ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.52
Committed: Tue Nov 27 19:41:52 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.51: +8 -8 lines
Log Message:
I ❤ µ-opts

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.52 <meta name="created" content="Tue Nov 27 20:38:24 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19     <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20     <li><a href="#FEATURES">FEATURES</a></li>
21     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
24 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
25     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
26 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
27 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
28 root 1.1 </ul>
29     </li>
30     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
31 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
36 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
37 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
38     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
39     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
40 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
41 root 1.1 </ul>
42     </li>
43     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
44 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
45     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
46 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
47 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
48     <ul><li><a href="#FILESETS">FILESETS</a>
49     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
50     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
51     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
52     </ul>
53     </li>
54     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
55     <li><a href="#EXAMPLES">EXAMPLES</a></li>
56     </ul>
57     </li>
58 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
59 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
60     </li>
61     </ul><hr />
62     <!-- INDEX END -->
63    
64     <h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p>
65     <div id="NAME_CONTENT">
66     <p>libev - a high performance full-featured event loop written in C</p>
67    
68     </div>
69     <h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
70     <div id="SYNOPSIS_CONTENT">
71     <pre> #include &lt;ev.h&gt;
72    
73     </pre>
74    
75     </div>
76     <h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
77     <div id="DESCRIPTION_CONTENT">
78     <p>Libev is an event loop: you register interest in certain events (such as a
79     file descriptor being readable or a timeout occuring), and it will manage
80 root 1.4 these event sources and provide your program with events.</p>
81 root 1.1 <p>To do this, it must take more or less complete control over your process
82     (or thread) by executing the <i>event loop</i> handler, and will then
83     communicate events via a callback mechanism.</p>
84     <p>You register interest in certain events by registering so-called <i>event
85     watchers</i>, which are relatively small C structures you initialise with the
86     details of the event, and then hand it over to libev by <i>starting</i> the
87     watcher.</p>
88    
89     </div>
90     <h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
91     <div id="FEATURES_CONTENT">
92     <p>Libev supports select, poll, the linux-specific epoll and the bsd-specific
93     kqueue mechanisms for file descriptor events, relative timers, absolute
94     timers with customised rescheduling, signal events, process status change
95     events (related to SIGCHLD), and event watchers dealing with the event
96 root 1.5 loop mechanism itself (idle, prepare and check watchers). It also is quite
97 root 1.7 fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
98     it to libevent for example).</p>
99 root 1.1
100     </div>
101     <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
102     <div id="CONVENTIONS_CONTENT">
103     <p>Libev is very configurable. In this manual the default configuration
104     will be described, which supports multiple event loops. For more info
105 root 1.7 about various configuration options please have a look at the file
106 root 1.1 <cite>README.embed</cite> in the libev distribution. If libev was configured without
107     support for multiple event loops, then all functions taking an initial
108     argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
109     will not have this argument.</p>
110    
111     </div>
112 root 1.18 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
113     <div id="TIME_REPRESENTATION_CONTENT">
114 root 1.2 <p>Libev represents time as a single floating point number, representing the
115     (fractional) number of seconds since the (POSIX) epoch (somewhere near
116     the beginning of 1970, details are complicated, don't ask). This type is
117 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
118 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
119     it, you should treat it as such.</p>
120    
121 root 1.18 </div>
122     <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
123     <div id="GLOBAL_FUNCTIONS_CONTENT">
124 root 1.21 <p>These functions can be called anytime, even before initialising the
125     library in any way.</p>
126 root 1.1 <dl>
127     <dt>ev_tstamp ev_time ()</dt>
128     <dd>
129 root 1.28 <p>Returns the current time as libev would use it. Please note that the
130     <code>ev_now</code> function is usually faster and also often returns the timestamp
131     you actually want to know.</p>
132 root 1.1 </dd>
133     <dt>int ev_version_major ()</dt>
134     <dt>int ev_version_minor ()</dt>
135     <dd>
136     <p>You can find out the major and minor version numbers of the library
137     you linked against by calling the functions <code>ev_version_major</code> and
138     <code>ev_version_minor</code>. If you want, you can compare against the global
139     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
140     version of the library your program was compiled against.</p>
141 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
142 root 1.1 as this indicates an incompatible change. Minor versions are usually
143     compatible to older versions, so a larger minor version alone is usually
144     not a problem.</p>
145 root 1.35 <p>Example: make sure we haven't accidentally been linked against the wrong
146     version:</p>
147     <pre> assert ((&quot;libev version mismatch&quot;,
148     ev_version_major () == EV_VERSION_MAJOR
149     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
150    
151     </pre>
152 root 1.1 </dd>
153 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
154     <dd>
155     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
156     value) compiled into this binary of libev (independent of their
157     availability on the system you are running on). See <code>ev_default_loop</code> for
158     a description of the set values.</p>
159 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
160     a must have and can we have a torrent of it please!!!11</p>
161     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
162     ev_supported_backends () &amp; EVBACKEND_EPOLL));
163    
164     </pre>
165 root 1.32 </dd>
166     <dt>unsigned int ev_recommended_backends ()</dt>
167     <dd>
168     <p>Return the set of all backends compiled into this binary of libev and also
169     recommended for this platform. This set is often smaller than the one
170     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
171     most BSDs and will not be autodetected unless you explicitly request it
172     (assuming you know what you are doing). This is the set of backends that
173 root 1.34 libev will probe for if you specify no backends explicitly.</p>
174 root 1.32 </dd>
175 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
176     <dd>
177     <p>Returns the set of backends that are embeddable in other event loops. This
178     is the theoretical, all-platform, value. To find which backends
179     might be supported on the current system, you would need to look at
180     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
181     recommended ones.</p>
182     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
183     </dd>
184 root 1.52 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt>
185 root 1.1 <dd>
186 root 1.52 <p>Sets the allocation function to use (the prototype and semantics are
187     identical to the realloc C function). It is used to allocate and free
188     memory (no surprises here). If it returns zero when memory needs to be
189     allocated, the library might abort or take some potentially destructive
190     action. The default is your system realloc function.</p>
191 root 1.1 <p>You could override this function in high-availability programs to, say,
192     free some memory if it cannot allocate memory, to use a special allocator,
193     or even to sleep a while and retry until some memory is available.</p>
194 root 1.35 <p>Example: replace the libev allocator with one that waits a bit and then
195     retries: better than mine).</p>
196     <pre> static void *
197 root 1.52 persistent_realloc (void *ptr, size_t size)
198 root 1.35 {
199     for (;;)
200     {
201     void *newptr = realloc (ptr, size);
202    
203     if (newptr)
204     return newptr;
205    
206     sleep (60);
207     }
208     }
209    
210     ...
211     ev_set_allocator (persistent_realloc);
212    
213     </pre>
214 root 1.1 </dd>
215     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
216     <dd>
217     <p>Set the callback function to call on a retryable syscall error (such
218     as failed select, poll, epoll_wait). The message is a printable string
219     indicating the system call or subsystem causing the problem. If this
220     callback is set, then libev will expect it to remedy the sitution, no
221 root 1.7 matter what, when it returns. That is, libev will generally retry the
222 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
223     (such as abort).</p>
224 root 1.35 <p>Example: do the same thing as libev does internally:</p>
225     <pre> static void
226     fatal_error (const char *msg)
227     {
228     perror (msg);
229     abort ();
230     }
231    
232     ...
233     ev_set_syserr_cb (fatal_error);
234    
235     </pre>
236 root 1.1 </dd>
237     </dl>
238    
239     </div>
240     <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p>
241     <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
242     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
243     types of such loops, the <i>default</i> loop, which supports signals and child
244     events, and dynamically created loops which do not.</p>
245     <p>If you use threads, a common model is to run the default event loop
246 root 1.18 in your main thread (or in a separate thread) and for each thread you
247 root 1.7 create, you also create another event loop. Libev itself does no locking
248     whatsoever, so if you mix calls to the same event loop in different
249     threads, make sure you lock (this is usually a bad idea, though, even if
250 root 1.9 done correctly, because it's hideous and inefficient).</p>
251 root 1.1 <dl>
252     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
253     <dd>
254     <p>This will initialise the default event loop if it hasn't been initialised
255     yet and return it. If the default loop could not be initialised, returns
256     false. If it already was initialised it simply returns it (and ignores the
257 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
258 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
259     function.</p>
260     <p>The flags argument can be used to specify special behaviour or specific
261 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
262     <p>The following flags are supported:</p>
263 root 1.1 <p>
264     <dl>
265 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
266 root 1.1 <dd>
267 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
268 root 1.1 thing, believe me).</p>
269     </dd>
270 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
271 root 1.1 <dd>
272 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
273     or setgid) then libev will <i>not</i> look at the environment variable
274     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
275     override the flags completely if it is found in the environment. This is
276     useful to try out specific backends to test their performance, or to work
277     around bugs.</p>
278 root 1.1 </dd>
279 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
280 root 1.29 <dd>
281     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
282     libev tries to roll its own fd_set with no limits on the number of fds,
283     but if that fails, expect a fairly low limit on the number of fds when
284     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
285     the fastest backend for a low number of fds.</p>
286     </dd>
287 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
288 root 1.29 <dd>
289     <p>And this is your standard poll(2) backend. It's more complicated than
290     select, but handles sparse fds better and has no artificial limit on the
291     number of fds you can use (except it will slow down considerably with a
292     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
293     </dd>
294 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
295 root 1.29 <dd>
296     <p>For few fds, this backend is a bit little slower than poll and select,
297     but it scales phenomenally better. While poll and select usually scale like
298     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
299     either O(1) or O(active_fds).</p>
300     <p>While stopping and starting an I/O watcher in the same iteration will
301     result in some caching, there is still a syscall per such incident
302     (because the fd could point to a different file description now), so its
303     best to avoid that. Also, dup()ed file descriptors might not work very
304     well if you register events for both fds.</p>
305 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
306     need to use non-blocking I/O or other means to avoid blocking when no data
307     (or space) is available.</p>
308 root 1.29 </dd>
309 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
310 root 1.29 <dd>
311     <p>Kqueue deserves special mention, as at the time of this writing, it
312     was broken on all BSDs except NetBSD (usually it doesn't work with
313     anything but sockets and pipes, except on Darwin, where of course its
314 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
315     unless you explicitly specify it explicitly in the flags (i.e. using
316     <code>EVBACKEND_KQUEUE</code>).</p>
317 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
318     kernel is more efficient (which says nothing about its actual speed, of
319     course). While starting and stopping an I/O watcher does not cause an
320     extra syscall as with epoll, it still adds up to four event changes per
321     incident, so its best to avoid that.</p>
322     </dd>
323 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
324 root 1.29 <dd>
325     <p>This is not implemented yet (and might never be).</p>
326     </dd>
327 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
328 root 1.29 <dd>
329     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
330     it's really slow, but it still scales very well (O(active_fds)).</p>
331 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
332     notifications, so you need to use non-blocking I/O or other means to avoid
333     blocking when no data (or space) is available.</p>
334 root 1.29 </dd>
335 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
336 root 1.29 <dd>
337 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
338     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
339 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
340 root 1.1 </dd>
341     </dl>
342     </p>
343 root 1.29 <p>If one or more of these are ored into the flags value, then only these
344     backends will be tried (in the reverse order as given here). If none are
345     specified, most compiled-in backend will be tried, usually in reverse
346     order of their flag values :)</p>
347 root 1.34 <p>The most typical usage is like this:</p>
348     <pre> if (!ev_default_loop (0))
349     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
350    
351     </pre>
352     <p>Restrict libev to the select and poll backends, and do not allow
353     environment settings to be taken into account:</p>
354     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
355    
356     </pre>
357     <p>Use whatever libev has to offer, but make sure that kqueue is used if
358     available (warning, breaks stuff, best use only with your own private
359     event loop and only if you know the OS supports your types of fds):</p>
360     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
361    
362     </pre>
363 root 1.1 </dd>
364     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
365     <dd>
366     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
367     always distinct from the default loop. Unlike the default loop, it cannot
368     handle signal and child watchers, and attempts to do so will be greeted by
369     undefined behaviour (or a failed assertion if assertions are enabled).</p>
370 root 1.35 <p>Example: try to create a event loop that uses epoll and nothing else.</p>
371     <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
372     if (!epoller)
373     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
374    
375     </pre>
376 root 1.1 </dd>
377     <dt>ev_default_destroy ()</dt>
378     <dd>
379     <p>Destroys the default loop again (frees all memory and kernel state
380 root 1.38 etc.). None of the active event watchers will be stopped in the normal
381     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
382     responsibility to either stop all watchers cleanly yoursef <i>before</i>
383     calling this function, or cope with the fact afterwards (which is usually
384     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
385     for example).</p>
386 root 1.1 </dd>
387     <dt>ev_loop_destroy (loop)</dt>
388     <dd>
389     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
390     earlier call to <code>ev_loop_new</code>.</p>
391     </dd>
392     <dt>ev_default_fork ()</dt>
393     <dd>
394     <p>This function reinitialises the kernel state for backends that have
395     one. Despite the name, you can call it anytime, but it makes most sense
396     after forking, in either the parent or child process (or both, but that
397     again makes little sense).</p>
398 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
399     only if you want to use the event library in both processes. If you just
400     fork+exec, you don't have to call it.</p>
401 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
402 root 1.1 it just in case after a fork. To make this easy, the function will fit in
403     quite nicely into a call to <code>pthread_atfork</code>:</p>
404     <pre> pthread_atfork (0, 0, ev_default_fork);
405    
406     </pre>
407 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
408     without calling this function, so if you force one of those backends you
409     do not need to care.</p>
410 root 1.1 </dd>
411     <dt>ev_loop_fork (loop)</dt>
412     <dd>
413     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
414     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
415     after fork, and how you do this is entirely your own problem.</p>
416     </dd>
417 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
418 root 1.1 <dd>
419 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
420 root 1.1 use.</p>
421     </dd>
422 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
423 root 1.1 <dd>
424     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
425 root 1.35 received events and started processing them. This timestamp does not
426     change as long as callbacks are being processed, and this is also the base
427     time used for relative timers. You can treat it as the timestamp of the
428     event occuring (or more correctly, libev finding out about it).</p>
429 root 1.1 </dd>
430     <dt>ev_loop (loop, int flags)</dt>
431     <dd>
432     <p>Finally, this is it, the event handler. This function usually is called
433     after you initialised all your watchers and you want to start handling
434     events.</p>
435 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
436     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
437 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
438     relying on all watchers to be stopped when deciding when a program has
439     finished (especially in interactive programs), but having a program that
440     automatically loops as long as it has to and no longer by virtue of
441     relying on its watchers stopping correctly is a thing of beauty.</p>
442 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
443     those events and any outstanding ones, but will not block your process in
444 root 1.9 case there are no events and will return after one iteration of the loop.</p>
445 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
446     neccessary) and will handle those and any outstanding ones. It will block
447 root 1.9 your process until at least one new event arrives, and will return after
448 root 1.34 one iteration of the loop. This is useful if you are waiting for some
449     external event in conjunction with something not expressible using other
450     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
451     usually a better approach for this kind of thing.</p>
452     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
453     <pre> * If there are no active watchers (reference count is zero), return.
454     - Queue prepare watchers and then call all outstanding watchers.
455     - If we have been forked, recreate the kernel state.
456     - Update the kernel state with all outstanding changes.
457     - Update the &quot;event loop time&quot;.
458     - Calculate for how long to block.
459     - Block the process, waiting for any events.
460     - Queue all outstanding I/O (fd) events.
461     - Update the &quot;event loop time&quot; and do time jump handling.
462     - Queue all outstanding timers.
463     - Queue all outstanding periodics.
464     - If no events are pending now, queue all idle watchers.
465     - Queue all check watchers.
466     - Call all queued watchers in reverse order (i.e. check watchers first).
467     Signals and child watchers are implemented as I/O watchers, and will
468     be handled here by queueing them when their watcher gets executed.
469     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
470     were used, return, otherwise continue with step *.
471 root 1.28
472     </pre>
473 root 1.35 <p>Example: queue some jobs and then loop until no events are outsanding
474     anymore.</p>
475     <pre> ... queue jobs here, make sure they register event watchers as long
476     ... as they still have work to do (even an idle watcher will do..)
477     ev_loop (my_loop, 0);
478     ... jobs done. yeah!
479    
480     </pre>
481 root 1.1 </dd>
482     <dt>ev_unloop (loop, how)</dt>
483     <dd>
484 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
485     has processed all outstanding events). The <code>how</code> argument must be either
486 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
487 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
488 root 1.1 </dd>
489     <dt>ev_ref (loop)</dt>
490     <dt>ev_unref (loop)</dt>
491     <dd>
492 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
493     loop: Every watcher keeps one reference, and as long as the reference
494     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
495     a watcher you never unregister that should not keep <code>ev_loop</code> from
496     returning, ev_unref() after starting, and ev_ref() before stopping it. For
497     example, libev itself uses this for its internal signal pipe: It is not
498     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
499     no event watchers registered by it are active. It is also an excellent
500     way to do this for generic recurring timers or from within third-party
501     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
502 root 1.35 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
503     running when nothing else is active.</p>
504     <pre> struct dv_signal exitsig;
505     ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
506     ev_signal_start (myloop, &amp;exitsig);
507     evf_unref (myloop);
508    
509     </pre>
510     <p>Example: for some weird reason, unregister the above signal handler again.</p>
511     <pre> ev_ref (myloop);
512     ev_signal_stop (myloop, &amp;exitsig);
513    
514     </pre>
515 root 1.1 </dd>
516     </dl>
517    
518 root 1.43
519    
520    
521    
522 root 1.1 </div>
523     <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
524     <div id="ANATOMY_OF_A_WATCHER_CONTENT">
525     <p>A watcher is a structure that you create and register to record your
526     interest in some event. For instance, if you want to wait for STDIN to
527 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
528 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
529     {
530     ev_io_stop (w);
531     ev_unloop (loop, EVUNLOOP_ALL);
532     }
533    
534     struct ev_loop *loop = ev_default_loop (0);
535     struct ev_io stdin_watcher;
536     ev_init (&amp;stdin_watcher, my_cb);
537     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
538     ev_io_start (loop, &amp;stdin_watcher);
539     ev_loop (loop, 0);
540    
541     </pre>
542     <p>As you can see, you are responsible for allocating the memory for your
543     watcher structures (and it is usually a bad idea to do this on the stack,
544     although this can sometimes be quite valid).</p>
545     <p>Each watcher structure must be initialised by a call to <code>ev_init
546     (watcher *, callback)</code>, which expects a callback to be provided. This
547     callback gets invoked each time the event occurs (or, in the case of io
548     watchers, each time the event loop detects that the file descriptor given
549     is readable and/or writable).</p>
550     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
551     with arguments specific to this watcher type. There is also a macro
552     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
553     (watcher *, callback, ...)</code>.</p>
554     <p>To make the watcher actually watch out for events, you have to start it
555     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
556     *)</code>), and you can stop watching for events at any time by calling the
557     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
558     <p>As long as your watcher is active (has been started but not stopped) you
559     must not touch the values stored in it. Most specifically you must never
560 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
561 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
562     registered watcher structure as second, and a bitset of received events as
563     third argument.</p>
564 root 1.14 <p>The received events usually include a single bit per event type received
565 root 1.1 (you can receive multiple events at the same time). The possible bit masks
566     are:</p>
567     <dl>
568 root 1.10 <dt><code>EV_READ</code></dt>
569     <dt><code>EV_WRITE</code></dt>
570 root 1.1 <dd>
571 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
572 root 1.1 writable.</p>
573     </dd>
574 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
575 root 1.1 <dd>
576 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
577 root 1.1 </dd>
578 root 1.10 <dt><code>EV_PERIODIC</code></dt>
579 root 1.1 <dd>
580 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
581 root 1.1 </dd>
582 root 1.10 <dt><code>EV_SIGNAL</code></dt>
583 root 1.1 <dd>
584 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
585 root 1.1 </dd>
586 root 1.10 <dt><code>EV_CHILD</code></dt>
587 root 1.1 <dd>
588 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
589 root 1.1 </dd>
590 root 1.48 <dt><code>EV_STAT</code></dt>
591     <dd>
592     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
593     </dd>
594 root 1.10 <dt><code>EV_IDLE</code></dt>
595 root 1.1 <dd>
596 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
597 root 1.1 </dd>
598 root 1.10 <dt><code>EV_PREPARE</code></dt>
599     <dt><code>EV_CHECK</code></dt>
600 root 1.1 <dd>
601 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
602     to gather new events, and all <code>ev_check</code> watchers are invoked just after
603 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
604     received events. Callbacks of both watcher types can start and stop as
605     many watchers as they want, and all of them will be taken into account
606 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
607 root 1.1 <code>ev_loop</code> from blocking).</p>
608     </dd>
609 root 1.50 <dt><code>EV_EMBED</code></dt>
610     <dd>
611     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
612     </dd>
613     <dt><code>EV_FORK</code></dt>
614     <dd>
615     <p>The event loop has been resumed in the child process after fork (see
616     <code>ev_fork</code>).</p>
617     </dd>
618 root 1.10 <dt><code>EV_ERROR</code></dt>
619 root 1.1 <dd>
620     <p>An unspecified error has occured, the watcher has been stopped. This might
621     happen because the watcher could not be properly started because libev
622     ran out of memory, a file descriptor was found to be closed or any other
623     problem. You best act on it by reporting the problem and somehow coping
624     with the watcher being stopped.</p>
625     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
626     for example it might indicate that a fd is readable or writable, and if
627     your callbacks is well-written it can just attempt the operation and cope
628     with the error from read() or write(). This will not work in multithreaded
629     programs, though, so beware.</p>
630     </dd>
631     </dl>
632    
633     </div>
634 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
635     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
636 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
637     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
638     <dl>
639     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
640     <dd>
641     <p>This macro initialises the generic portion of a watcher. The contents
642     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
643     the generic parts of the watcher are initialised, you <i>need</i> to call
644     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
645     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
646     which rolls both calls into one.</p>
647     <p>You can reinitialise a watcher at any time as long as it has been stopped
648     (or never started) and there are no pending events outstanding.</p>
649 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
650 root 1.37 int revents)</code>.</p>
651     </dd>
652     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
653     <dd>
654     <p>This macro initialises the type-specific parts of a watcher. You need to
655     call <code>ev_init</code> at least once before you call this macro, but you can
656     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
657     macro on a watcher that is active (it can be pending, however, which is a
658     difference to the <code>ev_init</code> macro).</p>
659     <p>Although some watcher types do not have type-specific arguments
660     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
661     </dd>
662     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
663     <dd>
664     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
665     calls into a single call. This is the most convinient method to initialise
666     a watcher. The same limitations apply, of course.</p>
667     </dd>
668     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
669     <dd>
670     <p>Starts (activates) the given watcher. Only active watchers will receive
671     events. If the watcher is already active nothing will happen.</p>
672     </dd>
673     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
674     <dd>
675     <p>Stops the given watcher again (if active) and clears the pending
676     status. It is possible that stopped watchers are pending (for example,
677     non-repeating timers are being stopped when they become pending), but
678     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
679     you want to free or reuse the memory used by the watcher it is therefore a
680     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
681     </dd>
682     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
683     <dd>
684     <p>Returns a true value iff the watcher is active (i.e. it has been started
685     and not yet been stopped). As long as a watcher is active you must not modify
686     it.</p>
687     </dd>
688     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
689     <dd>
690     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
691     events but its callback has not yet been invoked). As long as a watcher
692     is pending (but not active) you must not call an init function on it (but
693     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
694     libev (e.g. you cnanot <code>free ()</code> it).</p>
695     </dd>
696     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
697     <dd>
698     <p>Returns the callback currently set on the watcher.</p>
699     </dd>
700     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
701     <dd>
702     <p>Change the callback. You can change the callback at virtually any time
703     (modulo threads).</p>
704     </dd>
705     </dl>
706    
707    
708    
709    
710    
711     </div>
712 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
713     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
714     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
715 root 1.14 and read at any time, libev will completely ignore it. This can be used
716 root 1.1 to associate arbitrary data with your watcher. If you need more data and
717     don't want to allocate memory and store a pointer to it in that data
718     member, you can also &quot;subclass&quot; the watcher type and provide your own
719     data:</p>
720     <pre> struct my_io
721     {
722     struct ev_io io;
723     int otherfd;
724     void *somedata;
725     struct whatever *mostinteresting;
726     }
727    
728     </pre>
729     <p>And since your callback will be called with a pointer to the watcher, you
730     can cast it back to your own type:</p>
731     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
732     {
733     struct my_io *w = (struct my_io *)w_;
734     ...
735     }
736    
737     </pre>
738     <p>More interesting and less C-conformant ways of catsing your callback type
739     have been omitted....</p>
740    
741    
742    
743    
744    
745     </div>
746     <h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
747     <div id="WATCHER_TYPES_CONTENT">
748     <p>This section describes each watcher in detail, but will not repeat
749 root 1.48 information given in the last section. Any initialisation/set macros,
750     functions and members specific to the watcher type are explained.</p>
751     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
752     while the watcher is active, you can look at the member and expect some
753     sensible content, but you must not modify it (you can modify it while the
754     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
755     means you can expect it to have some sensible content while the watcher
756     is active, but you can also modify it. Modifying it may not do something
757     sensible or take immediate effect (or do anything at all), but libev will
758     not crash or malfunction in any way.</p>
759 root 1.1
760 root 1.35
761    
762    
763    
764 root 1.1 </div>
765 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
766 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
767 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
768 root 1.43 in each iteration of the event loop, or, more precisely, when reading
769     would not block the process and writing would at least be able to write
770     some data. This behaviour is called level-triggering because you keep
771     receiving events as long as the condition persists. Remember you can stop
772     the watcher if you don't want to act on the event and neither want to
773     receive future events.</p>
774 root 1.25 <p>In general you can register as many read and/or write event watchers per
775 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
776     descriptors to non-blocking mode is also usually a good idea (but not
777     required if you know what you are doing).</p>
778     <p>You have to be careful with dup'ed file descriptors, though. Some backends
779     (the linux epoll backend is a notable example) cannot handle dup'ed file
780     descriptors correctly if you register interest in two or more fds pointing
781 root 1.43 to the same underlying file/socket/etc. description (that is, they share
782 root 1.26 the same underlying &quot;file open&quot;).</p>
783 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
784 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
785     <code>EVBACKEND_POLL</code>).</p>
786 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
787     receive &quot;spurious&quot; readyness notifications, that is your callback might
788     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
789     because there is no data. Not only are some backends known to create a
790     lot of those (for example solaris ports), it is very easy to get into
791     this situation even with a relatively standard program structure. Thus
792     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
793     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
794     <p>If you cannot run the fd in non-blocking mode (for example you should not
795     play around with an Xlib connection), then you have to seperately re-test
796     wether a file descriptor is really ready with a known-to-be good interface
797     such as poll (fortunately in our Xlib example, Xlib already does this on
798     its own, so its quite safe to use).</p>
799 root 1.1 <dl>
800     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
801     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
802     <dd>
803 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
804     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
805     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
806 root 1.1 </dd>
807 root 1.48 <dt>int fd [read-only]</dt>
808     <dd>
809     <p>The file descriptor being watched.</p>
810     </dd>
811     <dt>int events [read-only]</dt>
812     <dd>
813     <p>The events being watched.</p>
814     </dd>
815 root 1.1 </dl>
816 root 1.35 <p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
817     readable, but only once. Since it is likely line-buffered, you could
818     attempt to read a whole line in the callback:</p>
819     <pre> static void
820     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
821     {
822     ev_io_stop (loop, w);
823     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
824     }
825    
826     ...
827     struct ev_loop *loop = ev_default_init (0);
828     struct ev_io stdin_readable;
829     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
830     ev_io_start (loop, &amp;stdin_readable);
831     ev_loop (loop, 0);
832    
833    
834    
835    
836     </pre>
837 root 1.1
838     </div>
839 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
840 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
841 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
842     given time, and optionally repeating in regular intervals after that.</p>
843     <p>The timers are based on real time, that is, if you register an event that
844 root 1.25 times out after an hour and you reset your system clock to last years
845 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
846 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
847 root 1.1 monotonic clock option helps a lot here).</p>
848 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
849     time. This is usually the right thing as this timestamp refers to the time
850 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
851     you suspect event processing to be delayed and you <i>need</i> to base the timeout
852 root 1.25 on the current time, use something like this to adjust for this:</p>
853 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
854    
855     </pre>
856 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
857     but if multiple timers become ready during the same loop iteration then
858     order of execution is undefined.</p>
859 root 1.1 <dl>
860     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
861     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
862     <dd>
863     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
864     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
865     timer will automatically be configured to trigger again <code>repeat</code> seconds
866     later, again, and again, until stopped manually.</p>
867     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
868     configure a timer to trigger every 10 seconds, then it will trigger at
869     exactly 10 second intervals. If, however, your program cannot keep up with
870 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
871 root 1.1 timer will not fire more than once per event loop iteration.</p>
872     </dd>
873     <dt>ev_timer_again (loop)</dt>
874     <dd>
875     <p>This will act as if the timer timed out and restart it again if it is
876     repeating. The exact semantics are:</p>
877     <p>If the timer is started but nonrepeating, stop it.</p>
878     <p>If the timer is repeating, either start it if necessary (with the repeat
879     value), or reset the running timer to the repeat value.</p>
880     <p>This sounds a bit complicated, but here is a useful and typical
881 root 1.48 example: Imagine you have a tcp connection and you want a so-called
882     idle timeout, that is, you want to be called when there have been,
883     say, 60 seconds of inactivity on the socket. The easiest way to do
884     this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
885     <code>ev_timer_again</code> each time you successfully read or write some data. If
886     you go into an idle state where you do not expect data to travel on the
887     socket, you can stop the timer, and again will automatically restart it if
888     need be.</p>
889     <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
890     and only ever use the <code>repeat</code> value:</p>
891     <pre> ev_timer_init (timer, callback, 0., 5.);
892     ev_timer_again (loop, timer);
893     ...
894     timer-&gt;again = 17.;
895     ev_timer_again (loop, timer);
896     ...
897     timer-&gt;again = 10.;
898     ev_timer_again (loop, timer);
899    
900     </pre>
901     <p>This is more efficient then stopping/starting the timer eahc time you want
902     to modify its timeout value.</p>
903     </dd>
904     <dt>ev_tstamp repeat [read-write]</dt>
905     <dd>
906     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
907     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
908     which is also when any modifications are taken into account.</p>
909 root 1.1 </dd>
910     </dl>
911 root 1.35 <p>Example: create a timer that fires after 60 seconds.</p>
912     <pre> static void
913     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
914     {
915     .. one minute over, w is actually stopped right here
916     }
917    
918     struct ev_timer mytimer;
919     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
920     ev_timer_start (loop, &amp;mytimer);
921    
922     </pre>
923     <p>Example: create a timeout timer that times out after 10 seconds of
924     inactivity.</p>
925     <pre> static void
926     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
927     {
928     .. ten seconds without any activity
929     }
930    
931     struct ev_timer mytimer;
932     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
933     ev_timer_again (&amp;mytimer); /* start timer */
934     ev_loop (loop, 0);
935    
936     // and in some piece of code that gets executed on any &quot;activity&quot;:
937     // reset the timeout to start ticking again at 10 seconds
938     ev_timer_again (&amp;mytimer);
939    
940    
941    
942    
943     </pre>
944 root 1.1
945     </div>
946 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
947 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
948 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
949     (and unfortunately a bit complex).</p>
950 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
951 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
952     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
953 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
954     + 10.</code>) and then reset your system clock to the last year, then it will
955 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
956 root 1.1 roughly 10 seconds later and of course not if you reset your system time
957     again).</p>
958     <p>They can also be used to implement vastly more complex timers, such as
959     triggering an event on eahc midnight, local time.</p>
960 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
961     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
962     during the same loop iteration then order of execution is undefined.</p>
963 root 1.1 <dl>
964     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
965     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
966     <dd>
967     <p>Lots of arguments, lets sort it out... There are basically three modes of
968     operation, and we will explain them from simplest to complex:</p>
969     <p>
970     <dl>
971     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
972     <dd>
973     <p>In this configuration the watcher triggers an event at the wallclock time
974     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
975     that is, if it is to be run at January 1st 2011 then it will run when the
976     system time reaches or surpasses this time.</p>
977     </dd>
978     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
979     <dd>
980     <p>In this mode the watcher will always be scheduled to time out at the next
981     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
982     of any time jumps.</p>
983     <p>This can be used to create timers that do not drift with respect to system
984     time:</p>
985     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
986    
987     </pre>
988     <p>This doesn't mean there will always be 3600 seconds in between triggers,
989     but only that the the callback will be called when the system time shows a
990 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
991 root 1.1 by 3600.</p>
992     <p>Another way to think about it (for the mathematically inclined) is that
993 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
994 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
995     </dd>
996     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
997     <dd>
998     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
999     ignored. Instead, each time the periodic watcher gets scheduled, the
1000     reschedule callback will be called with the watcher as first, and the
1001     current time as second argument.</p>
1002 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1003     ever, or make any event loop modifications</i>. If you need to stop it,
1004     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1005     starting a prepare watcher).</p>
1006 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1007     ev_tstamp now)</code>, e.g.:</p>
1008 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1009     {
1010     return now + 60.;
1011     }
1012    
1013     </pre>
1014     <p>It must return the next time to trigger, based on the passed time value
1015     (that is, the lowest time value larger than to the second argument). It
1016     will usually be called just before the callback will be triggered, but
1017     might be called at other times, too.</p>
1018 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1019 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1020 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1021     triggers on each midnight, local time. To do this, you would calculate the
1022 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1023     you do this is, again, up to you (but it is not trivial, which is the main
1024     reason I omitted it as an example).</p>
1025 root 1.1 </dd>
1026     </dl>
1027     </p>
1028     </dd>
1029     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1030     <dd>
1031     <p>Simply stops and restarts the periodic watcher again. This is only useful
1032     when you changed some parameters or the reschedule callback would return
1033     a different time than the last time it was called (e.g. in a crond like
1034     program when the crontabs have changed).</p>
1035     </dd>
1036 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1037     <dd>
1038     <p>The current interval value. Can be modified any time, but changes only
1039     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1040     called.</p>
1041     </dd>
1042     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1043     <dd>
1044     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1045     switched off. Can be changed any time, but changes only take effect when
1046     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1047     </dd>
1048 root 1.1 </dl>
1049 root 1.35 <p>Example: call a callback every hour, or, more precisely, whenever the
1050     system clock is divisible by 3600. The callback invocation times have
1051     potentially a lot of jittering, but good long-term stability.</p>
1052     <pre> static void
1053     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1054     {
1055     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1056     }
1057    
1058     struct ev_periodic hourly_tick;
1059     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1060     ev_periodic_start (loop, &amp;hourly_tick);
1061    
1062     </pre>
1063     <p>Example: the same as above, but use a reschedule callback to do it:</p>
1064     <pre> #include &lt;math.h&gt;
1065    
1066     static ev_tstamp
1067     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1068     {
1069     return fmod (now, 3600.) + 3600.;
1070     }
1071    
1072     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1073    
1074     </pre>
1075     <p>Example: call a callback every hour, starting now:</p>
1076     <pre> struct ev_periodic hourly_tick;
1077     ev_periodic_init (&amp;hourly_tick, clock_cb,
1078     fmod (ev_now (loop), 3600.), 3600., 0);
1079     ev_periodic_start (loop, &amp;hourly_tick);
1080    
1081    
1082    
1083    
1084     </pre>
1085 root 1.1
1086     </div>
1087 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1088 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1089 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1090     signal one or more times. Even though signals are very asynchronous, libev
1091 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1092 root 1.1 normal event processing, like any other event.</p>
1093 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1094 root 1.1 first watcher gets started will libev actually register a signal watcher
1095     with the kernel (thus it coexists with your own signal handlers as long
1096     as you don't register any with libev). Similarly, when the last signal
1097     watcher for a signal is stopped libev will reset the signal handler to
1098     SIG_DFL (regardless of what it was set to before).</p>
1099     <dl>
1100     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1101     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1102     <dd>
1103     <p>Configures the watcher to trigger on the given signal number (usually one
1104     of the <code>SIGxxx</code> constants).</p>
1105     </dd>
1106 root 1.48 <dt>int signum [read-only]</dt>
1107     <dd>
1108     <p>The signal the watcher watches out for.</p>
1109     </dd>
1110 root 1.1 </dl>
1111    
1112 root 1.36
1113    
1114    
1115    
1116 root 1.1 </div>
1117 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1118     <div id="code_ev_child_code_watch_out_for_pro-2">
1119 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1120     some child status changes (most typically when a child of yours dies).</p>
1121     <dl>
1122     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1123     <dt>ev_child_set (ev_child *, int pid)</dt>
1124     <dd>
1125     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1126     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1127     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1128 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1129     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1130     process causing the status change.</p>
1131 root 1.1 </dd>
1132 root 1.48 <dt>int pid [read-only]</dt>
1133     <dd>
1134     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1135     </dd>
1136     <dt>int rpid [read-write]</dt>
1137     <dd>
1138     <p>The process id that detected a status change.</p>
1139     </dd>
1140     <dt>int rstatus [read-write]</dt>
1141     <dd>
1142     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1143     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1144     </dd>
1145 root 1.1 </dl>
1146 root 1.35 <p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1147     <pre> static void
1148     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1149     {
1150     ev_unloop (loop, EVUNLOOP_ALL);
1151     }
1152    
1153     struct ev_signal signal_watcher;
1154     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1155     ev_signal_start (loop, &amp;sigint_cb);
1156    
1157    
1158    
1159    
1160     </pre>
1161 root 1.1
1162     </div>
1163 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1164     <div id="code_ev_stat_code_did_the_file_attri-2">
1165     <p>This watches a filesystem path for attribute changes. That is, it calls
1166     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1167     compared to the last time, invoking the callback if it did.</p>
1168     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1169     not exist&quot; is a status change like any other. The condition &quot;path does
1170     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1171     otherwise always forced to be at least one) and all the other fields of
1172     the stat buffer having unspecified contents.</p>
1173     <p>Since there is no standard to do this, the portable implementation simply
1174     calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You
1175     can specify a recommended polling interval for this case. If you specify
1176     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1177     unspecified default</i> value will be used (which you can expect to be around
1178     five seconds, although this might change dynamically). Libev will also
1179     impose a minimum interval which is currently around <code>0.1</code>, but thats
1180     usually overkill.</p>
1181     <p>This watcher type is not meant for massive numbers of stat watchers,
1182     as even with OS-supported change notifications, this can be
1183     resource-intensive.</p>
1184     <p>At the time of this writing, no specific OS backends are implemented, but
1185     if demand increases, at least a kqueue and inotify backend will be added.</p>
1186     <dl>
1187     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1188     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1189     <dd>
1190     <p>Configures the watcher to wait for status changes of the given
1191     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1192     be detected and should normally be specified as <code>0</code> to let libev choose
1193     a suitable value. The memory pointed to by <code>path</code> must point to the same
1194     path for as long as the watcher is active.</p>
1195     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1196     relative to the attributes at the time the watcher was started (or the
1197     last change was detected).</p>
1198     </dd>
1199     <dt>ev_stat_stat (ev_stat *)</dt>
1200     <dd>
1201     <p>Updates the stat buffer immediately with new values. If you change the
1202     watched path in your callback, you could call this fucntion to avoid
1203     detecting this change (while introducing a race condition). Can also be
1204     useful simply to find out the new values.</p>
1205     </dd>
1206     <dt>ev_statdata attr [read-only]</dt>
1207     <dd>
1208     <p>The most-recently detected attributes of the file. Although the type is of
1209     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1210     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1211     was some error while <code>stat</code>ing the file.</p>
1212     </dd>
1213     <dt>ev_statdata prev [read-only]</dt>
1214     <dd>
1215     <p>The previous attributes of the file. The callback gets invoked whenever
1216     <code>prev</code> != <code>attr</code>.</p>
1217     </dd>
1218     <dt>ev_tstamp interval [read-only]</dt>
1219     <dd>
1220     <p>The specified interval.</p>
1221     </dd>
1222     <dt>const char *path [read-only]</dt>
1223     <dd>
1224     <p>The filesystem path that is being watched.</p>
1225     </dd>
1226     </dl>
1227     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1228     <pre> static void
1229     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1230     {
1231     /* /etc/passwd changed in some way */
1232     if (w-&gt;attr.st_nlink)
1233     {
1234     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1235     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1236     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1237     }
1238     else
1239     /* you shalt not abuse printf for puts */
1240     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1241     &quot;if this is windows, they already arrived\n&quot;);
1242     }
1243    
1244     ...
1245     ev_stat passwd;
1246    
1247     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1248     ev_stat_start (loop, &amp;passwd);
1249    
1250    
1251    
1252    
1253     </pre>
1254    
1255     </div>
1256 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1257 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1258 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1259     (prepare, check and other idle watchers do not count). That is, as long
1260     as your process is busy handling sockets or timeouts (or even signals,
1261     imagine) it will not be triggered. But when your process is idle all idle
1262     watchers are being called again and again, once per event loop iteration -
1263     until stopped, that is, or your process receives more events and becomes
1264     busy.</p>
1265 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1266     active, the process will not block when waiting for new events.</p>
1267     <p>Apart from keeping your process non-blocking (which is a useful
1268     effect on its own sometimes), idle watchers are a good place to do
1269     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1270     event loop has handled all outstanding events.</p>
1271     <dl>
1272     <dt>ev_idle_init (ev_signal *, callback)</dt>
1273     <dd>
1274     <p>Initialises and configures the idle watcher - it has no parameters of any
1275     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1276     believe me.</p>
1277     </dd>
1278     </dl>
1279 root 1.35 <p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
1280     callback, free it. Alos, use no error checking, as usual.</p>
1281     <pre> static void
1282     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1283     {
1284     free (w);
1285     // now do something you wanted to do when the program has
1286     // no longer asnything immediate to do.
1287     }
1288    
1289     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1290     ev_idle_init (idle_watcher, idle_cb);
1291     ev_idle_start (loop, idle_cb);
1292    
1293    
1294    
1295    
1296     </pre>
1297 root 1.1
1298     </div>
1299 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1300 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1301 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1302 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1303 root 1.14 afterwards.</p>
1304 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1305     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1306     watchers. Other loops than the current one are fine, however. The
1307     rationale behind this is that you do not need to check for recursion in
1308     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1309     <code>ev_check</code> so if you have one watcher of each kind they will always be
1310     called in pairs bracketing the blocking call.</p>
1311 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1312     their use is somewhat advanced. This could be used, for example, to track
1313     variable changes, implement your own watchers, integrate net-snmp or a
1314 root 1.46 coroutine library and lots more. They are also occasionally useful if
1315     you cache some data and want to flush it before blocking (for example,
1316     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1317     watcher).</p>
1318 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1319 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1320     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1321     provide just this functionality). Then, in the check watcher you check for
1322     any events that occured (by checking the pending status of all watchers
1323     and stopping them) and call back into the library. The I/O and timer
1324 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1325 root 1.14 because you never know, you know?).</p>
1326     <p>As another example, the Perl Coro module uses these hooks to integrate
1327 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1328     during each prepare and only letting the process block if no coroutines
1329 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1330     with priority higher than or equal to the event loop and one coroutine
1331     of lower priority, but only once, using idle watchers to keep the event
1332     loop from blocking if lower-priority coroutines are active, thus mapping
1333     low-priority coroutines to idle/background tasks).</p>
1334 root 1.1 <dl>
1335     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1336     <dt>ev_check_init (ev_check *, callback)</dt>
1337     <dd>
1338     <p>Initialises and configures the prepare or check watcher - they have no
1339     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1340 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1341 root 1.1 </dd>
1342     </dl>
1343 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1344     and a timeout watcher in a prepare handler, as required by libadns, and
1345     in a check watcher, destroy them and call into libadns. What follows is
1346     pseudo-code only of course:</p>
1347     <pre> static ev_io iow [nfd];
1348     static ev_timer tw;
1349    
1350     static void
1351     io_cb (ev_loop *loop, ev_io *w, int revents)
1352     {
1353     // set the relevant poll flags
1354 root 1.47 // could also call adns_processreadable etc. here
1355 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1356     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1357     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1358     }
1359    
1360     // create io watchers for each fd and a timer before blocking
1361     static void
1362     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1363     {
1364     int timeout = 3600000;truct pollfd fds [nfd];
1365     // actual code will need to loop here and realloc etc.
1366     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1367    
1368     /* the callback is illegal, but won't be called as we stop during check */
1369     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1370     ev_timer_start (loop, &amp;tw);
1371    
1372     // create on ev_io per pollfd
1373     for (int i = 0; i &lt; nfd; ++i)
1374     {
1375     ev_io_init (iow + i, io_cb, fds [i].fd,
1376     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1377     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1378    
1379     fds [i].revents = 0;
1380     iow [i].data = fds + i;
1381     ev_io_start (loop, iow + i);
1382     }
1383     }
1384    
1385     // stop all watchers after blocking
1386     static void
1387     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1388     {
1389     ev_timer_stop (loop, &amp;tw);
1390    
1391     for (int i = 0; i &lt; nfd; ++i)
1392     ev_io_stop (loop, iow + i);
1393    
1394     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1395     }
1396 root 1.35
1397    
1398    
1399    
1400 root 1.46 </pre>
1401 root 1.1
1402     </div>
1403 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1404 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1405     <p>This is a rather advanced watcher type that lets you embed one event loop
1406 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1407     loop, other types of watchers might be handled in a delayed or incorrect
1408     fashion and must not be used).</p>
1409 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1410     prioritise I/O.</p>
1411     <p>As an example for a bug workaround, the kqueue backend might only support
1412     sockets on some platform, so it is unusable as generic backend, but you
1413     still want to make use of it because you have many sockets and it scales
1414     so nicely. In this case, you would create a kqueue-based loop and embed it
1415     into your default loop (which might use e.g. poll). Overall operation will
1416     be a bit slower because first libev has to poll and then call kevent, but
1417     at least you can use both at what they are best.</p>
1418     <p>As for prioritising I/O: rarely you have the case where some fds have
1419     to be watched and handled very quickly (with low latency), and even
1420     priorities and idle watchers might have too much overhead. In this case
1421     you would put all the high priority stuff in one loop and all the rest in
1422     a second one, and embed the second one in the first.</p>
1423 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1424     there might be events pending in the embedded loop. The callback must then
1425     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1426     their callbacks (you could also start an idle watcher to give the embedded
1427     loop strictly lower priority for example). You can also set the callback
1428     to <code>0</code>, in which case the embed watcher will automatically execute the
1429     embedded loop sweep.</p>
1430 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1431     callback will be invoked whenever some events have been handled. You can
1432     set the callback to <code>0</code> to avoid having to specify one if you are not
1433     interested in that.</p>
1434     <p>Also, there have not currently been made special provisions for forking:
1435     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1436     but you will also have to stop and restart any <code>ev_embed</code> watchers
1437     yourself.</p>
1438     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1439     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1440     portable one.</p>
1441     <p>So when you want to use this feature you will always have to be prepared
1442     that you cannot get an embeddable loop. The recommended way to get around
1443     this is to have a separate variables for your embeddable loop, try to
1444     create it, and if that fails, use the normal loop for everything:</p>
1445     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1446     struct ev_loop *loop_lo = 0;
1447     struct ev_embed embed;
1448    
1449     // see if there is a chance of getting one that works
1450     // (remember that a flags value of 0 means autodetection)
1451     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1452     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1453     : 0;
1454    
1455     // if we got one, then embed it, otherwise default to loop_hi
1456     if (loop_lo)
1457     {
1458     ev_embed_init (&amp;embed, 0, loop_lo);
1459     ev_embed_start (loop_hi, &amp;embed);
1460     }
1461     else
1462     loop_lo = loop_hi;
1463    
1464     </pre>
1465     <dl>
1466 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1467     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1468 root 1.36 <dd>
1469 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1470     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1471     invoked automatically, otherwise it is the responsibility of the callback
1472     to invoke it (it will continue to be called until the sweep has been done,
1473     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1474     </dd>
1475     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1476     <dd>
1477     <p>Make a single, non-blocking sweep over the embedded loop. This works
1478     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1479     apropriate way for embedded loops.</p>
1480 root 1.36 </dd>
1481 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1482     <dd>
1483     <p>The embedded event loop.</p>
1484     </dd>
1485 root 1.36 </dl>
1486    
1487    
1488    
1489    
1490    
1491     </div>
1492 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1493     <div id="code_ev_fork_code_the_audacity_to_re-2">
1494     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1495     whoever is a good citizen cared to tell libev about it by calling
1496     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1497     event loop blocks next and before <code>ev_check</code> watchers are being called,
1498     and only in the child after the fork. If whoever good citizen calling
1499     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1500     handlers will be invoked, too, of course.</p>
1501     <dl>
1502     <dt>ev_fork_init (ev_signal *, callback)</dt>
1503     <dd>
1504     <p>Initialises and configures the fork watcher - it has no parameters of any
1505     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1506     believe me.</p>
1507     </dd>
1508     </dl>
1509    
1510    
1511    
1512    
1513    
1514     </div>
1515 root 1.1 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
1516     <div id="OTHER_FUNCTIONS_CONTENT">
1517 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1518 root 1.1 <dl>
1519     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1520     <dd>
1521     <p>This function combines a simple timer and an I/O watcher, calls your
1522     callback on whichever event happens first and automatically stop both
1523     watchers. This is useful if you want to wait for a single event on an fd
1524 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1525 root 1.1 more watchers yourself.</p>
1526 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1527     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1528     <code>events</code> set will be craeted and started.</p>
1529 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1530 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1531     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1532     dubious value.</p>
1533     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1534 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1535 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1536     value passed to <code>ev_once</code>:</p>
1537 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1538     {
1539     if (revents &amp; EV_TIMEOUT)
1540 root 1.14 /* doh, nothing entered */;
1541 root 1.1 else if (revents &amp; EV_READ)
1542 root 1.14 /* stdin might have data for us, joy! */;
1543 root 1.1 }
1544    
1545 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1546 root 1.1
1547     </pre>
1548     </dd>
1549 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1550 root 1.1 <dd>
1551     <p>Feeds the given event set into the event loop, as if the specified event
1552 root 1.14 had happened for the specified watcher (which must be a pointer to an
1553     initialised but not necessarily started event watcher).</p>
1554 root 1.1 </dd>
1555 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1556 root 1.1 <dd>
1557 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1558     the given events it.</p>
1559 root 1.1 </dd>
1560 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1561 root 1.1 <dd>
1562 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1563     loop!).</p>
1564 root 1.1 </dd>
1565     </dl>
1566    
1567 root 1.35
1568    
1569    
1570    
1571 root 1.1 </div>
1572 root 1.23 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
1573     <div id="LIBEVENT_EMULATION_CONTENT">
1574 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1575     emulate the internals of libevent, so here are some usage hints:</p>
1576     <dl>
1577     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1578     <dt>* The following members are fully supported: ev_base, ev_callback,
1579     ev_arg, ev_fd, ev_res, ev_events.</dt>
1580     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1581     maintained by libev, it does not work exactly the same way as in libevent (consider
1582     it a private API).</dt>
1583     <dt>* Priorities are not currently supported. Initialising priorities
1584     will fail and all watchers will have the same priority, even though there
1585     is an ev_pri field.</dt>
1586     <dt>* Other members are not supported.</dt>
1587     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1588     to use the libev header file and library.</dt>
1589     </dl>
1590 root 1.23
1591     </div>
1592     <h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
1593     <div id="C_SUPPORT_CONTENT">
1594 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1595     you to use some convinience methods to start/stop watchers and also change
1596     the callback model to a model using method callbacks on objects.</p>
1597     <p>To use it,</p>
1598     <pre> #include &lt;ev++.h&gt;
1599    
1600     </pre>
1601     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1602     and puts all of its definitions (many of them macros) into the global
1603     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1604     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1605     <code>EV_MULTIPLICITY</code>.</p>
1606     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1607     <dl>
1608     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1609     <dd>
1610     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1611     macros from <cite>ev.h</cite>.</p>
1612     </dd>
1613     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1614     <dd>
1615     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1616     </dd>
1617     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1618     <dd>
1619     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1620     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1621     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1622     defines by many implementations.</p>
1623     <p>All of those classes have these methods:</p>
1624     <p>
1625     <dl>
1626     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1627     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1628     <dt>ev::TYPE::~TYPE</dt>
1629     <dd>
1630     <p>The constructor takes a pointer to an object and a method pointer to
1631     the event handler callback to call in this class. The constructor calls
1632     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1633     before starting it. If you do not specify a loop then the constructor
1634     automatically associates the default loop with this watcher.</p>
1635     <p>The destructor automatically stops the watcher if it is active.</p>
1636     </dd>
1637     <dt>w-&gt;set (struct ev_loop *)</dt>
1638     <dd>
1639     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1640     do this when the watcher is inactive (and not pending either).</p>
1641     </dd>
1642     <dt>w-&gt;set ([args])</dt>
1643     <dd>
1644     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1645     called at least once. Unlike the C counterpart, an active watcher gets
1646     automatically stopped and restarted.</p>
1647     </dd>
1648     <dt>w-&gt;start ()</dt>
1649     <dd>
1650     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1651     constructor already takes the loop.</p>
1652     </dd>
1653     <dt>w-&gt;stop ()</dt>
1654     <dd>
1655     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1656     </dd>
1657     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1658     <dd>
1659     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1660     <code>ev_TYPE_again</code> function.</p>
1661     </dd>
1662     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1663     <dd>
1664     <p>Invokes <code>ev_embed_sweep</code>.</p>
1665     </dd>
1666 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1667     <dd>
1668     <p>Invokes <code>ev_stat_stat</code>.</p>
1669     </dd>
1670 root 1.39 </dl>
1671     </p>
1672     </dd>
1673     </dl>
1674     <p>Example: Define a class with an IO and idle watcher, start one of them in
1675     the constructor.</p>
1676     <pre> class myclass
1677     {
1678     ev_io io; void io_cb (ev::io &amp;w, int revents);
1679     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1680    
1681     myclass ();
1682     }
1683    
1684     myclass::myclass (int fd)
1685     : io (this, &amp;myclass::io_cb),
1686     idle (this, &amp;myclass::idle_cb)
1687     {
1688     io.start (fd, ev::READ);
1689     }
1690    
1691 root 1.50
1692    
1693    
1694     </pre>
1695    
1696     </div>
1697     <h1 id="MACRO_MAGIC">MACRO MAGIC</h1><p><a href="#TOP" class="toplink">Top</a></p>
1698     <div id="MACRO_MAGIC_CONTENT">
1699     <p>Libev can be compiled with a variety of options, the most fundemantal is
1700     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1701     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1702     <p>To make it easier to write programs that cope with either variant, the
1703     following macros are defined:</p>
1704     <dl>
1705     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1706     <dd>
1707     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1708     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1709     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1710     <pre> ev_unref (EV_A);
1711     ev_timer_add (EV_A_ watcher);
1712     ev_loop (EV_A_ 0);
1713    
1714     </pre>
1715     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1716     which is often provided by the following macro.</p>
1717     </dd>
1718     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1719     <dd>
1720     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1721     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1722     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1723     <pre> // this is how ev_unref is being declared
1724     static void ev_unref (EV_P);
1725    
1726     // this is how you can declare your typical callback
1727     static void cb (EV_P_ ev_timer *w, int revents)
1728    
1729     </pre>
1730     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1731     suitable for use with <code>EV_A</code>.</p>
1732     </dd>
1733     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1734     <dd>
1735     <p>Similar to the other two macros, this gives you the value of the default
1736     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1737     </dd>
1738     </dl>
1739     <p>Example: Declare and initialise a check watcher, working regardless of
1740     wether multiple loops are supported or not.</p>
1741     <pre> static void
1742     check_cb (EV_P_ ev_timer *w, int revents)
1743     {
1744     ev_check_stop (EV_A_ w);
1745     }
1746    
1747     ev_check check;
1748     ev_check_init (&amp;check, check_cb);
1749     ev_check_start (EV_DEFAULT_ &amp;check);
1750     ev_loop (EV_DEFAULT_ 0);
1751    
1752    
1753    
1754    
1755 root 1.39 </pre>
1756 root 1.23
1757     </div>
1758 root 1.40 <h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1759     <div id="EMBEDDING_CONTENT">
1760     <p>Libev can (and often is) directly embedded into host
1761     applications. Examples of applications that embed it include the Deliantra
1762     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1763     and rxvt-unicode.</p>
1764     <p>The goal is to enable you to just copy the neecssary files into your
1765     source directory without having to change even a single line in them, so
1766     you can easily upgrade by simply copying (or having a checked-out copy of
1767     libev somewhere in your source tree).</p>
1768    
1769     </div>
1770     <h2 id="FILESETS">FILESETS</h2>
1771     <div id="FILESETS_CONTENT">
1772     <p>Depending on what features you need you need to include one or more sets of files
1773     in your app.</p>
1774    
1775     </div>
1776     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1777     <div id="CORE_EVENT_LOOP_CONTENT">
1778     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1779     configuration (no autoconf):</p>
1780     <pre> #define EV_STANDALONE 1
1781     #include &quot;ev.c&quot;
1782    
1783     </pre>
1784     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1785     single C source file only to provide the function implementations. To use
1786     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1787     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1788     where you can put other configuration options):</p>
1789     <pre> #define EV_STANDALONE 1
1790     #include &quot;ev.h&quot;
1791    
1792     </pre>
1793     <p>Both header files and implementation files can be compiled with a C++
1794     compiler (at least, thats a stated goal, and breakage will be treated
1795     as a bug).</p>
1796     <p>You need the following files in your source tree, or in a directory
1797     in your include path (e.g. in libev/ when using -Ilibev):</p>
1798     <pre> ev.h
1799     ev.c
1800     ev_vars.h
1801     ev_wrap.h
1802    
1803     ev_win32.c required on win32 platforms only
1804    
1805 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1806 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1807     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1808     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1809     ev_port.c only when the solaris port backend is enabled (disabled by default)
1810    
1811     </pre>
1812     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1813 root 1.44 to compile this single file.</p>
1814 root 1.40
1815     </div>
1816     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1817     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1818     <p>To include the libevent compatibility API, also include:</p>
1819     <pre> #include &quot;event.c&quot;
1820    
1821     </pre>
1822     <p>in the file including <cite>ev.c</cite>, and:</p>
1823     <pre> #include &quot;event.h&quot;
1824    
1825     </pre>
1826     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1827     <p>You need the following additional files for this:</p>
1828     <pre> event.h
1829     event.c
1830    
1831     </pre>
1832    
1833     </div>
1834     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1835     <div id="AUTOCONF_SUPPORT_CONTENT">
1836     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1837     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1838 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1839     include <cite>config.h</cite> and configure itself accordingly.</p>
1840 root 1.40 <p>For this of course you need the m4 file:</p>
1841     <pre> libev.m4
1842    
1843     </pre>
1844    
1845     </div>
1846     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1847     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1848     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1849     before including any of its files. The default is not to build for multiplicity
1850     and only include the select backend.</p>
1851     <dl>
1852     <dt>EV_STANDALONE</dt>
1853     <dd>
1854     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1855     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1856     implementations for some libevent functions (such as logging, which is not
1857     supported). It will also not define any of the structs usually found in
1858     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1859     </dd>
1860     <dt>EV_USE_MONOTONIC</dt>
1861     <dd>
1862     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1863     monotonic clock option at both compiletime and runtime. Otherwise no use
1864     of the monotonic clock option will be attempted. If you enable this, you
1865     usually have to link against librt or something similar. Enabling it when
1866     the functionality isn't available is safe, though, althoguh you have
1867     to make sure you link against any libraries where the <code>clock_gettime</code>
1868     function is hiding in (often <cite>-lrt</cite>).</p>
1869     </dd>
1870     <dt>EV_USE_REALTIME</dt>
1871     <dd>
1872     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1873     realtime clock option at compiletime (and assume its availability at
1874     runtime if successful). Otherwise no use of the realtime clock option will
1875     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1876     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1877     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1878     </dd>
1879     <dt>EV_USE_SELECT</dt>
1880     <dd>
1881     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1882     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1883     other method takes over, select will be it. Otherwise the select backend
1884     will not be compiled in.</p>
1885     </dd>
1886     <dt>EV_SELECT_USE_FD_SET</dt>
1887     <dd>
1888     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1889     structure. This is useful if libev doesn't compile due to a missing
1890     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1891     exotic systems. This usually limits the range of file descriptors to some
1892     low limit such as 1024 or might have other limitations (winsocket only
1893     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1894     influence the size of the <code>fd_set</code> used.</p>
1895     </dd>
1896     <dt>EV_SELECT_IS_WINSOCKET</dt>
1897     <dd>
1898     <p>When defined to <code>1</code>, the select backend will assume that
1899     select/socket/connect etc. don't understand file descriptors but
1900     wants osf handles on win32 (this is the case when the select to
1901     be used is the winsock select). This means that it will call
1902     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1903     it is assumed that all these functions actually work on fds, even
1904     on win32. Should not be defined on non-win32 platforms.</p>
1905     </dd>
1906     <dt>EV_USE_POLL</dt>
1907     <dd>
1908     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1909     backend. Otherwise it will be enabled on non-win32 platforms. It
1910     takes precedence over select.</p>
1911     </dd>
1912     <dt>EV_USE_EPOLL</dt>
1913     <dd>
1914     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1915     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1916     otherwise another method will be used as fallback. This is the
1917     preferred backend for GNU/Linux systems.</p>
1918     </dd>
1919     <dt>EV_USE_KQUEUE</dt>
1920     <dd>
1921     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1922     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1923     otherwise another method will be used as fallback. This is the preferred
1924     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1925     supports some types of fds correctly (the only platform we found that
1926     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1927     not be used unless explicitly requested. The best way to use it is to find
1928 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1929 root 1.40 kqueue loop.</p>
1930     </dd>
1931     <dt>EV_USE_PORT</dt>
1932     <dd>
1933     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1934     10 port style backend. Its availability will be detected at runtime,
1935     otherwise another method will be used as fallback. This is the preferred
1936     backend for Solaris 10 systems.</p>
1937     </dd>
1938     <dt>EV_USE_DEVPOLL</dt>
1939     <dd>
1940     <p>reserved for future expansion, works like the USE symbols above.</p>
1941     </dd>
1942     <dt>EV_H</dt>
1943     <dd>
1944     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1945     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1946     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1947     </dd>
1948     <dt>EV_CONFIG_H</dt>
1949     <dd>
1950     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
1951     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
1952     <code>EV_H</code>, above.</p>
1953     </dd>
1954     <dt>EV_EVENT_H</dt>
1955     <dd>
1956     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
1957     of how the <cite>event.h</cite> header can be found.</p>
1958     </dd>
1959     <dt>EV_PROTOTYPES</dt>
1960     <dd>
1961     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
1962     prototypes, but still define all the structs and other symbols. This is
1963     occasionally useful if you want to provide your own wrapper functions
1964     around libev functions.</p>
1965     </dd>
1966     <dt>EV_MULTIPLICITY</dt>
1967     <dd>
1968     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
1969     will have the <code>struct ev_loop *</code> as first argument, and you can create
1970     additional independent event loops. Otherwise there will be no support
1971     for multiple event loops and there is no first event loop pointer
1972     argument. Instead, all functions act on the single default loop.</p>
1973     </dd>
1974 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
1975     <dd>
1976     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
1977     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
1978     code.</p>
1979     </dd>
1980     <dt>EV_EMBED_ENABLE</dt>
1981     <dd>
1982     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
1983     defined to be <code>0</code>, then they are not.</p>
1984     </dd>
1985     <dt>EV_STAT_ENABLE</dt>
1986     <dd>
1987     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
1988     defined to be <code>0</code>, then they are not.</p>
1989     </dd>
1990 root 1.50 <dt>EV_FORK_ENABLE</dt>
1991     <dd>
1992     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
1993     defined to be <code>0</code>, then they are not.</p>
1994     </dd>
1995 root 1.48 <dt>EV_MINIMAL</dt>
1996 root 1.40 <dd>
1997 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
1998     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
1999     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2000 root 1.40 </dd>
2001 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2002     <dd>
2003     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2004     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2005     than enough. If you need to manage thousands of children you might want to
2006     increase this value.</p>
2007     </dd>
2008 root 1.40 <dt>EV_COMMON</dt>
2009     <dd>
2010     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2011     this macro to a something else you can include more and other types of
2012     members. You have to define it each time you include one of the files,
2013     though, and it must be identical each time.</p>
2014     <p>For example, the perl EV module uses something like this:</p>
2015     <pre> #define EV_COMMON \
2016     SV *self; /* contains this struct */ \
2017     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2018    
2019     </pre>
2020     </dd>
2021 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2022     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2023     <dt>ev_set_cb (ev, cb)</dt>
2024 root 1.40 <dd>
2025     <p>Can be used to change the callback member declaration in each watcher,
2026     and the way callbacks are invoked and set. Must expand to a struct member
2027     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2028     their default definitions. One possible use for overriding these is to
2029 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2030     method calls instead of plain function calls in C++.</p>
2031 root 1.40
2032     </div>
2033     <h2 id="EXAMPLES">EXAMPLES</h2>
2034     <div id="EXAMPLES_CONTENT">
2035     <p>For a real-world example of a program the includes libev
2036     verbatim, you can have a look at the EV perl module
2037     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2038     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2039     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2040     will be compiled. It is pretty complex because it provides its own header
2041     file.</p>
2042     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2043     that everybody includes and which overrides some autoconf choices:</p>
2044 root 1.41 <pre> #define EV_USE_POLL 0
2045     #define EV_MULTIPLICITY 0
2046     #define EV_PERIODICS 0
2047     #define EV_CONFIG_H &lt;config.h&gt;
2048 root 1.40
2049 root 1.41 #include &quot;ev++.h&quot;
2050 root 1.40
2051     </pre>
2052     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2053 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2054     #include &quot;ev.c&quot;
2055 root 1.40
2056 root 1.47
2057    
2058    
2059 root 1.40 </pre>
2060    
2061     </div>
2062 root 1.47 <h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p>
2063     <div id="COMPLEXITIES_CONTENT">
2064     <p>In this section the complexities of (many of) the algorithms used inside
2065     libev will be explained. For complexity discussions about backends see the
2066     documentation for <code>ev_default_init</code>.</p>
2067     <p>
2068     <dl>
2069     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2070     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2071     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2072     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2073     <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
2074     <dt>Finding the next timer per loop iteration: O(1)</dt>
2075     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2076     <dt>Activating one watcher: O(1)</dt>
2077     </dl>
2078     </p>
2079    
2080    
2081    
2082    
2083    
2084     </div>
2085 root 1.1 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
2086     <div id="AUTHOR_CONTENT">
2087 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2088 root 1.1
2089     </div>
2090     </div></body>
2091     </html>