
208     }
209    
210     ...
211     ev_set_allocator (persistent_realloc);
212    
213     </pre>
214 root 1.1 </dd>
215     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
216     <dd>
217     <p>Set the callback function to call on a retryable syscall error (such
218     as failed select, poll, epoll_wait). The message is a printable string
219     indicating the system call or subsystem causing the problem. If this
220     callback is set, then libev will expect it to remedy the sitution, no
221 root 1.7 matter what, when it returns. That is, libev will generally retry the
222 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
223     (such as abort).</p>
224 root 1.35 <p>Example: do the same thing as libev does internally:</p>
225     <pre> static void
226     fatal_error (const char *msg)
227     {
228     perror (msg);
229     abort ();
230     }
231    
232     ...
233     ev_set_syserr_cb (fatal_error);
234    
235     </pre>
236 root 1.1 </dd>
237     </dl>
238    
239     </div>
240     <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p>
241     <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
242     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
243     types of such loops, the <i>default</i> loop, which supports signals and child
244     events, and dynamically created loops which do not.</p>
245     <p>If you use threads, a common model is to run the default event loop
246 root 1.18 in your main thread (or in a separate thread) and for each thread you
247 root 1.7 create, you also create another event loop. Libev itself does no locking
248     whatsoever, so if you mix calls to the same event loop in different
249     threads, make sure you lock (this is usually a bad idea, though, even if
250 root 1.9 done correctly, because it's hideous and inefficient).</p>
251 root 1.1 <dl>
252     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
253     <dd>
254     <p>This will initialise the default event loop if it hasn't been initialised
255     yet and return it. If the default loop could not be initialised, returns
256     false. If it already was initialised it simply returns it (and ignores the
257 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
258 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
259     function.</p>
260     <p>The flags argument can be used to specify special behaviour or specific
261 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
262     <p>The following flags are supported:</p>
263 root 1.1 <p>
264     <dl>
265 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
266 root 1.1 <dd>
267 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
268 root 1.1 thing, believe me).</p>
269     </dd>
270 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
271 root 1.1 <dd>
272 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
273     or setgid) then libev will <i>not</i> look at the environment variable
274     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
275     override the flags completely if it is found in the environment. This is
276     useful to try out specific backends to test their performance, or to work
277     around bugs.</p>
278 root 1.1 </dd>
279 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
280 root 1.29 <dd>
281     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
282     libev tries to roll its own fd_set with no limits on the number of fds,
283     but if that fails, expect a fairly low limit on the number of fds when
284     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
285     the fastest backend for a low number of fds.</p>
286     </dd>
287 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
288 root 1.29 <dd>
289     <p>And this is your standard poll(2) backend. It's more complicated than
290     select, but handles sparse fds better and has no artificial limit on the
291     number of fds you can use (except it will slow down considerably with a
292     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
293     </dd>
294 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
295 root 1.29 <dd>
296     <p>For few fds, this backend is a bit little slower than poll and select,
297     but it scales phenomenally better. While poll and select usually scale like
298     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
299     either O(1) or O(active_fds).</p>
300     <p>While stopping and starting an I/O watcher in the same iteration will
301     result in some caching, there is still a syscall per such incident
302     (because the fd could point to a different file description now), so its
303     best to avoid that. Also, dup()ed file descriptors might not work very
304     well if you register events for both fds.</p>
305 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
306     need to use non-blocking I/O or other means to avoid blocking when no data
307     (or space) is available.</p>
308 root 1.29 </dd>
309 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
310 root 1.29 <dd>
311     <p>Kqueue deserves special mention, as at the time of this writing, it
312     was broken on all BSDs except NetBSD (usually it doesn't work with
313     anything but sockets and pipes, except on Darwin, where of course its
314 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
315     unless you explicitly specify it explicitly in the flags (i.e. using
316     <code>EVBACKEND_KQUEUE</code>).</p>
317 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
318     kernel is more efficient (which says nothing about its actual speed, of
319     course). While starting and stopping an I/O watcher does not cause an
320     extra syscall as with epoll, it still adds up to four event changes per
321     incident, so its best to avoid that.</p>
322     </dd>
323 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
324 root 1.29 <dd>
325     <p>This is not implemented yet (and might never be).</p>
326     </dd>
327 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
328 root 1.29 <dd>
329     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
330     it's really slow, but it still scales very well (O(active_fds)).</p>
331 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
332     notifications, so you need to use non-blocking I/O or other means to avoid
333     blocking when no data (or space) is available.</p>
334 root 1.29 </dd>
335 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
336 root 1.29 <dd>
337 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
338     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
339 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
340 root 1.1 </dd>
341     </dl>
342     </p>
343 root 1.29 <p>If one or more of these are ored into the flags value, then only these
344     backends will be tried (in the reverse order as given here). If none are
345     specified, most compiled-in backend will be tried, usually in reverse
346     order of their flag values :)</p>
347 root 1.34 <p>The most typical usage is like this:</p>
348     <pre> if (!ev_default_loop (0))
349     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
350    
351     </pre>
352     <p>Restrict libev to the select and poll backends, and do not allow
353     environment settings to be taken into account:</p>
354     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
355    
356     </pre>
357     <p>Use whatever libev has to offer, but make sure that kqueue is used if
358     available (warning, breaks stuff, best use only with your own private
359     event loop and only if you know the OS supports your types of fds):</p>
360     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
361    
362     </pre>
363 root 1.1 </dd>
364     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
365     <dd>
366     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
367     always distinct from the default loop. Unlike the default loop, it cannot
368     handle signal and child watchers, and attempts to do so will be greeted by
369     undefined behaviour (or a failed assertion if assertions are enabled).</p>
370 root 1.35 <p>Example: try to create a event loop that uses epoll and nothing else.</p>
371     <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
372     if (!epoller)
373     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
374    
375     </pre>
376 root 1.1 </dd>
377     <dt>ev_default_destroy ()</dt>
378     <dd>
379     <p>Destroys the default loop again (frees all memory and kernel state
380 root 1.38 etc.). None of the active event watchers will be stopped in the normal
381     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
382     responsibility to either stop all watchers cleanly yoursef <i>before</i>
383     calling this function, or cope with the fact afterwards (which is usually
384     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
385     for example).</p>
386 root 1.1 </dd>
387     <dt>ev_loop_destroy (loop)</dt>
388     <dd>
389     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
390     earlier call to <code>ev_loop_new</code>.</p>
391     </dd>
392     <dt>ev_default_fork ()</dt>
393     <dd>
394     <p>This function reinitialises the kernel state for backends that have
395     one. Despite the name, you can call it anytime, but it makes most sense
396     after forking, in either the parent or child process (or both, but that
397     again makes little sense).</p>
398 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
399     only if you want to use the event library in both processes. If you just
400     fork+exec, you don't have to call it.</p>
401 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
402 root 1.1 it just in case after a fork. To make this easy, the function will fit in
403     quite nicely into a call to <code>pthread_atfork</code>:</p>
404     <pre> pthread_atfork (0, 0, ev_default_fork);
405    
406     </pre>
407 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
408     without calling this function, so if you force one of those backends you
409     do not need to care.</p>
410 root 1.1 </dd>
411     <dt>ev_loop_fork (loop)</dt>
412     <dd>
413     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
414     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
415     after fork, and how you do this is entirely your own problem.</p>
416     </dd>
417 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
418 root 1.1 <dd>
419 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
420 root 1.1 use.</p>
421     </dd>
422 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
423 root 1.1 <dd>
424     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
425 root 1.35 received events and started processing them. This timestamp does not
426     change as long as callbacks are being processed, and this is also the base
427     time used for relative timers. You can treat it as the timestamp of the
428     event occuring (or more correctly, libev finding out about it).</p>
429 root 1.1 </dd>
430     <dt>ev_loop (loop, int flags)</dt>
431     <dd>
432     <p>Finally, this is it, the event handler. This function usually is called
433     after you initialised all your watchers and you want to start handling
434     events.</p>
435 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
436     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
437 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
438     relying on all watchers to be stopped when deciding when a program has
439     finished (especially in interactive programs), but having a program that
440     automatically loops as long as it has to and no longer by virtue of
441     relying on its watchers stopping correctly is a thing of beauty.</p>
442 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
443     those events and any outstanding ones, but will not block your process in
444 root 1.9 case there are no events and will return after one iteration of the loop.</p>
445 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
446     neccessary) and will handle those and any outstanding ones. It will block
447 root 1.9 your process until at least one new event arrives, and will return after
448 root 1.34 one iteration of the loop. This is useful if you are waiting for some
449     external event in conjunction with something not expressible using other
450     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
451     usually a better approach for this kind of thing.</p>
452     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
453     <pre> * If there are no active watchers (reference count is zero), return.
454     - Queue prepare watchers and then call all outstanding watchers.
455     - If we have been forked, recreate the kernel state.
456     - Update the kernel state with all outstanding changes.
457     - Update the &quot;event loop time&quot;.
458     - Calculate for how long to block.
459     - Block the process, waiting for any events.
460     - Queue all outstanding I/O (fd) events.
461     - Update the &quot;event loop time&quot; and do time jump handling.
462     - Queue all outstanding timers.
463     - Queue all outstanding periodics.
464     - If no events are pending now, queue all idle watchers.
465     - Queue all check watchers.
466     - Call all queued watchers in reverse order (i.e. check watchers first).
467     Signals and child watchers are implemented as I/O watchers, and will
468     be handled here by queueing them when their watcher gets executed.
469     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
470     were used, return, otherwise continue with step *.
471 root 1.28
472     </pre>
473 root 1.35 <p>Example: queue some jobs and then loop until no events are outsanding
474     anymore.</p>
475     <pre> ... queue jobs here, make sure they register event watchers as long
476     ... as they still have work to do (even an idle watcher will do..)
477     ev_loop (my_loop, 0);
478     ... jobs done. yeah!
479    
480     </pre>
481 root 1.1 </dd>
482     <dt>ev_unloop (loop, how)</dt>
483     <dd>
484 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
485     has processed all outstanding events). The <code>how</code> argument must be either
486 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
487 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
488 root 1.1 </dd>
489     <dt>ev_ref (loop)</dt>
490     <dt>ev_unref (loop)</dt>
491     <dd>
492 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
493     loop: Every watcher keeps one reference, and as long as the reference
494     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
495     a watcher you never unregister that should not keep <code>ev_loop</code> from
496     returning, ev_unref() after starting, and ev_ref() before stopping it. For
497     example, libev itself uses this for its internal signal pipe: It is not
498     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
499     no event watchers registered by it are active. It is also an excellent
500     way to do this for generic recurring timers or from within third-party
501     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
502 root 1.35 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
503     running when nothing else is active.</p>
504     <pre> struct dv_signal exitsig;
505     ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
506     ev_signal_start (myloop, &amp;exitsig);
507     evf_unref (myloop);
508    
509     </pre>
510     <p>Example: for some weird reason, unregister the above signal handler again.</p>
511     <pre> ev_ref (myloop);
512     ev_signal_stop (myloop, &amp;exitsig);
513    
514     </pre>
515 root 1.1 </dd>
516     </dl>
517    
518 root 1.43
519    
520    
521    
522 root 1.1 </div>
523     <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
524     <div id="ANATOMY_OF_A_WATCHER_CONTENT">
525     <p>A watcher is a structure that you create and register to record your
526     interest in some event. For instance, if you want to wait for STDIN to
527 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
528 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
529     {
530     ev_io_stop (w);
531     ev_unloop (loop, EVUNLOOP_ALL);
532     }
533    
534     struct ev_loop *loop = ev_default_loop (0);
535     struct ev_io stdin_watcher;
536     ev_init (&amp;stdin_watcher, my_cb);
537     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
538     ev_io_start (loop, &amp;stdin_watcher);
539     ev_loop (loop, 0);
540    
541     </pre>
542     <p>As you can see, you are responsible for allocating the memory for your
543     watcher structures (and it is usually a bad idea to do this on the stack,
544     although this can sometimes be quite valid).</p>
545     <p>Each watcher structure must be initialised by a call to <code>ev_init
546     (watcher *, callback)</code>, which expects a callback to be provided. This
547     callback gets invoked each time the event occurs (or, in the case of io
548     watchers, each time the event loop detects that the file descriptor given
549     is readable and/or writable).</p>
550     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
551     with arguments specific to this watcher type. There is also a macro
552     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
553     (watcher *, callback, ...)</code>.</p>
554     <p>To make the watcher actually watch out for events, you have to start it
555     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
556     *)</code>), and you can stop watching for events at any time by calling the
557     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
558     <p>As long as your watcher is active (has been started but not stopped) you
559     must not touch the values stored in it. Most specifically you must never
560 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
561 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
562     registered watcher structure as second, and a bitset of received events as
563     third argument.</p>
564 root 1.14 <p>The received events usually include a single bit per event type received
565 root 1.1 (you can receive multiple events at the same time). The possible bit masks
566     are:</p>
567     <dl>
568 root 1.10 <dt><code>EV_READ</code></dt>
569     <dt><code>EV_WRITE</code></dt>
570 root 1.1 <dd>
571 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
572 root 1.1 writable.</p>
573     </dd>
574 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
575 root 1.1 <dd>
576 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
577 root 1.1 </dd>
578 root 1.10 <dt><code>EV_PERIODIC</code></dt>
579 root 1.1 <dd>
580 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
581 root 1.1 </dd>
582 root 1.10 <dt><code>EV_SIGNAL</code></dt>
583 root 1.1 <dd>
584 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
585 root 1.1 </dd>
586 root 1.10 <dt><code>EV_CHILD</code></dt>
587 root 1.1 <dd>
588 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
589 root 1.1 </dd>
590 root 1.10 <dt><code>EV_IDLE</code></dt>
591 root 1.1 <dd>
592 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
593 root 1.1 </dd>
594 root 1.10 <dt><code>EV_PREPARE</code></dt>
595     <dt><code>EV_CHECK</code></dt>
596 root 1.1 <dd>
597 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
598     to gather new events, and all <code>ev_check</code> watchers are invoked just after
599 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
600     received events. Callbacks of both watcher types can start and stop as
601     many watchers as they want, and all of them will be taken into account
602 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
603 root 1.1 <code>ev_loop</code> from blocking).</p>
604     </dd>
605 root 1.10 <dt><code>EV_ERROR</code></dt>
606 root 1.1 <dd>
607     <p>An unspecified error has occured, the watcher has been stopped. This might
608     happen because the watcher could not be properly started because libev
609     ran out of memory, a file descriptor was found to be closed or any other
610     problem. You best act on it by reporting the problem and somehow coping
611     with the watcher being stopped.</p>
612     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
613     for example it might indicate that a fd is readable or writable, and if
614     your callbacks is well-written it can just attempt the operation and cope
615     with the error from read() or write(). This will not work in multithreaded
616     programs, though, so beware.</p>
617     </dd>
618     </dl>
619    
620     </div>
621 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
622     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
623 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
624     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
625     <dl>
626     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
627     <dd>
628     <p>This macro initialises the generic portion of a watcher. The contents
629     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
630     the generic parts of the watcher are initialised, you <i>need</i> to call
631     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
632     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
633     which rolls both calls into one.</p>
634     <p>You can reinitialise a watcher at any time as long as it has been stopped
635     (or never started) and there are no pending events outstanding.</p>
636 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
637 root 1.37 int revents)</code>.</p>
638     </dd>
639     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
640     <dd>
641     <p>This macro initialises the type-specific parts of a watcher. You need to
642     call <code>ev_init</code> at least once before you call this macro, but you can
643     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
644     macro on a watcher that is active (it can be pending, however, which is a
645     difference to the <code>ev_init</code> macro).</p>
646     <p>Although some watcher types do not have type-specific arguments
647     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
648     </dd>
649     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
650     <dd>
651     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
652     calls into a single call. This is the most convinient method to initialise
653     a watcher. The same limitations apply, of course.</p>
654     </dd>
655     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
656     <dd>
657     <p>Starts (activates) the given watcher. Only active watchers will receive
658     events. If the watcher is already active nothing will happen.</p>
659     </dd>
660     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
661     <dd>
662     <p>Stops the given watcher again (if active) and clears the pending
663     status. It is possible that stopped watchers are pending (for example,
664     non-repeating timers are being stopped when they become pending), but
665     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
666     you want to free or reuse the memory used by the watcher it is therefore a
667     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
668     </dd>
669     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
670     <dd>
671     <p>Returns a true value iff the watcher is active (i.e. it has been started
672     and not yet been stopped). As long as a watcher is active you must not modify
673     it.</p>
674     </dd>
675     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
676     <dd>
677     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
678     events but its callback has not yet been invoked). As long as a watcher
679     is pending (but not active) you must not call an init function on it (but
680     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
681     libev (e.g. you cnanot <code>free ()</code> it).</p>
682     </dd>
683     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
684     <dd>
685     <p>Returns the callback currently set on the watcher.</p>
686     </dd>
687     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
688     <dd>
689     <p>Change the callback. You can change the callback at virtually any time
690     (modulo threads).</p>
691     </dd>
692     </dl>
693    
694    
695    
696    
697    
698     </div>
699 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
700     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
701     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
702 root 1.14 and read at any time, libev will completely ignore it. This can be used
703 root 1.1 to associate arbitrary data with your watcher. If you need more data and
704     don't want to allocate memory and store a pointer to it in that data
705     member, you can also &quot;subclass&quot; the watcher type and provide your own
706     data:</p>
707     <pre> struct my_io
708     {
709     struct ev_io io;
710     int otherfd;
711     void *somedata;
712     struct whatever *mostinteresting;
713     }
714    
715     </pre>
716     <p>And since your callback will be called with a pointer to the watcher, you
717     can cast it back to your own type:</p>
718     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
719     {
720     struct my_io *w = (struct my_io *)w_;
721     ...
722     }
723    
724     </pre>
725     <p>More interesting and less C-conformant ways of catsing your callback type
726     have been omitted....</p>
727    
728    
729    
730    
731    
732     </div>
733     <h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
734     <div id="WATCHER_TYPES_CONTENT">
735     <p>This section describes each watcher in detail, but will not repeat
736     information given in the last section.</p>
737    
738 root 1.35
739    
740    
741    
742 root 1.1 </div>
743 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
744 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
745 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
746 root 1.43 in each iteration of the event loop, or, more precisely, when reading
747     would not block the process and writing would at least be able to write
748     some data. This behaviour is called level-triggering because you keep
749     receiving events as long as the condition persists. Remember you can stop
750     the watcher if you don't want to act on the event and neither want to
751     receive future events.</p>
752 root 1.25 <p>In general you can register as many read and/or write event watchers per
753 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
754     descriptors to non-blocking mode is also usually a good idea (but not
755     required if you know what you are doing).</p>
756     <p>You have to be careful with dup'ed file descriptors, though. Some backends
757     (the linux epoll backend is a notable example) cannot handle dup'ed file
758     descriptors correctly if you register interest in two or more fds pointing
759 root 1.43 to the same underlying file/socket/etc. description (that is, they share
760 root 1.26 the same underlying &quot;file open&quot;).</p>
761 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
762 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
763     <code>EVBACKEND_POLL</code>).</p>
764 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
765     receive &quot;spurious&quot; readyness notifications, that is your callback might
766     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
767     because there is no data. Not only are some backends known to create a
768     lot of those (for example solaris ports), it is very easy to get into
769     this situation even with a relatively standard program structure. Thus
770     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
771     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
772     <p>If you cannot run the fd in non-blocking mode (for example you should not
773     play around with an Xlib connection), then you have to seperately re-test
774     wether a file descriptor is really ready with a known-to-be good interface
775     such as poll (fortunately in our Xlib example, Xlib already does this on
776     its own, so its quite safe to use).</p>
777 root 1.1 <dl>
778     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
779     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
780     <dd>
781 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
782     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
783     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
784 root 1.1 </dd>
785     </dl>
786 root 1.35 <p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
787     readable, but only once. Since it is likely line-buffered, you could
788     attempt to read a whole line in the callback:</p>
789     <pre> static void
790     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
791     {
792     ev_io_stop (loop, w);
793     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
794     }
795    
796     ...
797     struct ev_loop *loop = ev_default_init (0);
798     struct ev_io stdin_readable;
799     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
800     ev_io_start (loop, &amp;stdin_readable);
801     ev_loop (loop, 0);
802    
803    
804    
805    
806     </pre>
807 root 1.1
808     </div>
809 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
810 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
811 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
812     given time, and optionally repeating in regular intervals after that.</p>
813     <p>The timers are based on real time, that is, if you register an event that
814 root 1.25 times out after an hour and you reset your system clock to last years
815 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
816 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
817 root 1.1 monotonic clock option helps a lot here).</p>
818 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
819     time. This is usually the right thing as this timestamp refers to the time
820 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
821     you suspect event processing to be delayed and you <i>need</i> to base the timeout
822 root 1.25 on the current time, use something like this to adjust for this:</p>
823 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
824    
825     </pre>
826 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
827     but if multiple timers become ready during the same loop iteration then
828     order of execution is undefined.</p>
829 root 1.1 <dl>
830     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
831     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
832     <dd>
833     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
834     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
835     timer will automatically be configured to trigger again <code>repeat</code> seconds
836     later, again, and again, until stopped manually.</p>
837     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
838     configure a timer to trigger every 10 seconds, then it will trigger at
839     exactly 10 second intervals. If, however, your program cannot keep up with
840 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
841 root 1.1 timer will not fire more than once per event loop iteration.</p>
842     </dd>
843     <dt>ev_timer_again (loop)</dt>
844     <dd>
845     <p>This will act as if the timer timed out and restart it again if it is
846     repeating. The exact semantics are:</p>
847     <p>If the timer is started but nonrepeating, stop it.</p>
848     <p>If the timer is repeating, either start it if necessary (with the repeat
849     value), or reset the running timer to the repeat value.</p>
850     <p>This sounds a bit complicated, but here is a useful and typical
851     example: Imagine you have a tcp connection and you want a so-called idle
852     timeout, that is, you want to be called when there have been, say, 60
853     seconds of inactivity on the socket. The easiest way to do this is to
854 root 1.10 configure an <code>ev_timer</code> with after=repeat=60 and calling ev_timer_again each
855 root 1.1 time you successfully read or write some data. If you go into an idle
856     state where you do not expect data to travel on the socket, you can stop
857     the timer, and again will automatically restart it if need be.</p>
858     </dd>
859     </dl>
860 root 1.35 <p>Example: create a timer that fires after 60 seconds.</p>
861     <pre> static void
862     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
863     {
864     .. one minute over, w is actually stopped right here
865     }
866    
867     struct ev_timer mytimer;
868     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
869     ev_timer_start (loop, &amp;mytimer);
870    
871     </pre>
872     <p>Example: create a timeout timer that times out after 10 seconds of
873     inactivity.</p>
874     <pre> static void
875     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
876     {
877     .. ten seconds without any activity
878     }
879    
880     struct ev_timer mytimer;
881     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
882     ev_timer_again (&amp;mytimer); /* start timer */
883     ev_loop (loop, 0);
884    
885     // and in some piece of code that gets executed on any &quot;activity&quot;:
886     // reset the timeout to start ticking again at 10 seconds
887     ev_timer_again (&amp;mytimer);
888    
889    
890    
891    
892     </pre>
893 root 1.1
894     </div>
895 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
896 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
897 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
898     (and unfortunately a bit complex).</p>
899 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
900 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
901     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
902 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
903     + 10.</code>) and then reset your system clock to the last year, then it will
904 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
905 root 1.1 roughly 10 seconds later and of course not if you reset your system time
906     again).</p>
907     <p>They can also be used to implement vastly more complex timers, such as
908     triggering an event on eahc midnight, local time.</p>
909 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
910     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
911     during the same loop iteration then order of execution is undefined.</p>
912 root 1.1 <dl>
913     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
914     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
915     <dd>
916     <p>Lots of arguments, lets sort it out... There are basically three modes of
917     operation, and we will explain them from simplest to complex:</p>
918     <p>
919     <dl>
920     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
921     <dd>
922     <p>In this configuration the watcher triggers an event at the wallclock time
923     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
924     that is, if it is to be run at January 1st 2011 then it will run when the
925     system time reaches or surpasses this time.</p>
926     </dd>
927     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
928     <dd>
929     <p>In this mode the watcher will always be scheduled to time out at the next
930     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
931     of any time jumps.</p>
932     <p>This can be used to create timers that do not drift with respect to system
933     time:</p>
934     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
935    
936     </pre>
937     <p>This doesn't mean there will always be 3600 seconds in between triggers,
938     but only that the the callback will be called when the system time shows a
939 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
940 root 1.1 by 3600.</p>
941     <p>Another way to think about it (for the mathematically inclined) is that
942 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
943 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
944     </dd>
945     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
946     <dd>
947     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
948     ignored. Instead, each time the periodic watcher gets scheduled, the
949     reschedule callback will be called with the watcher as first, and the
950     current time as second argument.</p>
951 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
952     ever, or make any event loop modifications</i>. If you need to stop it,
953     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
954     starting a prepare watcher).</p>
955 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
956     ev_tstamp now)</code>, e.g.:</p>
957 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
958     {
959     return now + 60.;
960     }
961    
962     </pre>
963     <p>It must return the next time to trigger, based on the passed time value
964     (that is, the lowest time value larger than to the second argument). It
965     will usually be called just before the callback will be triggered, but
966     might be called at other times, too.</p>
967 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
968 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
969 root 1.1 <p>This can be used to create very complex timers, such as a timer that
970     triggers on each midnight, local time. To do this, you would calculate the
971 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
972     you do this is, again, up to you (but it is not trivial, which is the main
973     reason I omitted it as an example).</p>
974 root 1.1 </dd>
975     </dl>
976     </p>
977     </dd>
978     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
979     <dd>
980     <p>Simply stops and restarts the periodic watcher again. This is only useful
981     when you changed some parameters or the reschedule callback would return
982     a different time than the last time it was called (e.g. in a crond like
983     program when the crontabs have changed).</p>
984     </dd>
985     </dl>
986 root 1.35 <p>Example: call a callback every hour, or, more precisely, whenever the
987     system clock is divisible by 3600. The callback invocation times have
988     potentially a lot of jittering, but good long-term stability.</p>
989     <pre> static void
990     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
991     {
992     ... its now a full hour (UTC, or TAI or whatever your clock follows)
993     }
994    
995     struct ev_periodic hourly_tick;
996     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
997     ev_periodic_start (loop, &amp;hourly_tick);
998    
999     </pre>
1000     <p>Example: the same as above, but use a reschedule callback to do it:</p>
1001     <pre> #include &lt;math.h&gt;
1002    
1003     static ev_tstamp
1004     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1005     {
1006     return fmod (now, 3600.) + 3600.;
1007     }
1008    
1009     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1010    
1011     </pre>
1012     <p>Example: call a callback every hour, starting now:</p>
1013     <pre> struct ev_periodic hourly_tick;
1014     ev_periodic_init (&amp;hourly_tick, clock_cb,
1015     fmod (ev_now (loop), 3600.), 3600., 0);
1016     ev_periodic_start (loop, &amp;hourly_tick);
1017    
1018    
1019    
1020    
1021     </pre>
1022 root 1.1
1023     </div>
1024 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1025 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1026 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1027     signal one or more times. Even though signals are very asynchronous, libev
1028 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1029 root 1.1 normal event processing, like any other event.</p>
1030 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1031 root 1.1 first watcher gets started will libev actually register a signal watcher
1032     with the kernel (thus it coexists with your own signal handlers as long
1033     as you don't register any with libev). Similarly, when the last signal
1034     watcher for a signal is stopped libev will reset the signal handler to
1035     SIG_DFL (regardless of what it was set to before).</p>
1036     <dl>
1037     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1038     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1039     <dd>
1040     <p>Configures the watcher to trigger on the given signal number (usually one
1041     of the <code>SIGxxx</code> constants).</p>
1042     </dd>
1043     </dl>
1044    
1045 root 1.36
1046    
1047    
1048    
1049 root 1.1 </div>
1050 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1051     <div id="code_ev_child_code_watch_out_for_pro-2">
1052 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1053     some child status changes (most typically when a child of yours dies).</p>
1054     <dl>
1055     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1056     <dt>ev_child_set (ev_child *, int pid)</dt>
1057     <dd>
1058     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1059     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1060     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1061 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1062     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1063     process causing the status change.</p>
1064 root 1.1 </dd>
1065     </dl>
1066 root 1.35 <p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1067     <pre> static void
1068     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1069     {
1070     ev_unloop (loop, EVUNLOOP_ALL);
1071     }
1072    
1073     struct ev_signal signal_watcher;
1074     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1075     ev_signal_start (loop, &amp;sigint_cb);
1076    
1077    
1078    
1079    
1080     </pre>
1081 root 1.1
1082     </div>
1083 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1084 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1085 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1086     (prepare, check and other idle watchers do not count). That is, as long
1087     as your process is busy handling sockets or timeouts (or even signals,
1088     imagine) it will not be triggered. But when your process is idle all idle
1089     watchers are being called again and again, once per event loop iteration -
1090     until stopped, that is, or your process receives more events and becomes
1091     busy.</p>
1092 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1093     active, the process will not block when waiting for new events.</p>
1094     <p>Apart from keeping your process non-blocking (which is a useful
1095     effect on its own sometimes), idle watchers are a good place to do
1096     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1097     event loop has handled all outstanding events.</p>
1098     <dl>
1099     <dt>ev_idle_init (ev_signal *, callback)</dt>
1100     <dd>
1101     <p>Initialises and configures the idle watcher - it has no parameters of any
1102     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1103     believe me.</p>
1104     </dd>
1105     </dl>
1106 root 1.35 <p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
1107     callback, free it. Alos, use no error checking, as usual.</p>
1108     <pre> static void
1109     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1110     {
1111     free (w);
1112     // now do something you wanted to do when the program has
1113     // no longer asnything immediate to do.
1114     }
1115    
1116     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1117     ev_idle_init (idle_watcher, idle_cb);
1118     ev_idle_start (loop, idle_cb);
1119    
1120    
1121    
1122    
1123     </pre>
1124 root 1.1
1125     </div>
1126 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1127 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1128 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1129 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1130 root 1.14 afterwards.</p>
1131 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1132     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1133     watchers. Other loops than the current one are fine, however. The
1134     rationale behind this is that you do not need to check for recursion in
1135     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1136     <code>ev_check</code> so if you have one watcher of each kind they will always be
1137     called in pairs bracketing the blocking call.</p>
1138 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1139     their use is somewhat advanced. This could be used, for example, to track
1140     variable changes, implement your own watchers, integrate net-snmp or a
1141 root 1.46 coroutine library and lots more. They are also occasionally useful if
1142     you cache some data and want to flush it before blocking (for example,
1143     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1144     watcher).</p>
1145 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1146 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1147     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1148     provide just this functionality). Then, in the check watcher you check for
1149     any events that occured (by checking the pending status of all watchers
1150     and stopping them) and call back into the library. The I/O and timer
1151 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1152 root 1.14 because you never know, you know?).</p>
1153     <p>As another example, the Perl Coro module uses these hooks to integrate
1154 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1155     during each prepare and only letting the process block if no coroutines
1156 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1157     with priority higher than or equal to the event loop and one coroutine
1158     of lower priority, but only once, using idle watchers to keep the event
1159     loop from blocking if lower-priority coroutines are active, thus mapping
1160     low-priority coroutines to idle/background tasks).</p>
1161 root 1.1 <dl>
1162     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1163     <dt>ev_check_init (ev_check *, callback)</dt>
1164     <dd>
1165     <p>Initialises and configures the prepare or check watcher - they have no
1166     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1167 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1168 root 1.1 </dd>
1169     </dl>
1170 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1171     and a timeout watcher in a prepare handler, as required by libadns, and
1172     in a check watcher, destroy them and call into libadns. What follows is
1173     pseudo-code only of course:</p>
1174     <pre> static ev_io iow [nfd];
1175     static ev_timer tw;
1176    
1177     static void
1178     io_cb (ev_loop *loop, ev_io *w, int revents)
1179     {
1180     // set the relevant poll flags
1181     struct pollfd *fd = (struct pollfd *)w-&gt;data;
1182     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1183     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1184     }
1185    
1186     // create io watchers for each fd and a timer before blocking
1187     static void
1188     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1189     {
1190     int timeout = 3600000;truct pollfd fds [nfd];
1191     // actual code will need to loop here and realloc etc.
1192     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1193    
1194     /* the callback is illegal, but won't be called as we stop during check */
1195     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1196     ev_timer_start (loop, &amp;tw);
1197    
1198     // create on ev_io per pollfd
1199     for (int i = 0; i &lt; nfd; ++i)
1200     {
1201     ev_io_init (iow + i, io_cb, fds [i].fd,
1202     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1203     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1204    
1205     fds [i].revents = 0;
1206     iow [i].data = fds + i;
1207     ev_io_start (loop, iow + i);
1208     }
1209     }
1210    
1211     // stop all watchers after blocking
1212     static void
1213     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1214     {
1215     ev_timer_stop (loop, &amp;tw);
1216    
1217     for (int i = 0; i &lt; nfd; ++i)
1218     ev_io_stop (loop, iow + i);
1219    
1220     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1221     }
1222 root 1.35
1223    
1224    
1225    
1226 root 1.46 </pre>
1227 root 1.1
1228     </div>
1229 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1230 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1231     <p>This is a rather advanced watcher type that lets you embed one event loop
1232 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1233     loop, other types of watchers might be handled in a delayed or incorrect
1234     fashion and must not be used).</p>
1235 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1236     prioritise I/O.</p>
1237     <p>As an example for a bug workaround, the kqueue backend might only support
1238     sockets on some platform, so it is unusable as generic backend, but you
1239     still want to make use of it because you have many sockets and it scales
1240     so nicely. In this case, you would create a kqueue-based loop and embed it
1241     into your default loop (which might use e.g. poll). Overall operation will
1242     be a bit slower because first libev has to poll and then call kevent, but
1243     at least you can use both at what they are best.</p>
1244     <p>As for prioritising I/O: rarely you have the case where some fds have
1245     to be watched and handled very quickly (with low latency), and even
1246     priorities and idle watchers might have too much overhead. In this case
1247     you would put all the high priority stuff in one loop and all the rest in
1248     a second one, and embed the second one in the first.</p>
1249 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1250     there might be events pending in the embedded loop. The callback must then
1251     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1252     their callbacks (you could also start an idle watcher to give the embedded
1253     loop strictly lower priority for example). You can also set the callback
1254     to <code>0</code>, in which case the embed watcher will automatically execute the
1255     embedded loop sweep.</p>
1256 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1257     callback will be invoked whenever some events have been handled. You can
1258     set the callback to <code>0</code> to avoid having to specify one if you are not
1259     interested in that.</p>
1260     <p>Also, there have not currently been made special provisions for forking:
1261     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1262     but you will also have to stop and restart any <code>ev_embed</code> watchers
1263     yourself.</p>
1264     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1265     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1266     portable one.</p>
1267     <p>So when you want to use this feature you will always have to be prepared
1268     that you cannot get an embeddable loop. The recommended way to get around
1269     this is to have a separate variables for your embeddable loop, try to
1270     create it, and if that fails, use the normal loop for everything:</p>
1271     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1272     struct ev_loop *loop_lo = 0;
1273     struct ev_embed embed;
1274    
1275     // see if there is a chance of getting one that works
1276     // (remember that a flags value of 0 means autodetection)
1277     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1278     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1279     : 0;
1280    
1281     // if we got one, then embed it, otherwise default to loop_hi
1282     if (loop_lo)
1283     {
1284     ev_embed_init (&amp;embed, 0, loop_lo);
1285     ev_embed_start (loop_hi, &amp;embed);
1286     }
1287     else
1288     loop_lo = loop_hi;
1289    
1290     </pre>
1291     <dl>
1292 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1293     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1294 root 1.36 <dd>
1295 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1296     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1297     invoked automatically, otherwise it is the responsibility of the callback
1298     to invoke it (it will continue to be called until the sweep has been done,
1299     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1300     </dd>
1301     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1302     <dd>
1303     <p>Make a single, non-blocking sweep over the embedded loop. This works
1304     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1305     apropriate way for embedded loops.</p>
1306 root 1.36 </dd>
1307     </dl>
1308    
1309    
1310    
1311    
1312    
1313     </div>
1314 root 1.1 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
1315     <div id="OTHER_FUNCTIONS_CONTENT">
1316 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1317 root 1.1 <dl>
1318     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1319     <dd>
1320     <p>This function combines a simple timer and an I/O watcher, calls your
1321     callback on whichever event happens first and automatically stop both
1322     watchers. This is useful if you want to wait for a single event on an fd
1323 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1324 root 1.1 more watchers yourself.</p>
1325 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1326     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1327     <code>events</code> set will be craeted and started.</p>
1328 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1329 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1330     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1331     dubious value.</p>
1332     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1333 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1334 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1335     value passed to <code>ev_once</code>:</p>
1336 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1337     {
1338     if (revents &amp; EV_TIMEOUT)
1339 root 1.14 /* doh, nothing entered */;
1340 root 1.1 else if (revents &amp; EV_READ)
1341 root 1.14 /* stdin might have data for us, joy! */;
1342 root 1.1 }
1343    
1344 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1345 root 1.1
1346     </pre>
1347     </dd>
1348 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1349 root 1.1 <dd>
1350     <p>Feeds the given event set into the event loop, as if the specified event
1351 root 1.14 had happened for the specified watcher (which must be a pointer to an
1352     initialised but not necessarily started event watcher).</p>
1353 root 1.1 </dd>
1354 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1355 root 1.1 <dd>
1356 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1357     the given events it.</p>
1358 root 1.1 </dd>
1359 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1360 root 1.1 <dd>
1361 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1362     loop!).</p>
1363 root 1.1 </dd>
1364     </dl>
1365    
1366 root 1.35
1367    
1368    
1369    
1370 root 1.1 </div>
1371 root 1.23 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
1372     <div id="LIBEVENT_EMULATION_CONTENT">
1373 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1374     emulate the internals of libevent, so here are some usage hints:</p>
1375     <dl>
1376     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1377     <dt>* The following members are fully supported: ev_base, ev_callback,
1378     ev_arg, ev_fd, ev_res, ev_events.</dt>
1379     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1380     maintained by libev, it does not work exactly the same way as in libevent (consider
1381     it a private API).</dt>
1382     <dt>* Priorities are not currently supported. Initialising priorities
1383     will fail and all watchers will have the same priority, even though there
1384     is an ev_pri field.</dt>
1385     <dt>* Other members are not supported.</dt>
1386     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1387     to use the libev header file and library.</dt>
1388     </dl>
1389 root 1.23
1390     </div>
1391     <h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
1392     <div id="C_SUPPORT_CONTENT">
1393 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1394     you to use some convinience methods to start/stop watchers and also change
1395     the callback model to a model using method callbacks on objects.</p>
1396     <p>To use it,</p>
1397     <pre> #include &lt;ev++.h&gt;
1398    
1399     </pre>
1400     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1401     and puts all of its definitions (many of them macros) into the global
1402     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1403     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1404     <code>EV_MULTIPLICITY</code>.</p>
1405     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1406     <dl>
1407     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1408     <dd>
1409     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1410     macros from <cite>ev.h</cite>.</p>
1411     </dd>
1412     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1413     <dd>
1414     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1415     </dd>
1416     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1417     <dd>
1418     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1419     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1420     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1421     defines by many implementations.</p>
1422     <p>All of those classes have these methods:</p>
1423     <p>
1424     <dl>
1425     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1426     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1427     <dt>ev::TYPE::~TYPE</dt>
1428     <dd>
1429     <p>The constructor takes a pointer to an object and a method pointer to
1430     the event handler callback to call in this class. The constructor calls
1431     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1432     before starting it. If you do not specify a loop then the constructor
1433     automatically associates the default loop with this watcher.</p>
1434     <p>The destructor automatically stops the watcher if it is active.</p>
1435     </dd>
1436     <dt>w-&gt;set (struct ev_loop *)</dt>
1437     <dd>
1438     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1439     do this when the watcher is inactive (and not pending either).</p>
1440     </dd>
1441     <dt>w-&gt;set ([args])</dt>
1442     <dd>
1443     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1444     called at least once. Unlike the C counterpart, an active watcher gets
1445     automatically stopped and restarted.</p>
1446     </dd>
1447     <dt>w-&gt;start ()</dt>
1448     <dd>
1449     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1450     constructor already takes the loop.</p>
1451     </dd>
1452     <dt>w-&gt;stop ()</dt>
1453     <dd>
1454     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1455     </dd>
1456     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1457     <dd>
1458     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1459     <code>ev_TYPE_again</code> function.</p>
1460     </dd>
1461     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1462     <dd>
1463     <p>Invokes <code>ev_embed_sweep</code>.</p>
1464     </dd>
1465     </dl>
1466     </p>
1467     </dd>
1468     </dl>
1469     <p>Example: Define a class with an IO and idle watcher, start one of them in
1470     the constructor.</p>
1471     <pre> class myclass
1472     {
1473     ev_io io; void io_cb (ev::io &amp;w, int revents);
1474     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1475    
1476     myclass ();
1477     }
1478    
1479     myclass::myclass (int fd)
1480     : io (this, &amp;myclass::io_cb),
1481     idle (this, &amp;myclass::idle_cb)
1482     {
1483     io.start (fd, ev::READ);
1484     }
1485    
1486     </pre>
1487 root 1.23
1488     </div>
1489 root 1.40 <h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1490     <div id="EMBEDDING_CONTENT">
1491     <p>Libev can (and often is) directly embedded into host
1492     applications. Examples of applications that embed it include the Deliantra
1493     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1494     and rxvt-unicode.</p>
1495     <p>The goal is to enable you to just copy the neecssary files into your
1496     source directory without having to change even a single line in them, so
1497     you can easily upgrade by simply copying (or having a checked-out copy of
1498     libev somewhere in your source tree).</p>
1499    
1500     </div>
1501     <h2 id="FILESETS">FILESETS</h2>
1502     <div id="FILESETS_CONTENT">
1503     <p>Depending on what features you need you need to include one or more sets of files
1504     in your app.</p>
1505    
1506     </div>
1507     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1508     <div id="CORE_EVENT_LOOP_CONTENT">
1509     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1510     configuration (no autoconf):</p>
1511     <pre> #define EV_STANDALONE 1
1512     #include &quot;ev.c&quot;
1513    
1514     </pre>
1515     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1516     single C source file only to provide the function implementations. To use
1517     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1518     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1519     where you can put other configuration options):</p>
1520     <pre> #define EV_STANDALONE 1
1521     #include &quot;ev.h&quot;
1522    
1523     </pre>
1524     <p>Both header files and implementation files can be compiled with a C++
1525     compiler (at least, thats a stated goal, and breakage will be treated
1526     as a bug).</p>
1527     <p>You need the following files in your source tree, or in a directory
1528     in your include path (e.g. in libev/ when using -Ilibev):</p>
1529     <pre> ev.h
1530     ev.c
1531     ev_vars.h
1532     ev_wrap.h
1533    
1534     ev_win32.c required on win32 platforms only
1535    
1536 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1537 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1538     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1539     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1540     ev_port.c only when the solaris port backend is enabled (disabled by default)
1541    
1542     </pre>
1543     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1544 root 1.44 to compile this single file.</p>
1545 root 1.40
1546     </div>
1547     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1548     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1549     <p>To include the libevent compatibility API, also include:</p>
1550     <pre> #include &quot;event.c&quot;
1551    
1552     </pre>
1553     <p>in the file including <cite>ev.c</cite>, and:</p>
1554     <pre> #include &quot;event.h&quot;
1555    
1556     </pre>
1557     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1558     <p>You need the following additional files for this:</p>
1559     <pre> event.h
1560     event.c
1561    
1562     </pre>
1563    
1564     </div>
1565     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1566     <div id="AUTOCONF_SUPPORT_CONTENT">
1567     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1568     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1569 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1570     include <cite>config.h</cite> and configure itself accordingly.</p>
1571 root 1.40 <p>For this of course you need the m4 file:</p>
1572     <pre> libev.m4
1573    
1574     </pre>
1575    
1576     </div>
1577     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1578     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1579     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1580     before including any of its files. The default is not to build for multiplicity
1581     and only include the select backend.</p>
1582     <dl>
1583     <dt>EV_STANDALONE</dt>
1584     <dd>
1585     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1586     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1587     implementations for some libevent functions (such as logging, which is not
1588     supported). It will also not define any of the structs usually found in
1589     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1590     </dd>
1591     <dt>EV_USE_MONOTONIC</dt>
1592     <dd>
1593     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1594     monotonic clock option at both compiletime and runtime. Otherwise no use
1595     of the monotonic clock option will be attempted. If you enable this, you
1596     usually have to link against librt or something similar. Enabling it when
1597     the functionality isn't available is safe, though, althoguh you have
1598     to make sure you link against any libraries where the <code>clock_gettime</code>
1599     function is hiding in (often <cite>-lrt</cite>).</p>
1600     </dd>
1601     <dt>EV_USE_REALTIME</dt>
1602     <dd>
1603     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1604     realtime clock option at compiletime (and assume its availability at
1605     runtime if successful). Otherwise no use of the realtime clock option will
1606     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1607     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1608     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1609     </dd>
1610     <dt>EV_USE_SELECT</dt>
1611     <dd>
1612     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1613     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1614     other method takes over, select will be it. Otherwise the select backend
1615     will not be compiled in.</p>
1616     </dd>
1617     <dt>EV_SELECT_USE_FD_SET</dt>
1618     <dd>
1619     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1620     structure. This is useful if libev doesn't compile due to a missing
1621     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1622     exotic systems. This usually limits the range of file descriptors to some
1623     low limit such as 1024 or might have other limitations (winsocket only
1624     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1625     influence the size of the <code>fd_set</code> used.</p>
1626     </dd>
1627     <dt>EV_SELECT_IS_WINSOCKET</dt>
1628     <dd>
1629     <p>When defined to <code>1</code>, the select backend will assume that
1630     select/socket/connect etc. don't understand file descriptors but
1631     wants osf handles on win32 (this is the case when the select to
1632     be used is the winsock select). This means that it will call
1633     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1634     it is assumed that all these functions actually work on fds, even
1635     on win32. Should not be defined on non-win32 platforms.</p>
1636     </dd>
1637     <dt>EV_USE_POLL</dt>
1638     <dd>
1639     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1640     backend. Otherwise it will be enabled on non-win32 platforms. It
1641     takes precedence over select.</p>
1642     </dd>
1643     <dt>EV_USE_EPOLL</dt>
1644     <dd>
1645     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1646     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1647     otherwise another method will be used as fallback. This is the
1648     preferred backend for GNU/Linux systems.</p>
1649     </dd>
1650     <dt>EV_USE_KQUEUE</dt>
1651     <dd>
1652     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1653     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1654     otherwise another method will be used as fallback. This is the preferred
1655     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1656     supports some types of fds correctly (the only platform we found that
1657     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1658     not be used unless explicitly requested. The best way to use it is to find
1659 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1660 root 1.40 kqueue loop.</p>
1661     </dd>
1662     <dt>EV_USE_PORT</dt>
1663     <dd>
1664     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1665     10 port style backend. Its availability will be detected at runtime,
1666     otherwise another method will be used as fallback. This is the preferred
1667     backend for Solaris 10 systems.</p>
1668     </dd>
1669     <dt>EV_USE_DEVPOLL</dt>
1670     <dd>
1671     <p>reserved for future expansion, works like the USE symbols above.</p>
1672     </dd>
1673     <dt>EV_H</dt>
1674     <dd>
1675     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1676     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1677     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1678     </dd>
1679     <dt>EV_CONFIG_H</dt>
1680     <dd>
1681     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
1682     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
1683     <code>EV_H</code>, above.</p>
1684     </dd>
1685     <dt>EV_EVENT_H</dt>
1686     <dd>
1687     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
1688     of how the <cite>event.h</cite> header can be found.</p>
1689     </dd>
1690     <dt>EV_PROTOTYPES</dt>
1691     <dd>
1692     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
1693     prototypes, but still define all the structs and other symbols. This is
1694     occasionally useful if you want to provide your own wrapper functions
1695     around libev functions.</p>
1696     </dd>
1697     <dt>EV_MULTIPLICITY</dt>
1698     <dd>
1699     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
1700     will have the <code>struct ev_loop *</code> as first argument, and you can create
1701     additional independent event loops. Otherwise there will be no support
1702     for multiple event loops and there is no first event loop pointer
1703     argument. Instead, all functions act on the single default loop.</p>
1704     </dd>
1705     <dt>EV_PERIODICS</dt>
1706     <dd>
1707     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported,
1708     otherwise not. This saves a few kb of code.</p>
1709     </dd>
1710     <dt>EV_COMMON</dt>
1711     <dd>
1712     <p>By default, all watchers have a <code>void *data</code> member. By redefining
1713     this macro to a something else you can include more and other types of
1714     members. You have to define it each time you include one of the files,
1715     though, and it must be identical each time.</p>
1716     <p>For example, the perl EV module uses something like this:</p>
1717     <pre> #define EV_COMMON \
1718     SV *self; /* contains this struct */ \
1719     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
1720    
1721     </pre>
1722     </dd>
1723 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
1724     <dt>EV_CB_INVOKE (watcher, revents)</dt>
1725     <dt>ev_set_cb (ev, cb)</dt>
1726 root 1.40 <dd>
1727     <p>Can be used to change the callback member declaration in each watcher,
1728     and the way callbacks are invoked and set. Must expand to a struct member
1729     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
1730     their default definitions. One possible use for overriding these is to
1731 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
1732     method calls instead of plain function calls in C++.</p>
1733 root 1.40
1734     </div>
1735     <h2 id="EXAMPLES">EXAMPLES</h2>
1736     <div id="EXAMPLES_CONTENT">
1737     <p>For a real-world example of a program the includes libev
1738     verbatim, you can have a look at the EV perl module
1739     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
1740     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
1741     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
1742     will be compiled. It is pretty complex because it provides its own header
1743     file.</p>
1744     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
1745     that everybody includes and which overrides some autoconf choices:</p>
1746 root 1.41 <pre> #define EV_USE_POLL 0
1747     #define EV_MULTIPLICITY 0
1748     #define EV_PERIODICS 0
1749     #define EV_CONFIG_H &lt;config.h&gt;
1750 root 1.40
1751 root 1.41 #include &quot;ev++.h&quot;
1752 root 1.40
1753     </pre>
1754     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
1755 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
1756     #include &quot;ev.c&quot;
1757 root 1.40
1758     </pre>
1759    
1760     </div>
1761 root 1.1 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
1762     <div id="AUTHOR_CONTENT">
1763 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
1764 root 1.1
1765     </div>
1766     </div></body>
1767     </html>