ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.48
Committed: Tue Nov 27 08:11:52 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.47: +198 -12 lines
Log Message:
add member documentation

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.48 <meta name="created" content="Tue Nov 27 09:11:42 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19     <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20     <li><a href="#FEATURES">FEATURES</a></li>
21     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
24 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
25     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
26 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
27 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
28 root 1.1 </ul>
29     </li>
30     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
31 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
36 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
37 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
38     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
39     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
40 root 1.1 </ul>
41     </li>
42     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
43 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
44     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
45 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
46     <ul><li><a href="#FILESETS">FILESETS</a>
47     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
48     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
49     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
50     </ul>
51     </li>
52     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
53     <li><a href="#EXAMPLES">EXAMPLES</a></li>
54     </ul>
55     </li>
56 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
57 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
58     </li>
59     </ul><hr />
60     <!-- INDEX END -->
61    
62     <h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p>
63     <div id="NAME_CONTENT">
64     <p>libev - a high performance full-featured event loop written in C</p>
65    
66     </div>
67     <h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
68     <div id="SYNOPSIS_CONTENT">
69     <pre> #include &lt;ev.h&gt;
70    
71     </pre>
72    
73     </div>
74     <h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
75     <div id="DESCRIPTION_CONTENT">
76     <p>Libev is an event loop: you register interest in certain events (such as a
77     file descriptor being readable or a timeout occuring), and it will manage
78 root 1.4 these event sources and provide your program with events.</p>
79 root 1.1 <p>To do this, it must take more or less complete control over your process
80     (or thread) by executing the <i>event loop</i> handler, and will then
81     communicate events via a callback mechanism.</p>
82     <p>You register interest in certain events by registering so-called <i>event
83     watchers</i>, which are relatively small C structures you initialise with the
84     details of the event, and then hand it over to libev by <i>starting</i> the
85     watcher.</p>
86    
87     </div>
88     <h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
89     <div id="FEATURES_CONTENT">
90     <p>Libev supports select, poll, the linux-specific epoll and the bsd-specific
91     kqueue mechanisms for file descriptor events, relative timers, absolute
92     timers with customised rescheduling, signal events, process status change
93     events (related to SIGCHLD), and event watchers dealing with the event
94 root 1.5 loop mechanism itself (idle, prepare and check watchers). It also is quite
95 root 1.7 fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
96     it to libevent for example).</p>
97 root 1.1
98     </div>
99     <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
100     <div id="CONVENTIONS_CONTENT">
101     <p>Libev is very configurable. In this manual the default configuration
102     will be described, which supports multiple event loops. For more info
103 root 1.7 about various configuration options please have a look at the file
104 root 1.1 <cite>README.embed</cite> in the libev distribution. If libev was configured without
105     support for multiple event loops, then all functions taking an initial
106     argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
107     will not have this argument.</p>
108    
109     </div>
110 root 1.18 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
111     <div id="TIME_REPRESENTATION_CONTENT">
112 root 1.2 <p>Libev represents time as a single floating point number, representing the
113     (fractional) number of seconds since the (POSIX) epoch (somewhere near
114     the beginning of 1970, details are complicated, don't ask). This type is
115 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
116 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
117     it, you should treat it as such.</p>
118    
119    
120    
121    
122 root 1.18
123     </div>
124     <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
125     <div id="GLOBAL_FUNCTIONS_CONTENT">
126 root 1.21 <p>These functions can be called anytime, even before initialising the
127     library in any way.</p>
128 root 1.1 <dl>
129     <dt>ev_tstamp ev_time ()</dt>
130     <dd>
131 root 1.28 <p>Returns the current time as libev would use it. Please note that the
132     <code>ev_now</code> function is usually faster and also often returns the timestamp
133     you actually want to know.</p>
134 root 1.1 </dd>
135     <dt>int ev_version_major ()</dt>
136     <dt>int ev_version_minor ()</dt>
137     <dd>
138     <p>You can find out the major and minor version numbers of the library
139     you linked against by calling the functions <code>ev_version_major</code> and
140     <code>ev_version_minor</code>. If you want, you can compare against the global
141     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
142     version of the library your program was compiled against.</p>
143 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
144 root 1.1 as this indicates an incompatible change. Minor versions are usually
145     compatible to older versions, so a larger minor version alone is usually
146     not a problem.</p>
147 root 1.35 <p>Example: make sure we haven't accidentally been linked against the wrong
148     version:</p>
149     <pre> assert ((&quot;libev version mismatch&quot;,
150     ev_version_major () == EV_VERSION_MAJOR
151     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
152    
153     </pre>
154 root 1.1 </dd>
155 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
156     <dd>
157     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
158     value) compiled into this binary of libev (independent of their
159     availability on the system you are running on). See <code>ev_default_loop</code> for
160     a description of the set values.</p>
161 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
162     a must have and can we have a torrent of it please!!!11</p>
163     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
164     ev_supported_backends () &amp; EVBACKEND_EPOLL));
165    
166     </pre>
167 root 1.32 </dd>
168     <dt>unsigned int ev_recommended_backends ()</dt>
169     <dd>
170     <p>Return the set of all backends compiled into this binary of libev and also
171     recommended for this platform. This set is often smaller than the one
172     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
173     most BSDs and will not be autodetected unless you explicitly request it
174     (assuming you know what you are doing). This is the set of backends that
175 root 1.34 libev will probe for if you specify no backends explicitly.</p>
176 root 1.32 </dd>
177 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
178     <dd>
179     <p>Returns the set of backends that are embeddable in other event loops. This
180     is the theoretical, all-platform, value. To find which backends
181     might be supported on the current system, you would need to look at
182     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
183     recommended ones.</p>
184     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
185     </dd>
186 root 1.1 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
187     <dd>
188     <p>Sets the allocation function to use (the prototype is similar to the
189 root 1.7 realloc C function, the semantics are identical). It is used to allocate
190     and free memory (no surprises here). If it returns zero when memory
191     needs to be allocated, the library might abort or take some potentially
192     destructive action. The default is your system realloc function.</p>
193 root 1.1 <p>You could override this function in high-availability programs to, say,
194     free some memory if it cannot allocate memory, to use a special allocator,
195     or even to sleep a while and retry until some memory is available.</p>
196 root 1.35 <p>Example: replace the libev allocator with one that waits a bit and then
197     retries: better than mine).</p>
198     <pre> static void *
199     persistent_realloc (void *ptr, long size)
200     {
201     for (;;)
202     {
203     void *newptr = realloc (ptr, size);
204    
205     if (newptr)
206     return newptr;
207    
208     sleep (60);
209     }
210     }
211    
212     ...
213     ev_set_allocator (persistent_realloc);
214    
215     </pre>
216 root 1.1 </dd>
217     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
218     <dd>
219     <p>Set the callback function to call on a retryable syscall error (such
220     as failed select, poll, epoll_wait). The message is a printable string
221     indicating the system call or subsystem causing the problem. If this
222     callback is set, then libev will expect it to remedy the sitution, no
223 root 1.7 matter what, when it returns. That is, libev will generally retry the
224 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
225     (such as abort).</p>
226 root 1.35 <p>Example: do the same thing as libev does internally:</p>
227     <pre> static void
228     fatal_error (const char *msg)
229     {
230     perror (msg);
231     abort ();
232     }
233    
234     ...
235     ev_set_syserr_cb (fatal_error);
236    
237     </pre>
238 root 1.1 </dd>
239     </dl>
240    
241     </div>
242     <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p>
243     <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
244     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
245     types of such loops, the <i>default</i> loop, which supports signals and child
246     events, and dynamically created loops which do not.</p>
247     <p>If you use threads, a common model is to run the default event loop
248 root 1.18 in your main thread (or in a separate thread) and for each thread you
249 root 1.7 create, you also create another event loop. Libev itself does no locking
250     whatsoever, so if you mix calls to the same event loop in different
251     threads, make sure you lock (this is usually a bad idea, though, even if
252 root 1.9 done correctly, because it's hideous and inefficient).</p>
253 root 1.1 <dl>
254     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
255     <dd>
256     <p>This will initialise the default event loop if it hasn't been initialised
257     yet and return it. If the default loop could not be initialised, returns
258     false. If it already was initialised it simply returns it (and ignores the
259 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
260 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
261     function.</p>
262     <p>The flags argument can be used to specify special behaviour or specific
263 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
264     <p>The following flags are supported:</p>
265 root 1.1 <p>
266     <dl>
267 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
268 root 1.1 <dd>
269 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
270 root 1.1 thing, believe me).</p>
271     </dd>
272 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
273 root 1.1 <dd>
274 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
275     or setgid) then libev will <i>not</i> look at the environment variable
276     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
277     override the flags completely if it is found in the environment. This is
278     useful to try out specific backends to test their performance, or to work
279     around bugs.</p>
280 root 1.1 </dd>
281 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
282 root 1.29 <dd>
283     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
284     libev tries to roll its own fd_set with no limits on the number of fds,
285     but if that fails, expect a fairly low limit on the number of fds when
286     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
287     the fastest backend for a low number of fds.</p>
288     </dd>
289 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
290 root 1.29 <dd>
291     <p>And this is your standard poll(2) backend. It's more complicated than
292     select, but handles sparse fds better and has no artificial limit on the
293     number of fds you can use (except it will slow down considerably with a
294     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
295     </dd>
296 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
297 root 1.29 <dd>
298     <p>For few fds, this backend is a bit little slower than poll and select,
299     but it scales phenomenally better. While poll and select usually scale like
300     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
301     either O(1) or O(active_fds).</p>
302     <p>While stopping and starting an I/O watcher in the same iteration will
303     result in some caching, there is still a syscall per such incident
304     (because the fd could point to a different file description now), so its
305     best to avoid that. Also, dup()ed file descriptors might not work very
306     well if you register events for both fds.</p>
307 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
308     need to use non-blocking I/O or other means to avoid blocking when no data
309     (or space) is available.</p>
310 root 1.29 </dd>
311 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
312 root 1.29 <dd>
313     <p>Kqueue deserves special mention, as at the time of this writing, it
314     was broken on all BSDs except NetBSD (usually it doesn't work with
315     anything but sockets and pipes, except on Darwin, where of course its
316 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
317     unless you explicitly specify it explicitly in the flags (i.e. using
318     <code>EVBACKEND_KQUEUE</code>).</p>
319 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
320     kernel is more efficient (which says nothing about its actual speed, of
321     course). While starting and stopping an I/O watcher does not cause an
322     extra syscall as with epoll, it still adds up to four event changes per
323     incident, so its best to avoid that.</p>
324     </dd>
325 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
326 root 1.29 <dd>
327     <p>This is not implemented yet (and might never be).</p>
328     </dd>
329 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
330 root 1.29 <dd>
331     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
332     it's really slow, but it still scales very well (O(active_fds)).</p>
333 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
334     notifications, so you need to use non-blocking I/O or other means to avoid
335     blocking when no data (or space) is available.</p>
336 root 1.29 </dd>
337 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
338 root 1.29 <dd>
339 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
340     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
341 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
342 root 1.1 </dd>
343     </dl>
344     </p>
345 root 1.29 <p>If one or more of these are ored into the flags value, then only these
346     backends will be tried (in the reverse order as given here). If none are
347     specified, most compiled-in backend will be tried, usually in reverse
348     order of their flag values :)</p>
349 root 1.34 <p>The most typical usage is like this:</p>
350     <pre> if (!ev_default_loop (0))
351     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
352    
353     </pre>
354     <p>Restrict libev to the select and poll backends, and do not allow
355     environment settings to be taken into account:</p>
356     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
357    
358     </pre>
359     <p>Use whatever libev has to offer, but make sure that kqueue is used if
360     available (warning, breaks stuff, best use only with your own private
361     event loop and only if you know the OS supports your types of fds):</p>
362     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
363    
364     </pre>
365 root 1.1 </dd>
366     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
367     <dd>
368     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
369     always distinct from the default loop. Unlike the default loop, it cannot
370     handle signal and child watchers, and attempts to do so will be greeted by
371     undefined behaviour (or a failed assertion if assertions are enabled).</p>
372 root 1.35 <p>Example: try to create a event loop that uses epoll and nothing else.</p>
373     <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
374     if (!epoller)
375     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
376    
377     </pre>
378 root 1.1 </dd>
379     <dt>ev_default_destroy ()</dt>
380     <dd>
381     <p>Destroys the default loop again (frees all memory and kernel state
382 root 1.38 etc.). None of the active event watchers will be stopped in the normal
383     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
384     responsibility to either stop all watchers cleanly yoursef <i>before</i>
385     calling this function, or cope with the fact afterwards (which is usually
386     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
387     for example).</p>
388 root 1.1 </dd>
389     <dt>ev_loop_destroy (loop)</dt>
390     <dd>
391     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
392     earlier call to <code>ev_loop_new</code>.</p>
393     </dd>
394     <dt>ev_default_fork ()</dt>
395     <dd>
396     <p>This function reinitialises the kernel state for backends that have
397     one. Despite the name, you can call it anytime, but it makes most sense
398     after forking, in either the parent or child process (or both, but that
399     again makes little sense).</p>
400 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
401     only if you want to use the event library in both processes. If you just
402     fork+exec, you don't have to call it.</p>
403 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
404 root 1.1 it just in case after a fork. To make this easy, the function will fit in
405     quite nicely into a call to <code>pthread_atfork</code>:</p>
406     <pre> pthread_atfork (0, 0, ev_default_fork);
407    
408     </pre>
409 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
410     without calling this function, so if you force one of those backends you
411     do not need to care.</p>
412 root 1.1 </dd>
413     <dt>ev_loop_fork (loop)</dt>
414     <dd>
415     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
416     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
417     after fork, and how you do this is entirely your own problem.</p>
418     </dd>
419 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
420 root 1.1 <dd>
421 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
422 root 1.1 use.</p>
423     </dd>
424 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
425 root 1.1 <dd>
426     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
427 root 1.35 received events and started processing them. This timestamp does not
428     change as long as callbacks are being processed, and this is also the base
429     time used for relative timers. You can treat it as the timestamp of the
430     event occuring (or more correctly, libev finding out about it).</p>
431 root 1.1 </dd>
432     <dt>ev_loop (loop, int flags)</dt>
433     <dd>
434     <p>Finally, this is it, the event handler. This function usually is called
435     after you initialised all your watchers and you want to start handling
436     events.</p>
437 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
438     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
439 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
440     relying on all watchers to be stopped when deciding when a program has
441     finished (especially in interactive programs), but having a program that
442     automatically loops as long as it has to and no longer by virtue of
443     relying on its watchers stopping correctly is a thing of beauty.</p>
444 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
445     those events and any outstanding ones, but will not block your process in
446 root 1.9 case there are no events and will return after one iteration of the loop.</p>
447 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
448     neccessary) and will handle those and any outstanding ones. It will block
449 root 1.9 your process until at least one new event arrives, and will return after
450 root 1.34 one iteration of the loop. This is useful if you are waiting for some
451     external event in conjunction with something not expressible using other
452     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
453     usually a better approach for this kind of thing.</p>
454     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
455     <pre> * If there are no active watchers (reference count is zero), return.
456     - Queue prepare watchers and then call all outstanding watchers.
457     - If we have been forked, recreate the kernel state.
458     - Update the kernel state with all outstanding changes.
459     - Update the &quot;event loop time&quot;.
460     - Calculate for how long to block.
461     - Block the process, waiting for any events.
462     - Queue all outstanding I/O (fd) events.
463     - Update the &quot;event loop time&quot; and do time jump handling.
464     - Queue all outstanding timers.
465     - Queue all outstanding periodics.
466     - If no events are pending now, queue all idle watchers.
467     - Queue all check watchers.
468     - Call all queued watchers in reverse order (i.e. check watchers first).
469     Signals and child watchers are implemented as I/O watchers, and will
470     be handled here by queueing them when their watcher gets executed.
471     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
472     were used, return, otherwise continue with step *.
473 root 1.28
474     </pre>
475 root 1.35 <p>Example: queue some jobs and then loop until no events are outsanding
476     anymore.</p>
477     <pre> ... queue jobs here, make sure they register event watchers as long
478     ... as they still have work to do (even an idle watcher will do..)
479     ev_loop (my_loop, 0);
480     ... jobs done. yeah!
481    
482     </pre>
483 root 1.1 </dd>
484     <dt>ev_unloop (loop, how)</dt>
485     <dd>
486 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
487     has processed all outstanding events). The <code>how</code> argument must be either
488 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
489 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
490 root 1.1 </dd>
491     <dt>ev_ref (loop)</dt>
492     <dt>ev_unref (loop)</dt>
493     <dd>
494 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
495     loop: Every watcher keeps one reference, and as long as the reference
496     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
497     a watcher you never unregister that should not keep <code>ev_loop</code> from
498     returning, ev_unref() after starting, and ev_ref() before stopping it. For
499     example, libev itself uses this for its internal signal pipe: It is not
500     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
501     no event watchers registered by it are active. It is also an excellent
502     way to do this for generic recurring timers or from within third-party
503     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
504 root 1.35 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
505     running when nothing else is active.</p>
506     <pre> struct dv_signal exitsig;
507     ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
508     ev_signal_start (myloop, &amp;exitsig);
509     evf_unref (myloop);
510    
511     </pre>
512     <p>Example: for some weird reason, unregister the above signal handler again.</p>
513     <pre> ev_ref (myloop);
514     ev_signal_stop (myloop, &amp;exitsig);
515    
516     </pre>
517 root 1.1 </dd>
518     </dl>
519    
520 root 1.43
521    
522    
523    
524 root 1.1 </div>
525     <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
526     <div id="ANATOMY_OF_A_WATCHER_CONTENT">
527     <p>A watcher is a structure that you create and register to record your
528     interest in some event. For instance, if you want to wait for STDIN to
529 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
530 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
531     {
532     ev_io_stop (w);
533     ev_unloop (loop, EVUNLOOP_ALL);
534     }
535    
536     struct ev_loop *loop = ev_default_loop (0);
537     struct ev_io stdin_watcher;
538     ev_init (&amp;stdin_watcher, my_cb);
539     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
540     ev_io_start (loop, &amp;stdin_watcher);
541     ev_loop (loop, 0);
542    
543     </pre>
544     <p>As you can see, you are responsible for allocating the memory for your
545     watcher structures (and it is usually a bad idea to do this on the stack,
546     although this can sometimes be quite valid).</p>
547     <p>Each watcher structure must be initialised by a call to <code>ev_init
548     (watcher *, callback)</code>, which expects a callback to be provided. This
549     callback gets invoked each time the event occurs (or, in the case of io
550     watchers, each time the event loop detects that the file descriptor given
551     is readable and/or writable).</p>
552     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
553     with arguments specific to this watcher type. There is also a macro
554     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
555     (watcher *, callback, ...)</code>.</p>
556     <p>To make the watcher actually watch out for events, you have to start it
557     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
558     *)</code>), and you can stop watching for events at any time by calling the
559     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
560     <p>As long as your watcher is active (has been started but not stopped) you
561     must not touch the values stored in it. Most specifically you must never
562 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
563 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
564     registered watcher structure as second, and a bitset of received events as
565     third argument.</p>
566 root 1.14 <p>The received events usually include a single bit per event type received
567 root 1.1 (you can receive multiple events at the same time). The possible bit masks
568     are:</p>
569     <dl>
570 root 1.10 <dt><code>EV_READ</code></dt>
571     <dt><code>EV_WRITE</code></dt>
572 root 1.1 <dd>
573 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
574 root 1.1 writable.</p>
575     </dd>
576 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
577 root 1.1 <dd>
578 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
579 root 1.1 </dd>
580 root 1.10 <dt><code>EV_PERIODIC</code></dt>
581 root 1.1 <dd>
582 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
583 root 1.1 </dd>
584 root 1.10 <dt><code>EV_SIGNAL</code></dt>
585 root 1.1 <dd>
586 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
587 root 1.1 </dd>
588 root 1.10 <dt><code>EV_CHILD</code></dt>
589 root 1.1 <dd>
590 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
591 root 1.1 </dd>
592 root 1.48 <dt><code>EV_STAT</code></dt>
593     <dd>
594     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
595     </dd>
596 root 1.10 <dt><code>EV_IDLE</code></dt>
597 root 1.1 <dd>
598 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
599 root 1.1 </dd>
600 root 1.10 <dt><code>EV_PREPARE</code></dt>
601     <dt><code>EV_CHECK</code></dt>
602 root 1.1 <dd>
603 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
604     to gather new events, and all <code>ev_check</code> watchers are invoked just after
605 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
606     received events. Callbacks of both watcher types can start and stop as
607     many watchers as they want, and all of them will be taken into account
608 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
609 root 1.1 <code>ev_loop</code> from blocking).</p>
610     </dd>
611 root 1.10 <dt><code>EV_ERROR</code></dt>
612 root 1.1 <dd>
613     <p>An unspecified error has occured, the watcher has been stopped. This might
614     happen because the watcher could not be properly started because libev
615     ran out of memory, a file descriptor was found to be closed or any other
616     problem. You best act on it by reporting the problem and somehow coping
617     with the watcher being stopped.</p>
618     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
619     for example it might indicate that a fd is readable or writable, and if
620     your callbacks is well-written it can just attempt the operation and cope
621     with the error from read() or write(). This will not work in multithreaded
622     programs, though, so beware.</p>
623     </dd>
624     </dl>
625    
626     </div>
627 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
628     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
629 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
630     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
631     <dl>
632     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
633     <dd>
634     <p>This macro initialises the generic portion of a watcher. The contents
635     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
636     the generic parts of the watcher are initialised, you <i>need</i> to call
637     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
638     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
639     which rolls both calls into one.</p>
640     <p>You can reinitialise a watcher at any time as long as it has been stopped
641     (or never started) and there are no pending events outstanding.</p>
642 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
643 root 1.37 int revents)</code>.</p>
644     </dd>
645     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
646     <dd>
647     <p>This macro initialises the type-specific parts of a watcher. You need to
648     call <code>ev_init</code> at least once before you call this macro, but you can
649     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
650     macro on a watcher that is active (it can be pending, however, which is a
651     difference to the <code>ev_init</code> macro).</p>
652     <p>Although some watcher types do not have type-specific arguments
653     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
654     </dd>
655     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
656     <dd>
657     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
658     calls into a single call. This is the most convinient method to initialise
659     a watcher. The same limitations apply, of course.</p>
660     </dd>
661     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
662     <dd>
663     <p>Starts (activates) the given watcher. Only active watchers will receive
664     events. If the watcher is already active nothing will happen.</p>
665     </dd>
666     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
667     <dd>
668     <p>Stops the given watcher again (if active) and clears the pending
669     status. It is possible that stopped watchers are pending (for example,
670     non-repeating timers are being stopped when they become pending), but
671     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
672     you want to free or reuse the memory used by the watcher it is therefore a
673     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
674     </dd>
675     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
676     <dd>
677     <p>Returns a true value iff the watcher is active (i.e. it has been started
678     and not yet been stopped). As long as a watcher is active you must not modify
679     it.</p>
680     </dd>
681     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
682     <dd>
683     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
684     events but its callback has not yet been invoked). As long as a watcher
685     is pending (but not active) you must not call an init function on it (but
686     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
687     libev (e.g. you cnanot <code>free ()</code> it).</p>
688     </dd>
689     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
690     <dd>
691     <p>Returns the callback currently set on the watcher.</p>
692     </dd>
693     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
694     <dd>
695     <p>Change the callback. You can change the callback at virtually any time
696     (modulo threads).</p>
697     </dd>
698     </dl>
699    
700    
701    
702    
703    
704     </div>
705 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
706     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
707     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
708 root 1.14 and read at any time, libev will completely ignore it. This can be used
709 root 1.1 to associate arbitrary data with your watcher. If you need more data and
710     don't want to allocate memory and store a pointer to it in that data
711     member, you can also &quot;subclass&quot; the watcher type and provide your own
712     data:</p>
713     <pre> struct my_io
714     {
715     struct ev_io io;
716     int otherfd;
717     void *somedata;
718     struct whatever *mostinteresting;
719     }
720    
721     </pre>
722     <p>And since your callback will be called with a pointer to the watcher, you
723     can cast it back to your own type:</p>
724     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
725     {
726     struct my_io *w = (struct my_io *)w_;
727     ...
728     }
729    
730     </pre>
731     <p>More interesting and less C-conformant ways of catsing your callback type
732     have been omitted....</p>
733    
734    
735    
736    
737    
738     </div>
739     <h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
740     <div id="WATCHER_TYPES_CONTENT">
741     <p>This section describes each watcher in detail, but will not repeat
742 root 1.48 information given in the last section. Any initialisation/set macros,
743     functions and members specific to the watcher type are explained.</p>
744     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
745     while the watcher is active, you can look at the member and expect some
746     sensible content, but you must not modify it (you can modify it while the
747     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
748     means you can expect it to have some sensible content while the watcher
749     is active, but you can also modify it. Modifying it may not do something
750     sensible or take immediate effect (or do anything at all), but libev will
751     not crash or malfunction in any way.</p>
752 root 1.1
753 root 1.35
754    
755    
756    
757 root 1.1 </div>
758 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
759 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
760 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
761 root 1.43 in each iteration of the event loop, or, more precisely, when reading
762     would not block the process and writing would at least be able to write
763     some data. This behaviour is called level-triggering because you keep
764     receiving events as long as the condition persists. Remember you can stop
765     the watcher if you don't want to act on the event and neither want to
766     receive future events.</p>
767 root 1.25 <p>In general you can register as many read and/or write event watchers per
768 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
769     descriptors to non-blocking mode is also usually a good idea (but not
770     required if you know what you are doing).</p>
771     <p>You have to be careful with dup'ed file descriptors, though. Some backends
772     (the linux epoll backend is a notable example) cannot handle dup'ed file
773     descriptors correctly if you register interest in two or more fds pointing
774 root 1.43 to the same underlying file/socket/etc. description (that is, they share
775 root 1.26 the same underlying &quot;file open&quot;).</p>
776 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
777 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
778     <code>EVBACKEND_POLL</code>).</p>
779 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
780     receive &quot;spurious&quot; readyness notifications, that is your callback might
781     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
782     because there is no data. Not only are some backends known to create a
783     lot of those (for example solaris ports), it is very easy to get into
784     this situation even with a relatively standard program structure. Thus
785     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
786     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
787     <p>If you cannot run the fd in non-blocking mode (for example you should not
788     play around with an Xlib connection), then you have to seperately re-test
789     wether a file descriptor is really ready with a known-to-be good interface
790     such as poll (fortunately in our Xlib example, Xlib already does this on
791     its own, so its quite safe to use).</p>
792 root 1.1 <dl>
793     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
794     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
795     <dd>
796 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
797     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
798     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
799 root 1.1 </dd>
800 root 1.48 <dt>int fd [read-only]</dt>
801     <dd>
802     <p>The file descriptor being watched.</p>
803     </dd>
804     <dt>int events [read-only]</dt>
805     <dd>
806     <p>The events being watched.</p>
807     </dd>
808 root 1.1 </dl>
809 root 1.35 <p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
810     readable, but only once. Since it is likely line-buffered, you could
811     attempt to read a whole line in the callback:</p>
812     <pre> static void
813     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
814     {
815     ev_io_stop (loop, w);
816     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
817     }
818    
819     ...
820     struct ev_loop *loop = ev_default_init (0);
821     struct ev_io stdin_readable;
822     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
823     ev_io_start (loop, &amp;stdin_readable);
824     ev_loop (loop, 0);
825    
826    
827    
828    
829     </pre>
830 root 1.1
831     </div>
832 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
833 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
834 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
835     given time, and optionally repeating in regular intervals after that.</p>
836     <p>The timers are based on real time, that is, if you register an event that
837 root 1.25 times out after an hour and you reset your system clock to last years
838 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
839 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
840 root 1.1 monotonic clock option helps a lot here).</p>
841 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
842     time. This is usually the right thing as this timestamp refers to the time
843 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
844     you suspect event processing to be delayed and you <i>need</i> to base the timeout
845 root 1.25 on the current time, use something like this to adjust for this:</p>
846 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
847    
848     </pre>
849 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
850     but if multiple timers become ready during the same loop iteration then
851     order of execution is undefined.</p>
852 root 1.1 <dl>
853     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
854     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
855     <dd>
856     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
857     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
858     timer will automatically be configured to trigger again <code>repeat</code> seconds
859     later, again, and again, until stopped manually.</p>
860     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
861     configure a timer to trigger every 10 seconds, then it will trigger at
862     exactly 10 second intervals. If, however, your program cannot keep up with
863 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
864 root 1.1 timer will not fire more than once per event loop iteration.</p>
865     </dd>
866     <dt>ev_timer_again (loop)</dt>
867     <dd>
868     <p>This will act as if the timer timed out and restart it again if it is
869     repeating. The exact semantics are:</p>
870     <p>If the timer is started but nonrepeating, stop it.</p>
871     <p>If the timer is repeating, either start it if necessary (with the repeat
872     value), or reset the running timer to the repeat value.</p>
873     <p>This sounds a bit complicated, but here is a useful and typical
874 root 1.48 example: Imagine you have a tcp connection and you want a so-called
875     idle timeout, that is, you want to be called when there have been,
876     say, 60 seconds of inactivity on the socket. The easiest way to do
877     this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
878     <code>ev_timer_again</code> each time you successfully read or write some data. If
879     you go into an idle state where you do not expect data to travel on the
880     socket, you can stop the timer, and again will automatically restart it if
881     need be.</p>
882     <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
883     and only ever use the <code>repeat</code> value:</p>
884     <pre> ev_timer_init (timer, callback, 0., 5.);
885     ev_timer_again (loop, timer);
886     ...
887     timer-&gt;again = 17.;
888     ev_timer_again (loop, timer);
889     ...
890     timer-&gt;again = 10.;
891     ev_timer_again (loop, timer);
892    
893     </pre>
894     <p>This is more efficient then stopping/starting the timer eahc time you want
895     to modify its timeout value.</p>
896     </dd>
897     <dt>ev_tstamp repeat [read-write]</dt>
898     <dd>
899     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
900     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
901     which is also when any modifications are taken into account.</p>
902 root 1.1 </dd>
903     </dl>
904 root 1.35 <p>Example: create a timer that fires after 60 seconds.</p>
905     <pre> static void
906     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
907     {
908     .. one minute over, w is actually stopped right here
909     }
910    
911     struct ev_timer mytimer;
912     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
913     ev_timer_start (loop, &amp;mytimer);
914    
915     </pre>
916     <p>Example: create a timeout timer that times out after 10 seconds of
917     inactivity.</p>
918     <pre> static void
919     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
920     {
921     .. ten seconds without any activity
922     }
923    
924     struct ev_timer mytimer;
925     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
926     ev_timer_again (&amp;mytimer); /* start timer */
927     ev_loop (loop, 0);
928    
929     // and in some piece of code that gets executed on any &quot;activity&quot;:
930     // reset the timeout to start ticking again at 10 seconds
931     ev_timer_again (&amp;mytimer);
932    
933    
934    
935    
936     </pre>
937 root 1.1
938     </div>
939 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
940 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
941 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
942     (and unfortunately a bit complex).</p>
943 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
944 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
945     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
946 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
947     + 10.</code>) and then reset your system clock to the last year, then it will
948 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
949 root 1.1 roughly 10 seconds later and of course not if you reset your system time
950     again).</p>
951     <p>They can also be used to implement vastly more complex timers, such as
952     triggering an event on eahc midnight, local time.</p>
953 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
954     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
955     during the same loop iteration then order of execution is undefined.</p>
956 root 1.1 <dl>
957     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
958     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
959     <dd>
960     <p>Lots of arguments, lets sort it out... There are basically three modes of
961     operation, and we will explain them from simplest to complex:</p>
962     <p>
963     <dl>
964     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
965     <dd>
966     <p>In this configuration the watcher triggers an event at the wallclock time
967     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
968     that is, if it is to be run at January 1st 2011 then it will run when the
969     system time reaches or surpasses this time.</p>
970     </dd>
971     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
972     <dd>
973     <p>In this mode the watcher will always be scheduled to time out at the next
974     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
975     of any time jumps.</p>
976     <p>This can be used to create timers that do not drift with respect to system
977     time:</p>
978     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
979    
980     </pre>
981     <p>This doesn't mean there will always be 3600 seconds in between triggers,
982     but only that the the callback will be called when the system time shows a
983 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
984 root 1.1 by 3600.</p>
985     <p>Another way to think about it (for the mathematically inclined) is that
986 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
987 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
988     </dd>
989     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
990     <dd>
991     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
992     ignored. Instead, each time the periodic watcher gets scheduled, the
993     reschedule callback will be called with the watcher as first, and the
994     current time as second argument.</p>
995 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
996     ever, or make any event loop modifications</i>. If you need to stop it,
997     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
998     starting a prepare watcher).</p>
999 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1000     ev_tstamp now)</code>, e.g.:</p>
1001 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1002     {
1003     return now + 60.;
1004     }
1005    
1006     </pre>
1007     <p>It must return the next time to trigger, based on the passed time value
1008     (that is, the lowest time value larger than to the second argument). It
1009     will usually be called just before the callback will be triggered, but
1010     might be called at other times, too.</p>
1011 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1012 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1013 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1014     triggers on each midnight, local time. To do this, you would calculate the
1015 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1016     you do this is, again, up to you (but it is not trivial, which is the main
1017     reason I omitted it as an example).</p>
1018 root 1.1 </dd>
1019     </dl>
1020     </p>
1021     </dd>
1022     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1023     <dd>
1024     <p>Simply stops and restarts the periodic watcher again. This is only useful
1025     when you changed some parameters or the reschedule callback would return
1026     a different time than the last time it was called (e.g. in a crond like
1027     program when the crontabs have changed).</p>
1028     </dd>
1029 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1030     <dd>
1031     <p>The current interval value. Can be modified any time, but changes only
1032     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1033     called.</p>
1034     </dd>
1035     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1036     <dd>
1037     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1038     switched off. Can be changed any time, but changes only take effect when
1039     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1040     </dd>
1041 root 1.1 </dl>
1042 root 1.35 <p>Example: call a callback every hour, or, more precisely, whenever the
1043     system clock is divisible by 3600. The callback invocation times have
1044     potentially a lot of jittering, but good long-term stability.</p>
1045     <pre> static void
1046     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1047     {
1048     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1049     }
1050    
1051     struct ev_periodic hourly_tick;
1052     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1053     ev_periodic_start (loop, &amp;hourly_tick);
1054    
1055     </pre>
1056     <p>Example: the same as above, but use a reschedule callback to do it:</p>
1057     <pre> #include &lt;math.h&gt;
1058    
1059     static ev_tstamp
1060     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1061     {
1062     return fmod (now, 3600.) + 3600.;
1063     }
1064    
1065     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1066    
1067     </pre>
1068     <p>Example: call a callback every hour, starting now:</p>
1069     <pre> struct ev_periodic hourly_tick;
1070     ev_periodic_init (&amp;hourly_tick, clock_cb,
1071     fmod (ev_now (loop), 3600.), 3600., 0);
1072     ev_periodic_start (loop, &amp;hourly_tick);
1073    
1074    
1075    
1076    
1077     </pre>
1078 root 1.1
1079     </div>
1080 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1081 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1082 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1083     signal one or more times. Even though signals are very asynchronous, libev
1084 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1085 root 1.1 normal event processing, like any other event.</p>
1086 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1087 root 1.1 first watcher gets started will libev actually register a signal watcher
1088     with the kernel (thus it coexists with your own signal handlers as long
1089     as you don't register any with libev). Similarly, when the last signal
1090     watcher for a signal is stopped libev will reset the signal handler to
1091     SIG_DFL (regardless of what it was set to before).</p>
1092     <dl>
1093     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1094     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1095     <dd>
1096     <p>Configures the watcher to trigger on the given signal number (usually one
1097     of the <code>SIGxxx</code> constants).</p>
1098     </dd>
1099 root 1.48 <dt>int signum [read-only]</dt>
1100     <dd>
1101     <p>The signal the watcher watches out for.</p>
1102     </dd>
1103 root 1.1 </dl>
1104    
1105 root 1.36
1106    
1107    
1108    
1109 root 1.1 </div>
1110 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1111     <div id="code_ev_child_code_watch_out_for_pro-2">
1112 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1113     some child status changes (most typically when a child of yours dies).</p>
1114     <dl>
1115     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1116     <dt>ev_child_set (ev_child *, int pid)</dt>
1117     <dd>
1118     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1119     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1120     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1121 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1122     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1123     process causing the status change.</p>
1124 root 1.1 </dd>
1125 root 1.48 <dt>int pid [read-only]</dt>
1126     <dd>
1127     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1128     </dd>
1129     <dt>int rpid [read-write]</dt>
1130     <dd>
1131     <p>The process id that detected a status change.</p>
1132     </dd>
1133     <dt>int rstatus [read-write]</dt>
1134     <dd>
1135     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1136     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1137     </dd>
1138 root 1.1 </dl>
1139 root 1.35 <p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1140     <pre> static void
1141     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1142     {
1143     ev_unloop (loop, EVUNLOOP_ALL);
1144     }
1145    
1146     struct ev_signal signal_watcher;
1147     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1148     ev_signal_start (loop, &amp;sigint_cb);
1149    
1150    
1151    
1152    
1153     </pre>
1154 root 1.1
1155     </div>
1156 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1157     <div id="code_ev_stat_code_did_the_file_attri-2">
1158     <p>This watches a filesystem path for attribute changes. That is, it calls
1159     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1160     compared to the last time, invoking the callback if it did.</p>
1161     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1162     not exist&quot; is a status change like any other. The condition &quot;path does
1163     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1164     otherwise always forced to be at least one) and all the other fields of
1165     the stat buffer having unspecified contents.</p>
1166     <p>Since there is no standard to do this, the portable implementation simply
1167     calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You
1168     can specify a recommended polling interval for this case. If you specify
1169     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1170     unspecified default</i> value will be used (which you can expect to be around
1171     five seconds, although this might change dynamically). Libev will also
1172     impose a minimum interval which is currently around <code>0.1</code>, but thats
1173     usually overkill.</p>
1174     <p>This watcher type is not meant for massive numbers of stat watchers,
1175     as even with OS-supported change notifications, this can be
1176     resource-intensive.</p>
1177     <p>At the time of this writing, no specific OS backends are implemented, but
1178     if demand increases, at least a kqueue and inotify backend will be added.</p>
1179     <dl>
1180     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1181     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1182     <dd>
1183     <p>Configures the watcher to wait for status changes of the given
1184     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1185     be detected and should normally be specified as <code>0</code> to let libev choose
1186     a suitable value. The memory pointed to by <code>path</code> must point to the same
1187     path for as long as the watcher is active.</p>
1188     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1189     relative to the attributes at the time the watcher was started (or the
1190     last change was detected).</p>
1191     </dd>
1192     <dt>ev_stat_stat (ev_stat *)</dt>
1193     <dd>
1194     <p>Updates the stat buffer immediately with new values. If you change the
1195     watched path in your callback, you could call this fucntion to avoid
1196     detecting this change (while introducing a race condition). Can also be
1197     useful simply to find out the new values.</p>
1198     </dd>
1199     <dt>ev_statdata attr [read-only]</dt>
1200     <dd>
1201     <p>The most-recently detected attributes of the file. Although the type is of
1202     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1203     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1204     was some error while <code>stat</code>ing the file.</p>
1205     </dd>
1206     <dt>ev_statdata prev [read-only]</dt>
1207     <dd>
1208     <p>The previous attributes of the file. The callback gets invoked whenever
1209     <code>prev</code> != <code>attr</code>.</p>
1210     </dd>
1211     <dt>ev_tstamp interval [read-only]</dt>
1212     <dd>
1213     <p>The specified interval.</p>
1214     </dd>
1215     <dt>const char *path [read-only]</dt>
1216     <dd>
1217     <p>The filesystem path that is being watched.</p>
1218     </dd>
1219     </dl>
1220     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1221     <pre> static void
1222     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1223     {
1224     /* /etc/passwd changed in some way */
1225     if (w-&gt;attr.st_nlink)
1226     {
1227     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1228     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1229     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1230     }
1231     else
1232     /* you shalt not abuse printf for puts */
1233     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1234     &quot;if this is windows, they already arrived\n&quot;);
1235     }
1236    
1237     ...
1238     ev_stat passwd;
1239    
1240     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1241     ev_stat_start (loop, &amp;passwd);
1242    
1243    
1244    
1245    
1246     </pre>
1247    
1248     </div>
1249 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1250 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1251 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1252     (prepare, check and other idle watchers do not count). That is, as long
1253     as your process is busy handling sockets or timeouts (or even signals,
1254     imagine) it will not be triggered. But when your process is idle all idle
1255     watchers are being called again and again, once per event loop iteration -
1256     until stopped, that is, or your process receives more events and becomes
1257     busy.</p>
1258 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1259     active, the process will not block when waiting for new events.</p>
1260     <p>Apart from keeping your process non-blocking (which is a useful
1261     effect on its own sometimes), idle watchers are a good place to do
1262     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1263     event loop has handled all outstanding events.</p>
1264     <dl>
1265     <dt>ev_idle_init (ev_signal *, callback)</dt>
1266     <dd>
1267     <p>Initialises and configures the idle watcher - it has no parameters of any
1268     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1269     believe me.</p>
1270     </dd>
1271     </dl>
1272 root 1.35 <p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
1273     callback, free it. Alos, use no error checking, as usual.</p>
1274     <pre> static void
1275     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1276     {
1277     free (w);
1278     // now do something you wanted to do when the program has
1279     // no longer asnything immediate to do.
1280     }
1281    
1282     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1283     ev_idle_init (idle_watcher, idle_cb);
1284     ev_idle_start (loop, idle_cb);
1285    
1286    
1287    
1288    
1289     </pre>
1290 root 1.1
1291     </div>
1292 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1293 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1294 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1295 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1296 root 1.14 afterwards.</p>
1297 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1298     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1299     watchers. Other loops than the current one are fine, however. The
1300     rationale behind this is that you do not need to check for recursion in
1301     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1302     <code>ev_check</code> so if you have one watcher of each kind they will always be
1303     called in pairs bracketing the blocking call.</p>
1304 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1305     their use is somewhat advanced. This could be used, for example, to track
1306     variable changes, implement your own watchers, integrate net-snmp or a
1307 root 1.46 coroutine library and lots more. They are also occasionally useful if
1308     you cache some data and want to flush it before blocking (for example,
1309     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1310     watcher).</p>
1311 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1312 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1313     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1314     provide just this functionality). Then, in the check watcher you check for
1315     any events that occured (by checking the pending status of all watchers
1316     and stopping them) and call back into the library. The I/O and timer
1317 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1318 root 1.14 because you never know, you know?).</p>
1319     <p>As another example, the Perl Coro module uses these hooks to integrate
1320 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1321     during each prepare and only letting the process block if no coroutines
1322 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1323     with priority higher than or equal to the event loop and one coroutine
1324     of lower priority, but only once, using idle watchers to keep the event
1325     loop from blocking if lower-priority coroutines are active, thus mapping
1326     low-priority coroutines to idle/background tasks).</p>
1327 root 1.1 <dl>
1328     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1329     <dt>ev_check_init (ev_check *, callback)</dt>
1330     <dd>
1331     <p>Initialises and configures the prepare or check watcher - they have no
1332     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1333 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1334 root 1.1 </dd>
1335     </dl>
1336 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1337     and a timeout watcher in a prepare handler, as required by libadns, and
1338     in a check watcher, destroy them and call into libadns. What follows is
1339     pseudo-code only of course:</p>
1340     <pre> static ev_io iow [nfd];
1341     static ev_timer tw;
1342    
1343     static void
1344     io_cb (ev_loop *loop, ev_io *w, int revents)
1345     {
1346     // set the relevant poll flags
1347 root 1.47 // could also call adns_processreadable etc. here
1348 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1349     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1350     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1351     }
1352    
1353     // create io watchers for each fd and a timer before blocking
1354     static void
1355     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1356     {
1357     int timeout = 3600000;truct pollfd fds [nfd];
1358     // actual code will need to loop here and realloc etc.
1359     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1360    
1361     /* the callback is illegal, but won't be called as we stop during check */
1362     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1363     ev_timer_start (loop, &amp;tw);
1364    
1365     // create on ev_io per pollfd
1366     for (int i = 0; i &lt; nfd; ++i)
1367     {
1368     ev_io_init (iow + i, io_cb, fds [i].fd,
1369     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1370     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1371    
1372     fds [i].revents = 0;
1373     iow [i].data = fds + i;
1374     ev_io_start (loop, iow + i);
1375     }
1376     }
1377    
1378     // stop all watchers after blocking
1379     static void
1380     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1381     {
1382     ev_timer_stop (loop, &amp;tw);
1383    
1384     for (int i = 0; i &lt; nfd; ++i)
1385     ev_io_stop (loop, iow + i);
1386    
1387     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1388     }
1389 root 1.35
1390    
1391    
1392    
1393 root 1.46 </pre>
1394 root 1.1
1395     </div>
1396 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1397 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1398     <p>This is a rather advanced watcher type that lets you embed one event loop
1399 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1400     loop, other types of watchers might be handled in a delayed or incorrect
1401     fashion and must not be used).</p>
1402 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1403     prioritise I/O.</p>
1404     <p>As an example for a bug workaround, the kqueue backend might only support
1405     sockets on some platform, so it is unusable as generic backend, but you
1406     still want to make use of it because you have many sockets and it scales
1407     so nicely. In this case, you would create a kqueue-based loop and embed it
1408     into your default loop (which might use e.g. poll). Overall operation will
1409     be a bit slower because first libev has to poll and then call kevent, but
1410     at least you can use both at what they are best.</p>
1411     <p>As for prioritising I/O: rarely you have the case where some fds have
1412     to be watched and handled very quickly (with low latency), and even
1413     priorities and idle watchers might have too much overhead. In this case
1414     you would put all the high priority stuff in one loop and all the rest in
1415     a second one, and embed the second one in the first.</p>
1416 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1417     there might be events pending in the embedded loop. The callback must then
1418     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1419     their callbacks (you could also start an idle watcher to give the embedded
1420     loop strictly lower priority for example). You can also set the callback
1421     to <code>0</code>, in which case the embed watcher will automatically execute the
1422     embedded loop sweep.</p>
1423 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1424     callback will be invoked whenever some events have been handled. You can
1425     set the callback to <code>0</code> to avoid having to specify one if you are not
1426     interested in that.</p>
1427     <p>Also, there have not currently been made special provisions for forking:
1428     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1429     but you will also have to stop and restart any <code>ev_embed</code> watchers
1430     yourself.</p>
1431     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1432     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1433     portable one.</p>
1434     <p>So when you want to use this feature you will always have to be prepared
1435     that you cannot get an embeddable loop. The recommended way to get around
1436     this is to have a separate variables for your embeddable loop, try to
1437     create it, and if that fails, use the normal loop for everything:</p>
1438     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1439     struct ev_loop *loop_lo = 0;
1440     struct ev_embed embed;
1441    
1442     // see if there is a chance of getting one that works
1443     // (remember that a flags value of 0 means autodetection)
1444     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1445     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1446     : 0;
1447    
1448     // if we got one, then embed it, otherwise default to loop_hi
1449     if (loop_lo)
1450     {
1451     ev_embed_init (&amp;embed, 0, loop_lo);
1452     ev_embed_start (loop_hi, &amp;embed);
1453     }
1454     else
1455     loop_lo = loop_hi;
1456    
1457     </pre>
1458     <dl>
1459 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1460     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1461 root 1.36 <dd>
1462 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1463     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1464     invoked automatically, otherwise it is the responsibility of the callback
1465     to invoke it (it will continue to be called until the sweep has been done,
1466     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1467     </dd>
1468     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1469     <dd>
1470     <p>Make a single, non-blocking sweep over the embedded loop. This works
1471     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1472     apropriate way for embedded loops.</p>
1473 root 1.36 </dd>
1474 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1475     <dd>
1476     <p>The embedded event loop.</p>
1477     </dd>
1478 root 1.36 </dl>
1479    
1480    
1481    
1482    
1483    
1484     </div>
1485 root 1.1 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
1486     <div id="OTHER_FUNCTIONS_CONTENT">
1487 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1488 root 1.1 <dl>
1489     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1490     <dd>
1491     <p>This function combines a simple timer and an I/O watcher, calls your
1492     callback on whichever event happens first and automatically stop both
1493     watchers. This is useful if you want to wait for a single event on an fd
1494 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1495 root 1.1 more watchers yourself.</p>
1496 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1497     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1498     <code>events</code> set will be craeted and started.</p>
1499 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1500 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1501     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1502     dubious value.</p>
1503     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1504 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1505 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1506     value passed to <code>ev_once</code>:</p>
1507 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1508     {
1509     if (revents &amp; EV_TIMEOUT)
1510 root 1.14 /* doh, nothing entered */;
1511 root 1.1 else if (revents &amp; EV_READ)
1512 root 1.14 /* stdin might have data for us, joy! */;
1513 root 1.1 }
1514    
1515 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1516 root 1.1
1517     </pre>
1518     </dd>
1519 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1520 root 1.1 <dd>
1521     <p>Feeds the given event set into the event loop, as if the specified event
1522 root 1.14 had happened for the specified watcher (which must be a pointer to an
1523     initialised but not necessarily started event watcher).</p>
1524 root 1.1 </dd>
1525 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1526 root 1.1 <dd>
1527 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1528     the given events it.</p>
1529 root 1.1 </dd>
1530 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1531 root 1.1 <dd>
1532 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1533     loop!).</p>
1534 root 1.1 </dd>
1535     </dl>
1536    
1537 root 1.35
1538    
1539    
1540    
1541 root 1.1 </div>
1542 root 1.23 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
1543     <div id="LIBEVENT_EMULATION_CONTENT">
1544 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1545     emulate the internals of libevent, so here are some usage hints:</p>
1546     <dl>
1547     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1548     <dt>* The following members are fully supported: ev_base, ev_callback,
1549     ev_arg, ev_fd, ev_res, ev_events.</dt>
1550     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1551     maintained by libev, it does not work exactly the same way as in libevent (consider
1552     it a private API).</dt>
1553     <dt>* Priorities are not currently supported. Initialising priorities
1554     will fail and all watchers will have the same priority, even though there
1555     is an ev_pri field.</dt>
1556     <dt>* Other members are not supported.</dt>
1557     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1558     to use the libev header file and library.</dt>
1559     </dl>
1560 root 1.23
1561     </div>
1562     <h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
1563     <div id="C_SUPPORT_CONTENT">
1564 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1565     you to use some convinience methods to start/stop watchers and also change
1566     the callback model to a model using method callbacks on objects.</p>
1567     <p>To use it,</p>
1568     <pre> #include &lt;ev++.h&gt;
1569    
1570     </pre>
1571     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1572     and puts all of its definitions (many of them macros) into the global
1573     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1574     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1575     <code>EV_MULTIPLICITY</code>.</p>
1576     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1577     <dl>
1578     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1579     <dd>
1580     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1581     macros from <cite>ev.h</cite>.</p>
1582     </dd>
1583     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1584     <dd>
1585     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1586     </dd>
1587     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1588     <dd>
1589     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1590     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1591     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1592     defines by many implementations.</p>
1593     <p>All of those classes have these methods:</p>
1594     <p>
1595     <dl>
1596     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1597     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1598     <dt>ev::TYPE::~TYPE</dt>
1599     <dd>
1600     <p>The constructor takes a pointer to an object and a method pointer to
1601     the event handler callback to call in this class. The constructor calls
1602     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1603     before starting it. If you do not specify a loop then the constructor
1604     automatically associates the default loop with this watcher.</p>
1605     <p>The destructor automatically stops the watcher if it is active.</p>
1606     </dd>
1607     <dt>w-&gt;set (struct ev_loop *)</dt>
1608     <dd>
1609     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1610     do this when the watcher is inactive (and not pending either).</p>
1611     </dd>
1612     <dt>w-&gt;set ([args])</dt>
1613     <dd>
1614     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1615     called at least once. Unlike the C counterpart, an active watcher gets
1616     automatically stopped and restarted.</p>
1617     </dd>
1618     <dt>w-&gt;start ()</dt>
1619     <dd>
1620     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1621     constructor already takes the loop.</p>
1622     </dd>
1623     <dt>w-&gt;stop ()</dt>
1624     <dd>
1625     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1626     </dd>
1627     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1628     <dd>
1629     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1630     <code>ev_TYPE_again</code> function.</p>
1631     </dd>
1632     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1633     <dd>
1634     <p>Invokes <code>ev_embed_sweep</code>.</p>
1635     </dd>
1636     </dl>
1637     </p>
1638     </dd>
1639     </dl>
1640     <p>Example: Define a class with an IO and idle watcher, start one of them in
1641     the constructor.</p>
1642     <pre> class myclass
1643     {
1644     ev_io io; void io_cb (ev::io &amp;w, int revents);
1645     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1646    
1647     myclass ();
1648     }
1649    
1650     myclass::myclass (int fd)
1651     : io (this, &amp;myclass::io_cb),
1652     idle (this, &amp;myclass::idle_cb)
1653     {
1654     io.start (fd, ev::READ);
1655     }
1656    
1657     </pre>
1658 root 1.23
1659     </div>
1660 root 1.40 <h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1661     <div id="EMBEDDING_CONTENT">
1662     <p>Libev can (and often is) directly embedded into host
1663     applications. Examples of applications that embed it include the Deliantra
1664     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1665     and rxvt-unicode.</p>
1666     <p>The goal is to enable you to just copy the neecssary files into your
1667     source directory without having to change even a single line in them, so
1668     you can easily upgrade by simply copying (or having a checked-out copy of
1669     libev somewhere in your source tree).</p>
1670    
1671     </div>
1672     <h2 id="FILESETS">FILESETS</h2>
1673     <div id="FILESETS_CONTENT">
1674     <p>Depending on what features you need you need to include one or more sets of files
1675     in your app.</p>
1676    
1677     </div>
1678     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1679     <div id="CORE_EVENT_LOOP_CONTENT">
1680     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1681     configuration (no autoconf):</p>
1682     <pre> #define EV_STANDALONE 1
1683     #include &quot;ev.c&quot;
1684    
1685     </pre>
1686     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1687     single C source file only to provide the function implementations. To use
1688     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1689     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1690     where you can put other configuration options):</p>
1691     <pre> #define EV_STANDALONE 1
1692     #include &quot;ev.h&quot;
1693    
1694     </pre>
1695     <p>Both header files and implementation files can be compiled with a C++
1696     compiler (at least, thats a stated goal, and breakage will be treated
1697     as a bug).</p>
1698     <p>You need the following files in your source tree, or in a directory
1699     in your include path (e.g. in libev/ when using -Ilibev):</p>
1700     <pre> ev.h
1701     ev.c
1702     ev_vars.h
1703     ev_wrap.h
1704    
1705     ev_win32.c required on win32 platforms only
1706    
1707 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1708 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1709     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1710     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1711     ev_port.c only when the solaris port backend is enabled (disabled by default)
1712    
1713     </pre>
1714     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1715 root 1.44 to compile this single file.</p>
1716 root 1.40
1717     </div>
1718     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1719     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1720     <p>To include the libevent compatibility API, also include:</p>
1721     <pre> #include &quot;event.c&quot;
1722    
1723     </pre>
1724     <p>in the file including <cite>ev.c</cite>, and:</p>
1725     <pre> #include &quot;event.h&quot;
1726    
1727     </pre>
1728     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1729     <p>You need the following additional files for this:</p>
1730     <pre> event.h
1731     event.c
1732    
1733     </pre>
1734    
1735     </div>
1736     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1737     <div id="AUTOCONF_SUPPORT_CONTENT">
1738     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1739     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1740 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1741     include <cite>config.h</cite> and configure itself accordingly.</p>
1742 root 1.40 <p>For this of course you need the m4 file:</p>
1743     <pre> libev.m4
1744    
1745     </pre>
1746    
1747     </div>
1748     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1749     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1750     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1751     before including any of its files. The default is not to build for multiplicity
1752     and only include the select backend.</p>
1753     <dl>
1754     <dt>EV_STANDALONE</dt>
1755     <dd>
1756     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1757     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1758     implementations for some libevent functions (such as logging, which is not
1759     supported). It will also not define any of the structs usually found in
1760     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1761     </dd>
1762     <dt>EV_USE_MONOTONIC</dt>
1763     <dd>
1764     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1765     monotonic clock option at both compiletime and runtime. Otherwise no use
1766     of the monotonic clock option will be attempted. If you enable this, you
1767     usually have to link against librt or something similar. Enabling it when
1768     the functionality isn't available is safe, though, althoguh you have
1769     to make sure you link against any libraries where the <code>clock_gettime</code>
1770     function is hiding in (often <cite>-lrt</cite>).</p>
1771     </dd>
1772     <dt>EV_USE_REALTIME</dt>
1773     <dd>
1774     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1775     realtime clock option at compiletime (and assume its availability at
1776     runtime if successful). Otherwise no use of the realtime clock option will
1777     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1778     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1779     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1780     </dd>
1781     <dt>EV_USE_SELECT</dt>
1782     <dd>
1783     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1784     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1785     other method takes over, select will be it. Otherwise the select backend
1786     will not be compiled in.</p>
1787     </dd>
1788     <dt>EV_SELECT_USE_FD_SET</dt>
1789     <dd>
1790     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1791     structure. This is useful if libev doesn't compile due to a missing
1792     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1793     exotic systems. This usually limits the range of file descriptors to some
1794     low limit such as 1024 or might have other limitations (winsocket only
1795     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1796     influence the size of the <code>fd_set</code> used.</p>
1797     </dd>
1798     <dt>EV_SELECT_IS_WINSOCKET</dt>
1799     <dd>
1800     <p>When defined to <code>1</code>, the select backend will assume that
1801     select/socket/connect etc. don't understand file descriptors but
1802     wants osf handles on win32 (this is the case when the select to
1803     be used is the winsock select). This means that it will call
1804     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1805     it is assumed that all these functions actually work on fds, even
1806     on win32. Should not be defined on non-win32 platforms.</p>
1807     </dd>
1808     <dt>EV_USE_POLL</dt>
1809     <dd>
1810     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1811     backend. Otherwise it will be enabled on non-win32 platforms. It
1812     takes precedence over select.</p>
1813     </dd>
1814     <dt>EV_USE_EPOLL</dt>
1815     <dd>
1816     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1817     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1818     otherwise another method will be used as fallback. This is the
1819     preferred backend for GNU/Linux systems.</p>
1820     </dd>
1821     <dt>EV_USE_KQUEUE</dt>
1822     <dd>
1823     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1824     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1825     otherwise another method will be used as fallback. This is the preferred
1826     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1827     supports some types of fds correctly (the only platform we found that
1828     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1829     not be used unless explicitly requested. The best way to use it is to find
1830 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1831 root 1.40 kqueue loop.</p>
1832     </dd>
1833     <dt>EV_USE_PORT</dt>
1834     <dd>
1835     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1836     10 port style backend. Its availability will be detected at runtime,
1837     otherwise another method will be used as fallback. This is the preferred
1838     backend for Solaris 10 systems.</p>
1839     </dd>
1840     <dt>EV_USE_DEVPOLL</dt>
1841     <dd>
1842     <p>reserved for future expansion, works like the USE symbols above.</p>
1843     </dd>
1844     <dt>EV_H</dt>
1845     <dd>
1846     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1847     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1848     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1849     </dd>
1850     <dt>EV_CONFIG_H</dt>
1851     <dd>
1852     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
1853     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
1854     <code>EV_H</code>, above.</p>
1855     </dd>
1856     <dt>EV_EVENT_H</dt>
1857     <dd>
1858     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
1859     of how the <cite>event.h</cite> header can be found.</p>
1860     </dd>
1861     <dt>EV_PROTOTYPES</dt>
1862     <dd>
1863     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
1864     prototypes, but still define all the structs and other symbols. This is
1865     occasionally useful if you want to provide your own wrapper functions
1866     around libev functions.</p>
1867     </dd>
1868     <dt>EV_MULTIPLICITY</dt>
1869     <dd>
1870     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
1871     will have the <code>struct ev_loop *</code> as first argument, and you can create
1872     additional independent event loops. Otherwise there will be no support
1873     for multiple event loops and there is no first event loop pointer
1874     argument. Instead, all functions act on the single default loop.</p>
1875     </dd>
1876 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
1877     <dd>
1878     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
1879     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
1880     code.</p>
1881     </dd>
1882     <dt>EV_EMBED_ENABLE</dt>
1883     <dd>
1884     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
1885     defined to be <code>0</code>, then they are not.</p>
1886     </dd>
1887     <dt>EV_STAT_ENABLE</dt>
1888     <dd>
1889     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
1890     defined to be <code>0</code>, then they are not.</p>
1891     </dd>
1892     <dt>EV_MINIMAL</dt>
1893 root 1.40 <dd>
1894 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
1895     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
1896     some inlining decisions, saves roughly 30% codesize of amd64.</p>
1897 root 1.40 </dd>
1898     <dt>EV_COMMON</dt>
1899     <dd>
1900     <p>By default, all watchers have a <code>void *data</code> member. By redefining
1901     this macro to a something else you can include more and other types of
1902     members. You have to define it each time you include one of the files,
1903     though, and it must be identical each time.</p>
1904     <p>For example, the perl EV module uses something like this:</p>
1905     <pre> #define EV_COMMON \
1906     SV *self; /* contains this struct */ \
1907     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
1908    
1909     </pre>
1910     </dd>
1911 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
1912     <dt>EV_CB_INVOKE (watcher, revents)</dt>
1913     <dt>ev_set_cb (ev, cb)</dt>
1914 root 1.40 <dd>
1915     <p>Can be used to change the callback member declaration in each watcher,
1916     and the way callbacks are invoked and set. Must expand to a struct member
1917     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
1918     their default definitions. One possible use for overriding these is to
1919 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
1920     method calls instead of plain function calls in C++.</p>
1921 root 1.40
1922     </div>
1923     <h2 id="EXAMPLES">EXAMPLES</h2>
1924     <div id="EXAMPLES_CONTENT">
1925     <p>For a real-world example of a program the includes libev
1926     verbatim, you can have a look at the EV perl module
1927     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
1928     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
1929     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
1930     will be compiled. It is pretty complex because it provides its own header
1931     file.</p>
1932     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
1933     that everybody includes and which overrides some autoconf choices:</p>
1934 root 1.41 <pre> #define EV_USE_POLL 0
1935     #define EV_MULTIPLICITY 0
1936     #define EV_PERIODICS 0
1937     #define EV_CONFIG_H &lt;config.h&gt;
1938 root 1.40
1939 root 1.41 #include &quot;ev++.h&quot;
1940 root 1.40
1941     </pre>
1942     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
1943 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
1944     #include &quot;ev.c&quot;
1945 root 1.40
1946 root 1.47
1947    
1948    
1949 root 1.40 </pre>
1950    
1951     </div>
1952 root 1.47 <h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p>
1953     <div id="COMPLEXITIES_CONTENT">
1954     <p>In this section the complexities of (many of) the algorithms used inside
1955     libev will be explained. For complexity discussions about backends see the
1956     documentation for <code>ev_default_init</code>.</p>
1957     <p>
1958     <dl>
1959     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
1960     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
1961     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
1962     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
1963     <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
1964     <dt>Finding the next timer per loop iteration: O(1)</dt>
1965     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
1966     <dt>Activating one watcher: O(1)</dt>
1967     </dl>
1968     </p>
1969    
1970    
1971    
1972    
1973    
1974     </div>
1975 root 1.1 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
1976     <div id="AUTHOR_CONTENT">
1977 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
1978 root 1.1
1979     </div>
1980     </div></body>
1981     </html>