ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.53
Committed: Tue Nov 27 20:15:02 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.52: +42 -2 lines
Log Message:
- ein bild sagt mehr als tausend worte
- the last entry was bollocks, timers did work

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.53 <meta name="created" content="Tue Nov 27 21:14:27 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19     <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
20     <li><a href="#FEATURES">FEATURES</a></li>
21     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
22 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
23     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
24 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
25     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
26 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
27 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
28 root 1.1 </ul>
29     </li>
30     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
31 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
32     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
33     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
34     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
35     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
36 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
37 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
38     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
39     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
40 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
41 root 1.1 </ul>
42     </li>
43     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
44 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
45     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
46 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
47 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
48     <ul><li><a href="#FILESETS">FILESETS</a>
49     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
50     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
51     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
52     </ul>
53     </li>
54     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
55     <li><a href="#EXAMPLES">EXAMPLES</a></li>
56     </ul>
57     </li>
58 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
59 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
60     </li>
61     </ul><hr />
62     <!-- INDEX END -->
63    
64     <h1 id="NAME">NAME</h1><p><a href="#TOP" class="toplink">Top</a></p>
65     <div id="NAME_CONTENT">
66     <p>libev - a high performance full-featured event loop written in C</p>
67    
68     </div>
69     <h1 id="SYNOPSIS">SYNOPSIS</h1><p><a href="#TOP" class="toplink">Top</a></p>
70     <div id="SYNOPSIS_CONTENT">
71 root 1.53 <pre> /* this is the only header you need */
72     #include &lt;ev.h&gt;
73    
74     /* what follows is a fully working example program */
75     ev_io stdin_watcher;
76     ev_timer timeout_watcher;
77    
78     /* called when data readable on stdin */
79     static void
80     stdin_cb (EV_P_ struct ev_io *w, int revents)
81     {
82     /* puts (&quot;stdin ready&quot;); */
83     ev_io_stop (EV_A_ w); /* just a syntax example */
84     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
85     }
86    
87     static void
88     timeout_cb (EV_P_ struct ev_timer *w, int revents)
89     {
90     /* puts (&quot;timeout&quot;); */
91     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
92     }
93    
94     int
95     main (void)
96     {
97     struct ev_loop *loop = ev_default_loop (0);
98    
99     /* initialise an io watcher, then start it */
100     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
101     ev_io_start (loop, &amp;stdin_watcher);
102    
103     /* simple non-repeating 5.5 second timeout */
104     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
105     ev_timer_start (loop, &amp;timeout_watcher);
106    
107     /* loop till timeout or data ready */
108     ev_loop (loop, 0);
109    
110     return 0;
111     }
112 root 1.1
113     </pre>
114    
115     </div>
116     <h1 id="DESCRIPTION">DESCRIPTION</h1><p><a href="#TOP" class="toplink">Top</a></p>
117     <div id="DESCRIPTION_CONTENT">
118     <p>Libev is an event loop: you register interest in certain events (such as a
119     file descriptor being readable or a timeout occuring), and it will manage
120 root 1.4 these event sources and provide your program with events.</p>
121 root 1.1 <p>To do this, it must take more or less complete control over your process
122     (or thread) by executing the <i>event loop</i> handler, and will then
123     communicate events via a callback mechanism.</p>
124     <p>You register interest in certain events by registering so-called <i>event
125     watchers</i>, which are relatively small C structures you initialise with the
126     details of the event, and then hand it over to libev by <i>starting</i> the
127     watcher.</p>
128    
129     </div>
130     <h1 id="FEATURES">FEATURES</h1><p><a href="#TOP" class="toplink">Top</a></p>
131     <div id="FEATURES_CONTENT">
132     <p>Libev supports select, poll, the linux-specific epoll and the bsd-specific
133     kqueue mechanisms for file descriptor events, relative timers, absolute
134     timers with customised rescheduling, signal events, process status change
135     events (related to SIGCHLD), and event watchers dealing with the event
136 root 1.5 loop mechanism itself (idle, prepare and check watchers). It also is quite
137 root 1.7 fast (see this <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing
138     it to libevent for example).</p>
139 root 1.1
140     </div>
141     <h1 id="CONVENTIONS">CONVENTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
142     <div id="CONVENTIONS_CONTENT">
143     <p>Libev is very configurable. In this manual the default configuration
144     will be described, which supports multiple event loops. For more info
145 root 1.7 about various configuration options please have a look at the file
146 root 1.1 <cite>README.embed</cite> in the libev distribution. If libev was configured without
147     support for multiple event loops, then all functions taking an initial
148     argument of name <code>loop</code> (which is always of type <code>struct ev_loop *</code>)
149     will not have this argument.</p>
150    
151     </div>
152 root 1.18 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
153     <div id="TIME_REPRESENTATION_CONTENT">
154 root 1.2 <p>Libev represents time as a single floating point number, representing the
155     (fractional) number of seconds since the (POSIX) epoch (somewhere near
156     the beginning of 1970, details are complicated, don't ask). This type is
157 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
158 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
159     it, you should treat it as such.</p>
160    
161 root 1.18 </div>
162     <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
163     <div id="GLOBAL_FUNCTIONS_CONTENT">
164 root 1.21 <p>These functions can be called anytime, even before initialising the
165     library in any way.</p>
166 root 1.1 <dl>
167     <dt>ev_tstamp ev_time ()</dt>
168     <dd>
169 root 1.28 <p>Returns the current time as libev would use it. Please note that the
170     <code>ev_now</code> function is usually faster and also often returns the timestamp
171     you actually want to know.</p>
172 root 1.1 </dd>
173     <dt>int ev_version_major ()</dt>
174     <dt>int ev_version_minor ()</dt>
175     <dd>
176     <p>You can find out the major and minor version numbers of the library
177     you linked against by calling the functions <code>ev_version_major</code> and
178     <code>ev_version_minor</code>. If you want, you can compare against the global
179     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
180     version of the library your program was compiled against.</p>
181 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
182 root 1.1 as this indicates an incompatible change. Minor versions are usually
183     compatible to older versions, so a larger minor version alone is usually
184     not a problem.</p>
185 root 1.35 <p>Example: make sure we haven't accidentally been linked against the wrong
186     version:</p>
187     <pre> assert ((&quot;libev version mismatch&quot;,
188     ev_version_major () == EV_VERSION_MAJOR
189     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
190    
191     </pre>
192 root 1.1 </dd>
193 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
194     <dd>
195     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
196     value) compiled into this binary of libev (independent of their
197     availability on the system you are running on). See <code>ev_default_loop</code> for
198     a description of the set values.</p>
199 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
200     a must have and can we have a torrent of it please!!!11</p>
201     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
202     ev_supported_backends () &amp; EVBACKEND_EPOLL));
203    
204     </pre>
205 root 1.32 </dd>
206     <dt>unsigned int ev_recommended_backends ()</dt>
207     <dd>
208     <p>Return the set of all backends compiled into this binary of libev and also
209     recommended for this platform. This set is often smaller than the one
210     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
211     most BSDs and will not be autodetected unless you explicitly request it
212     (assuming you know what you are doing). This is the set of backends that
213 root 1.34 libev will probe for if you specify no backends explicitly.</p>
214 root 1.32 </dd>
215 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
216     <dd>
217     <p>Returns the set of backends that are embeddable in other event loops. This
218     is the theoretical, all-platform, value. To find which backends
219     might be supported on the current system, you would need to look at
220     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
221     recommended ones.</p>
222     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
223     </dd>
224 root 1.52 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt>
225 root 1.1 <dd>
226 root 1.52 <p>Sets the allocation function to use (the prototype and semantics are
227     identical to the realloc C function). It is used to allocate and free
228     memory (no surprises here). If it returns zero when memory needs to be
229     allocated, the library might abort or take some potentially destructive
230     action. The default is your system realloc function.</p>
231 root 1.1 <p>You could override this function in high-availability programs to, say,
232     free some memory if it cannot allocate memory, to use a special allocator,
233     or even to sleep a while and retry until some memory is available.</p>
234 root 1.35 <p>Example: replace the libev allocator with one that waits a bit and then
235     retries: better than mine).</p>
236     <pre> static void *
237 root 1.52 persistent_realloc (void *ptr, size_t size)
238 root 1.35 {
239     for (;;)
240     {
241     void *newptr = realloc (ptr, size);
242    
243     if (newptr)
244     return newptr;
245    
246     sleep (60);
247     }
248     }
249    
250     ...
251     ev_set_allocator (persistent_realloc);
252    
253     </pre>
254 root 1.1 </dd>
255     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
256     <dd>
257     <p>Set the callback function to call on a retryable syscall error (such
258     as failed select, poll, epoll_wait). The message is a printable string
259     indicating the system call or subsystem causing the problem. If this
260     callback is set, then libev will expect it to remedy the sitution, no
261 root 1.7 matter what, when it returns. That is, libev will generally retry the
262 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
263     (such as abort).</p>
264 root 1.35 <p>Example: do the same thing as libev does internally:</p>
265     <pre> static void
266     fatal_error (const char *msg)
267     {
268     perror (msg);
269     abort ();
270     }
271    
272     ...
273     ev_set_syserr_cb (fatal_error);
274    
275     </pre>
276 root 1.1 </dd>
277     </dl>
278    
279     </div>
280     <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1><p><a href="#TOP" class="toplink">Top</a></p>
281     <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
282     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
283     types of such loops, the <i>default</i> loop, which supports signals and child
284     events, and dynamically created loops which do not.</p>
285     <p>If you use threads, a common model is to run the default event loop
286 root 1.18 in your main thread (or in a separate thread) and for each thread you
287 root 1.7 create, you also create another event loop. Libev itself does no locking
288     whatsoever, so if you mix calls to the same event loop in different
289     threads, make sure you lock (this is usually a bad idea, though, even if
290 root 1.9 done correctly, because it's hideous and inefficient).</p>
291 root 1.1 <dl>
292     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
293     <dd>
294     <p>This will initialise the default event loop if it hasn't been initialised
295     yet and return it. If the default loop could not be initialised, returns
296     false. If it already was initialised it simply returns it (and ignores the
297 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
298 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
299     function.</p>
300     <p>The flags argument can be used to specify special behaviour or specific
301 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
302     <p>The following flags are supported:</p>
303 root 1.1 <p>
304     <dl>
305 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
306 root 1.1 <dd>
307 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
308 root 1.1 thing, believe me).</p>
309     </dd>
310 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
311 root 1.1 <dd>
312 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
313     or setgid) then libev will <i>not</i> look at the environment variable
314     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
315     override the flags completely if it is found in the environment. This is
316     useful to try out specific backends to test their performance, or to work
317     around bugs.</p>
318 root 1.1 </dd>
319 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
320 root 1.29 <dd>
321     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
322     libev tries to roll its own fd_set with no limits on the number of fds,
323     but if that fails, expect a fairly low limit on the number of fds when
324     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
325     the fastest backend for a low number of fds.</p>
326     </dd>
327 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
328 root 1.29 <dd>
329     <p>And this is your standard poll(2) backend. It's more complicated than
330     select, but handles sparse fds better and has no artificial limit on the
331     number of fds you can use (except it will slow down considerably with a
332     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
333     </dd>
334 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
335 root 1.29 <dd>
336     <p>For few fds, this backend is a bit little slower than poll and select,
337     but it scales phenomenally better. While poll and select usually scale like
338     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
339     either O(1) or O(active_fds).</p>
340     <p>While stopping and starting an I/O watcher in the same iteration will
341     result in some caching, there is still a syscall per such incident
342     (because the fd could point to a different file description now), so its
343     best to avoid that. Also, dup()ed file descriptors might not work very
344     well if you register events for both fds.</p>
345 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
346     need to use non-blocking I/O or other means to avoid blocking when no data
347     (or space) is available.</p>
348 root 1.29 </dd>
349 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
350 root 1.29 <dd>
351     <p>Kqueue deserves special mention, as at the time of this writing, it
352     was broken on all BSDs except NetBSD (usually it doesn't work with
353     anything but sockets and pipes, except on Darwin, where of course its
354 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
355     unless you explicitly specify it explicitly in the flags (i.e. using
356     <code>EVBACKEND_KQUEUE</code>).</p>
357 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
358     kernel is more efficient (which says nothing about its actual speed, of
359     course). While starting and stopping an I/O watcher does not cause an
360     extra syscall as with epoll, it still adds up to four event changes per
361     incident, so its best to avoid that.</p>
362     </dd>
363 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
364 root 1.29 <dd>
365     <p>This is not implemented yet (and might never be).</p>
366     </dd>
367 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
368 root 1.29 <dd>
369     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
370     it's really slow, but it still scales very well (O(active_fds)).</p>
371 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
372     notifications, so you need to use non-blocking I/O or other means to avoid
373     blocking when no data (or space) is available.</p>
374 root 1.29 </dd>
375 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
376 root 1.29 <dd>
377 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
378     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
379 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
380 root 1.1 </dd>
381     </dl>
382     </p>
383 root 1.29 <p>If one or more of these are ored into the flags value, then only these
384     backends will be tried (in the reverse order as given here). If none are
385     specified, most compiled-in backend will be tried, usually in reverse
386     order of their flag values :)</p>
387 root 1.34 <p>The most typical usage is like this:</p>
388     <pre> if (!ev_default_loop (0))
389     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
390    
391     </pre>
392     <p>Restrict libev to the select and poll backends, and do not allow
393     environment settings to be taken into account:</p>
394     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
395    
396     </pre>
397     <p>Use whatever libev has to offer, but make sure that kqueue is used if
398     available (warning, breaks stuff, best use only with your own private
399     event loop and only if you know the OS supports your types of fds):</p>
400     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
401    
402     </pre>
403 root 1.1 </dd>
404     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
405     <dd>
406     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
407     always distinct from the default loop. Unlike the default loop, it cannot
408     handle signal and child watchers, and attempts to do so will be greeted by
409     undefined behaviour (or a failed assertion if assertions are enabled).</p>
410 root 1.35 <p>Example: try to create a event loop that uses epoll and nothing else.</p>
411     <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
412     if (!epoller)
413     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
414    
415     </pre>
416 root 1.1 </dd>
417     <dt>ev_default_destroy ()</dt>
418     <dd>
419     <p>Destroys the default loop again (frees all memory and kernel state
420 root 1.38 etc.). None of the active event watchers will be stopped in the normal
421     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
422     responsibility to either stop all watchers cleanly yoursef <i>before</i>
423     calling this function, or cope with the fact afterwards (which is usually
424     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
425     for example).</p>
426 root 1.1 </dd>
427     <dt>ev_loop_destroy (loop)</dt>
428     <dd>
429     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
430     earlier call to <code>ev_loop_new</code>.</p>
431     </dd>
432     <dt>ev_default_fork ()</dt>
433     <dd>
434     <p>This function reinitialises the kernel state for backends that have
435     one. Despite the name, you can call it anytime, but it makes most sense
436     after forking, in either the parent or child process (or both, but that
437     again makes little sense).</p>
438 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
439     only if you want to use the event library in both processes. If you just
440     fork+exec, you don't have to call it.</p>
441 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
442 root 1.1 it just in case after a fork. To make this easy, the function will fit in
443     quite nicely into a call to <code>pthread_atfork</code>:</p>
444     <pre> pthread_atfork (0, 0, ev_default_fork);
445    
446     </pre>
447 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
448     without calling this function, so if you force one of those backends you
449     do not need to care.</p>
450 root 1.1 </dd>
451     <dt>ev_loop_fork (loop)</dt>
452     <dd>
453     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
454     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
455     after fork, and how you do this is entirely your own problem.</p>
456     </dd>
457 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
458 root 1.1 <dd>
459 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
460 root 1.1 use.</p>
461     </dd>
462 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
463 root 1.1 <dd>
464     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
465 root 1.35 received events and started processing them. This timestamp does not
466     change as long as callbacks are being processed, and this is also the base
467     time used for relative timers. You can treat it as the timestamp of the
468     event occuring (or more correctly, libev finding out about it).</p>
469 root 1.1 </dd>
470     <dt>ev_loop (loop, int flags)</dt>
471     <dd>
472     <p>Finally, this is it, the event handler. This function usually is called
473     after you initialised all your watchers and you want to start handling
474     events.</p>
475 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
476     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
477 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
478     relying on all watchers to be stopped when deciding when a program has
479     finished (especially in interactive programs), but having a program that
480     automatically loops as long as it has to and no longer by virtue of
481     relying on its watchers stopping correctly is a thing of beauty.</p>
482 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
483     those events and any outstanding ones, but will not block your process in
484 root 1.9 case there are no events and will return after one iteration of the loop.</p>
485 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
486     neccessary) and will handle those and any outstanding ones. It will block
487 root 1.9 your process until at least one new event arrives, and will return after
488 root 1.34 one iteration of the loop. This is useful if you are waiting for some
489     external event in conjunction with something not expressible using other
490     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
491     usually a better approach for this kind of thing.</p>
492     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
493     <pre> * If there are no active watchers (reference count is zero), return.
494     - Queue prepare watchers and then call all outstanding watchers.
495     - If we have been forked, recreate the kernel state.
496     - Update the kernel state with all outstanding changes.
497     - Update the &quot;event loop time&quot;.
498     - Calculate for how long to block.
499     - Block the process, waiting for any events.
500     - Queue all outstanding I/O (fd) events.
501     - Update the &quot;event loop time&quot; and do time jump handling.
502     - Queue all outstanding timers.
503     - Queue all outstanding periodics.
504     - If no events are pending now, queue all idle watchers.
505     - Queue all check watchers.
506     - Call all queued watchers in reverse order (i.e. check watchers first).
507     Signals and child watchers are implemented as I/O watchers, and will
508     be handled here by queueing them when their watcher gets executed.
509     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
510     were used, return, otherwise continue with step *.
511 root 1.28
512     </pre>
513 root 1.35 <p>Example: queue some jobs and then loop until no events are outsanding
514     anymore.</p>
515     <pre> ... queue jobs here, make sure they register event watchers as long
516     ... as they still have work to do (even an idle watcher will do..)
517     ev_loop (my_loop, 0);
518     ... jobs done. yeah!
519    
520     </pre>
521 root 1.1 </dd>
522     <dt>ev_unloop (loop, how)</dt>
523     <dd>
524 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
525     has processed all outstanding events). The <code>how</code> argument must be either
526 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
527 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
528 root 1.1 </dd>
529     <dt>ev_ref (loop)</dt>
530     <dt>ev_unref (loop)</dt>
531     <dd>
532 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
533     loop: Every watcher keeps one reference, and as long as the reference
534     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
535     a watcher you never unregister that should not keep <code>ev_loop</code> from
536     returning, ev_unref() after starting, and ev_ref() before stopping it. For
537     example, libev itself uses this for its internal signal pipe: It is not
538     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
539     no event watchers registered by it are active. It is also an excellent
540     way to do this for generic recurring timers or from within third-party
541     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
542 root 1.35 <p>Example: create a signal watcher, but keep it from keeping <code>ev_loop</code>
543     running when nothing else is active.</p>
544     <pre> struct dv_signal exitsig;
545     ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
546     ev_signal_start (myloop, &amp;exitsig);
547     evf_unref (myloop);
548    
549     </pre>
550     <p>Example: for some weird reason, unregister the above signal handler again.</p>
551     <pre> ev_ref (myloop);
552     ev_signal_stop (myloop, &amp;exitsig);
553    
554     </pre>
555 root 1.1 </dd>
556     </dl>
557    
558 root 1.43
559    
560    
561    
562 root 1.1 </div>
563     <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1><p><a href="#TOP" class="toplink">Top</a></p>
564     <div id="ANATOMY_OF_A_WATCHER_CONTENT">
565     <p>A watcher is a structure that you create and register to record your
566     interest in some event. For instance, if you want to wait for STDIN to
567 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
568 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
569     {
570     ev_io_stop (w);
571     ev_unloop (loop, EVUNLOOP_ALL);
572     }
573    
574     struct ev_loop *loop = ev_default_loop (0);
575     struct ev_io stdin_watcher;
576     ev_init (&amp;stdin_watcher, my_cb);
577     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
578     ev_io_start (loop, &amp;stdin_watcher);
579     ev_loop (loop, 0);
580    
581     </pre>
582     <p>As you can see, you are responsible for allocating the memory for your
583     watcher structures (and it is usually a bad idea to do this on the stack,
584     although this can sometimes be quite valid).</p>
585     <p>Each watcher structure must be initialised by a call to <code>ev_init
586     (watcher *, callback)</code>, which expects a callback to be provided. This
587     callback gets invoked each time the event occurs (or, in the case of io
588     watchers, each time the event loop detects that the file descriptor given
589     is readable and/or writable).</p>
590     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
591     with arguments specific to this watcher type. There is also a macro
592     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
593     (watcher *, callback, ...)</code>.</p>
594     <p>To make the watcher actually watch out for events, you have to start it
595     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
596     *)</code>), and you can stop watching for events at any time by calling the
597     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
598     <p>As long as your watcher is active (has been started but not stopped) you
599     must not touch the values stored in it. Most specifically you must never
600 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
601 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
602     registered watcher structure as second, and a bitset of received events as
603     third argument.</p>
604 root 1.14 <p>The received events usually include a single bit per event type received
605 root 1.1 (you can receive multiple events at the same time). The possible bit masks
606     are:</p>
607     <dl>
608 root 1.10 <dt><code>EV_READ</code></dt>
609     <dt><code>EV_WRITE</code></dt>
610 root 1.1 <dd>
611 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
612 root 1.1 writable.</p>
613     </dd>
614 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
615 root 1.1 <dd>
616 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
617 root 1.1 </dd>
618 root 1.10 <dt><code>EV_PERIODIC</code></dt>
619 root 1.1 <dd>
620 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
621 root 1.1 </dd>
622 root 1.10 <dt><code>EV_SIGNAL</code></dt>
623 root 1.1 <dd>
624 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
625 root 1.1 </dd>
626 root 1.10 <dt><code>EV_CHILD</code></dt>
627 root 1.1 <dd>
628 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
629 root 1.1 </dd>
630 root 1.48 <dt><code>EV_STAT</code></dt>
631     <dd>
632     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
633     </dd>
634 root 1.10 <dt><code>EV_IDLE</code></dt>
635 root 1.1 <dd>
636 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
637 root 1.1 </dd>
638 root 1.10 <dt><code>EV_PREPARE</code></dt>
639     <dt><code>EV_CHECK</code></dt>
640 root 1.1 <dd>
641 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
642     to gather new events, and all <code>ev_check</code> watchers are invoked just after
643 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
644     received events. Callbacks of both watcher types can start and stop as
645     many watchers as they want, and all of them will be taken into account
646 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
647 root 1.1 <code>ev_loop</code> from blocking).</p>
648     </dd>
649 root 1.50 <dt><code>EV_EMBED</code></dt>
650     <dd>
651     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
652     </dd>
653     <dt><code>EV_FORK</code></dt>
654     <dd>
655     <p>The event loop has been resumed in the child process after fork (see
656     <code>ev_fork</code>).</p>
657     </dd>
658 root 1.10 <dt><code>EV_ERROR</code></dt>
659 root 1.1 <dd>
660     <p>An unspecified error has occured, the watcher has been stopped. This might
661     happen because the watcher could not be properly started because libev
662     ran out of memory, a file descriptor was found to be closed or any other
663     problem. You best act on it by reporting the problem and somehow coping
664     with the watcher being stopped.</p>
665     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
666     for example it might indicate that a fd is readable or writable, and if
667     your callbacks is well-written it can just attempt the operation and cope
668     with the error from read() or write(). This will not work in multithreaded
669     programs, though, so beware.</p>
670     </dd>
671     </dl>
672    
673     </div>
674 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
675     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
676 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
677     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
678     <dl>
679     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
680     <dd>
681     <p>This macro initialises the generic portion of a watcher. The contents
682     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
683     the generic parts of the watcher are initialised, you <i>need</i> to call
684     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
685     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
686     which rolls both calls into one.</p>
687     <p>You can reinitialise a watcher at any time as long as it has been stopped
688     (or never started) and there are no pending events outstanding.</p>
689 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
690 root 1.37 int revents)</code>.</p>
691     </dd>
692     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
693     <dd>
694     <p>This macro initialises the type-specific parts of a watcher. You need to
695     call <code>ev_init</code> at least once before you call this macro, but you can
696     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
697     macro on a watcher that is active (it can be pending, however, which is a
698     difference to the <code>ev_init</code> macro).</p>
699     <p>Although some watcher types do not have type-specific arguments
700     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
701     </dd>
702     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
703     <dd>
704     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
705     calls into a single call. This is the most convinient method to initialise
706     a watcher. The same limitations apply, of course.</p>
707     </dd>
708     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
709     <dd>
710     <p>Starts (activates) the given watcher. Only active watchers will receive
711     events. If the watcher is already active nothing will happen.</p>
712     </dd>
713     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
714     <dd>
715     <p>Stops the given watcher again (if active) and clears the pending
716     status. It is possible that stopped watchers are pending (for example,
717     non-repeating timers are being stopped when they become pending), but
718     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
719     you want to free or reuse the memory used by the watcher it is therefore a
720     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
721     </dd>
722     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
723     <dd>
724     <p>Returns a true value iff the watcher is active (i.e. it has been started
725     and not yet been stopped). As long as a watcher is active you must not modify
726     it.</p>
727     </dd>
728     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
729     <dd>
730     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
731     events but its callback has not yet been invoked). As long as a watcher
732     is pending (but not active) you must not call an init function on it (but
733     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
734     libev (e.g. you cnanot <code>free ()</code> it).</p>
735     </dd>
736     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
737     <dd>
738     <p>Returns the callback currently set on the watcher.</p>
739     </dd>
740     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
741     <dd>
742     <p>Change the callback. You can change the callback at virtually any time
743     (modulo threads).</p>
744     </dd>
745     </dl>
746    
747    
748    
749    
750    
751     </div>
752 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
753     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
754     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
755 root 1.14 and read at any time, libev will completely ignore it. This can be used
756 root 1.1 to associate arbitrary data with your watcher. If you need more data and
757     don't want to allocate memory and store a pointer to it in that data
758     member, you can also &quot;subclass&quot; the watcher type and provide your own
759     data:</p>
760     <pre> struct my_io
761     {
762     struct ev_io io;
763     int otherfd;
764     void *somedata;
765     struct whatever *mostinteresting;
766     }
767    
768     </pre>
769     <p>And since your callback will be called with a pointer to the watcher, you
770     can cast it back to your own type:</p>
771     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
772     {
773     struct my_io *w = (struct my_io *)w_;
774     ...
775     }
776    
777     </pre>
778     <p>More interesting and less C-conformant ways of catsing your callback type
779     have been omitted....</p>
780    
781    
782    
783    
784    
785     </div>
786     <h1 id="WATCHER_TYPES">WATCHER TYPES</h1><p><a href="#TOP" class="toplink">Top</a></p>
787     <div id="WATCHER_TYPES_CONTENT">
788     <p>This section describes each watcher in detail, but will not repeat
789 root 1.48 information given in the last section. Any initialisation/set macros,
790     functions and members specific to the watcher type are explained.</p>
791     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
792     while the watcher is active, you can look at the member and expect some
793     sensible content, but you must not modify it (you can modify it while the
794     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
795     means you can expect it to have some sensible content while the watcher
796     is active, but you can also modify it. Modifying it may not do something
797     sensible or take immediate effect (or do anything at all), but libev will
798     not crash or malfunction in any way.</p>
799 root 1.1
800 root 1.35
801    
802    
803    
804 root 1.1 </div>
805 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
806 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
807 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
808 root 1.43 in each iteration of the event loop, or, more precisely, when reading
809     would not block the process and writing would at least be able to write
810     some data. This behaviour is called level-triggering because you keep
811     receiving events as long as the condition persists. Remember you can stop
812     the watcher if you don't want to act on the event and neither want to
813     receive future events.</p>
814 root 1.25 <p>In general you can register as many read and/or write event watchers per
815 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
816     descriptors to non-blocking mode is also usually a good idea (but not
817     required if you know what you are doing).</p>
818     <p>You have to be careful with dup'ed file descriptors, though. Some backends
819     (the linux epoll backend is a notable example) cannot handle dup'ed file
820     descriptors correctly if you register interest in two or more fds pointing
821 root 1.43 to the same underlying file/socket/etc. description (that is, they share
822 root 1.26 the same underlying &quot;file open&quot;).</p>
823 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
824 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
825     <code>EVBACKEND_POLL</code>).</p>
826 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
827     receive &quot;spurious&quot; readyness notifications, that is your callback might
828     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
829     because there is no data. Not only are some backends known to create a
830     lot of those (for example solaris ports), it is very easy to get into
831     this situation even with a relatively standard program structure. Thus
832     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
833     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
834     <p>If you cannot run the fd in non-blocking mode (for example you should not
835     play around with an Xlib connection), then you have to seperately re-test
836     wether a file descriptor is really ready with a known-to-be good interface
837     such as poll (fortunately in our Xlib example, Xlib already does this on
838     its own, so its quite safe to use).</p>
839 root 1.1 <dl>
840     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
841     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
842     <dd>
843 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
844     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
845     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
846 root 1.1 </dd>
847 root 1.48 <dt>int fd [read-only]</dt>
848     <dd>
849     <p>The file descriptor being watched.</p>
850     </dd>
851     <dt>int events [read-only]</dt>
852     <dd>
853     <p>The events being watched.</p>
854     </dd>
855 root 1.1 </dl>
856 root 1.35 <p>Example: call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
857     readable, but only once. Since it is likely line-buffered, you could
858     attempt to read a whole line in the callback:</p>
859     <pre> static void
860     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
861     {
862     ev_io_stop (loop, w);
863     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
864     }
865    
866     ...
867     struct ev_loop *loop = ev_default_init (0);
868     struct ev_io stdin_readable;
869     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
870     ev_io_start (loop, &amp;stdin_readable);
871     ev_loop (loop, 0);
872    
873    
874    
875    
876     </pre>
877 root 1.1
878     </div>
879 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
880 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
881 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
882     given time, and optionally repeating in regular intervals after that.</p>
883     <p>The timers are based on real time, that is, if you register an event that
884 root 1.25 times out after an hour and you reset your system clock to last years
885 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
886 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
887 root 1.1 monotonic clock option helps a lot here).</p>
888 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
889     time. This is usually the right thing as this timestamp refers to the time
890 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
891     you suspect event processing to be delayed and you <i>need</i> to base the timeout
892 root 1.25 on the current time, use something like this to adjust for this:</p>
893 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
894    
895     </pre>
896 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
897     but if multiple timers become ready during the same loop iteration then
898     order of execution is undefined.</p>
899 root 1.1 <dl>
900     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
901     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
902     <dd>
903     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
904     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
905     timer will automatically be configured to trigger again <code>repeat</code> seconds
906     later, again, and again, until stopped manually.</p>
907     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
908     configure a timer to trigger every 10 seconds, then it will trigger at
909     exactly 10 second intervals. If, however, your program cannot keep up with
910 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
911 root 1.1 timer will not fire more than once per event loop iteration.</p>
912     </dd>
913     <dt>ev_timer_again (loop)</dt>
914     <dd>
915     <p>This will act as if the timer timed out and restart it again if it is
916     repeating. The exact semantics are:</p>
917     <p>If the timer is started but nonrepeating, stop it.</p>
918     <p>If the timer is repeating, either start it if necessary (with the repeat
919     value), or reset the running timer to the repeat value.</p>
920     <p>This sounds a bit complicated, but here is a useful and typical
921 root 1.48 example: Imagine you have a tcp connection and you want a so-called
922     idle timeout, that is, you want to be called when there have been,
923     say, 60 seconds of inactivity on the socket. The easiest way to do
924     this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
925     <code>ev_timer_again</code> each time you successfully read or write some data. If
926     you go into an idle state where you do not expect data to travel on the
927     socket, you can stop the timer, and again will automatically restart it if
928     need be.</p>
929     <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
930     and only ever use the <code>repeat</code> value:</p>
931     <pre> ev_timer_init (timer, callback, 0., 5.);
932     ev_timer_again (loop, timer);
933     ...
934     timer-&gt;again = 17.;
935     ev_timer_again (loop, timer);
936     ...
937     timer-&gt;again = 10.;
938     ev_timer_again (loop, timer);
939    
940     </pre>
941     <p>This is more efficient then stopping/starting the timer eahc time you want
942     to modify its timeout value.</p>
943     </dd>
944     <dt>ev_tstamp repeat [read-write]</dt>
945     <dd>
946     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
947     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
948     which is also when any modifications are taken into account.</p>
949 root 1.1 </dd>
950     </dl>
951 root 1.35 <p>Example: create a timer that fires after 60 seconds.</p>
952     <pre> static void
953     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
954     {
955     .. one minute over, w is actually stopped right here
956     }
957    
958     struct ev_timer mytimer;
959     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
960     ev_timer_start (loop, &amp;mytimer);
961    
962     </pre>
963     <p>Example: create a timeout timer that times out after 10 seconds of
964     inactivity.</p>
965     <pre> static void
966     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
967     {
968     .. ten seconds without any activity
969     }
970    
971     struct ev_timer mytimer;
972     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
973     ev_timer_again (&amp;mytimer); /* start timer */
974     ev_loop (loop, 0);
975    
976     // and in some piece of code that gets executed on any &quot;activity&quot;:
977     // reset the timeout to start ticking again at 10 seconds
978     ev_timer_again (&amp;mytimer);
979    
980    
981    
982    
983     </pre>
984 root 1.1
985     </div>
986 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
987 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
988 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
989     (and unfortunately a bit complex).</p>
990 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
991 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
992     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
993 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
994     + 10.</code>) and then reset your system clock to the last year, then it will
995 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
996 root 1.1 roughly 10 seconds later and of course not if you reset your system time
997     again).</p>
998     <p>They can also be used to implement vastly more complex timers, such as
999     triggering an event on eahc midnight, local time.</p>
1000 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1001     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1002     during the same loop iteration then order of execution is undefined.</p>
1003 root 1.1 <dl>
1004     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1005     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1006     <dd>
1007     <p>Lots of arguments, lets sort it out... There are basically three modes of
1008     operation, and we will explain them from simplest to complex:</p>
1009     <p>
1010     <dl>
1011     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1012     <dd>
1013     <p>In this configuration the watcher triggers an event at the wallclock time
1014     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1015     that is, if it is to be run at January 1st 2011 then it will run when the
1016     system time reaches or surpasses this time.</p>
1017     </dd>
1018     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1019     <dd>
1020     <p>In this mode the watcher will always be scheduled to time out at the next
1021     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1022     of any time jumps.</p>
1023     <p>This can be used to create timers that do not drift with respect to system
1024     time:</p>
1025     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1026    
1027     </pre>
1028     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1029     but only that the the callback will be called when the system time shows a
1030 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1031 root 1.1 by 3600.</p>
1032     <p>Another way to think about it (for the mathematically inclined) is that
1033 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1034 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1035     </dd>
1036     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1037     <dd>
1038     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1039     ignored. Instead, each time the periodic watcher gets scheduled, the
1040     reschedule callback will be called with the watcher as first, and the
1041     current time as second argument.</p>
1042 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1043     ever, or make any event loop modifications</i>. If you need to stop it,
1044     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1045     starting a prepare watcher).</p>
1046 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1047     ev_tstamp now)</code>, e.g.:</p>
1048 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1049     {
1050     return now + 60.;
1051     }
1052    
1053     </pre>
1054     <p>It must return the next time to trigger, based on the passed time value
1055     (that is, the lowest time value larger than to the second argument). It
1056     will usually be called just before the callback will be triggered, but
1057     might be called at other times, too.</p>
1058 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1059 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1060 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1061     triggers on each midnight, local time. To do this, you would calculate the
1062 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1063     you do this is, again, up to you (but it is not trivial, which is the main
1064     reason I omitted it as an example).</p>
1065 root 1.1 </dd>
1066     </dl>
1067     </p>
1068     </dd>
1069     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1070     <dd>
1071     <p>Simply stops and restarts the periodic watcher again. This is only useful
1072     when you changed some parameters or the reschedule callback would return
1073     a different time than the last time it was called (e.g. in a crond like
1074     program when the crontabs have changed).</p>
1075     </dd>
1076 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1077     <dd>
1078     <p>The current interval value. Can be modified any time, but changes only
1079     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1080     called.</p>
1081     </dd>
1082     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1083     <dd>
1084     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1085     switched off. Can be changed any time, but changes only take effect when
1086     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1087     </dd>
1088 root 1.1 </dl>
1089 root 1.35 <p>Example: call a callback every hour, or, more precisely, whenever the
1090     system clock is divisible by 3600. The callback invocation times have
1091     potentially a lot of jittering, but good long-term stability.</p>
1092     <pre> static void
1093     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1094     {
1095     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1096     }
1097    
1098     struct ev_periodic hourly_tick;
1099     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1100     ev_periodic_start (loop, &amp;hourly_tick);
1101    
1102     </pre>
1103     <p>Example: the same as above, but use a reschedule callback to do it:</p>
1104     <pre> #include &lt;math.h&gt;
1105    
1106     static ev_tstamp
1107     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1108     {
1109     return fmod (now, 3600.) + 3600.;
1110     }
1111    
1112     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1113    
1114     </pre>
1115     <p>Example: call a callback every hour, starting now:</p>
1116     <pre> struct ev_periodic hourly_tick;
1117     ev_periodic_init (&amp;hourly_tick, clock_cb,
1118     fmod (ev_now (loop), 3600.), 3600., 0);
1119     ev_periodic_start (loop, &amp;hourly_tick);
1120    
1121    
1122    
1123    
1124     </pre>
1125 root 1.1
1126     </div>
1127 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1128 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1129 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1130     signal one or more times. Even though signals are very asynchronous, libev
1131 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1132 root 1.1 normal event processing, like any other event.</p>
1133 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1134 root 1.1 first watcher gets started will libev actually register a signal watcher
1135     with the kernel (thus it coexists with your own signal handlers as long
1136     as you don't register any with libev). Similarly, when the last signal
1137     watcher for a signal is stopped libev will reset the signal handler to
1138     SIG_DFL (regardless of what it was set to before).</p>
1139     <dl>
1140     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1141     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1142     <dd>
1143     <p>Configures the watcher to trigger on the given signal number (usually one
1144     of the <code>SIGxxx</code> constants).</p>
1145     </dd>
1146 root 1.48 <dt>int signum [read-only]</dt>
1147     <dd>
1148     <p>The signal the watcher watches out for.</p>
1149     </dd>
1150 root 1.1 </dl>
1151    
1152 root 1.36
1153    
1154    
1155    
1156 root 1.1 </div>
1157 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1158     <div id="code_ev_child_code_watch_out_for_pro-2">
1159 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1160     some child status changes (most typically when a child of yours dies).</p>
1161     <dl>
1162     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1163     <dt>ev_child_set (ev_child *, int pid)</dt>
1164     <dd>
1165     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1166     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1167     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1168 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1169     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1170     process causing the status change.</p>
1171 root 1.1 </dd>
1172 root 1.48 <dt>int pid [read-only]</dt>
1173     <dd>
1174     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1175     </dd>
1176     <dt>int rpid [read-write]</dt>
1177     <dd>
1178     <p>The process id that detected a status change.</p>
1179     </dd>
1180     <dt>int rstatus [read-write]</dt>
1181     <dd>
1182     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1183     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1184     </dd>
1185 root 1.1 </dl>
1186 root 1.35 <p>Example: try to exit cleanly on SIGINT and SIGTERM.</p>
1187     <pre> static void
1188     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1189     {
1190     ev_unloop (loop, EVUNLOOP_ALL);
1191     }
1192    
1193     struct ev_signal signal_watcher;
1194     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1195     ev_signal_start (loop, &amp;sigint_cb);
1196    
1197    
1198    
1199    
1200     </pre>
1201 root 1.1
1202     </div>
1203 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1204     <div id="code_ev_stat_code_did_the_file_attri-2">
1205     <p>This watches a filesystem path for attribute changes. That is, it calls
1206     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1207     compared to the last time, invoking the callback if it did.</p>
1208     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1209     not exist&quot; is a status change like any other. The condition &quot;path does
1210     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1211     otherwise always forced to be at least one) and all the other fields of
1212     the stat buffer having unspecified contents.</p>
1213     <p>Since there is no standard to do this, the portable implementation simply
1214     calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You
1215     can specify a recommended polling interval for this case. If you specify
1216     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1217     unspecified default</i> value will be used (which you can expect to be around
1218     five seconds, although this might change dynamically). Libev will also
1219     impose a minimum interval which is currently around <code>0.1</code>, but thats
1220     usually overkill.</p>
1221     <p>This watcher type is not meant for massive numbers of stat watchers,
1222     as even with OS-supported change notifications, this can be
1223     resource-intensive.</p>
1224     <p>At the time of this writing, no specific OS backends are implemented, but
1225     if demand increases, at least a kqueue and inotify backend will be added.</p>
1226     <dl>
1227     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1228     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1229     <dd>
1230     <p>Configures the watcher to wait for status changes of the given
1231     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1232     be detected and should normally be specified as <code>0</code> to let libev choose
1233     a suitable value. The memory pointed to by <code>path</code> must point to the same
1234     path for as long as the watcher is active.</p>
1235     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1236     relative to the attributes at the time the watcher was started (or the
1237     last change was detected).</p>
1238     </dd>
1239     <dt>ev_stat_stat (ev_stat *)</dt>
1240     <dd>
1241     <p>Updates the stat buffer immediately with new values. If you change the
1242     watched path in your callback, you could call this fucntion to avoid
1243     detecting this change (while introducing a race condition). Can also be
1244     useful simply to find out the new values.</p>
1245     </dd>
1246     <dt>ev_statdata attr [read-only]</dt>
1247     <dd>
1248     <p>The most-recently detected attributes of the file. Although the type is of
1249     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1250     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1251     was some error while <code>stat</code>ing the file.</p>
1252     </dd>
1253     <dt>ev_statdata prev [read-only]</dt>
1254     <dd>
1255     <p>The previous attributes of the file. The callback gets invoked whenever
1256     <code>prev</code> != <code>attr</code>.</p>
1257     </dd>
1258     <dt>ev_tstamp interval [read-only]</dt>
1259     <dd>
1260     <p>The specified interval.</p>
1261     </dd>
1262     <dt>const char *path [read-only]</dt>
1263     <dd>
1264     <p>The filesystem path that is being watched.</p>
1265     </dd>
1266     </dl>
1267     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1268     <pre> static void
1269     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1270     {
1271     /* /etc/passwd changed in some way */
1272     if (w-&gt;attr.st_nlink)
1273     {
1274     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1275     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1276     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1277     }
1278     else
1279     /* you shalt not abuse printf for puts */
1280     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1281     &quot;if this is windows, they already arrived\n&quot;);
1282     }
1283    
1284     ...
1285     ev_stat passwd;
1286    
1287     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1288     ev_stat_start (loop, &amp;passwd);
1289    
1290    
1291    
1292    
1293     </pre>
1294    
1295     </div>
1296 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1297 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1298 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1299     (prepare, check and other idle watchers do not count). That is, as long
1300     as your process is busy handling sockets or timeouts (or even signals,
1301     imagine) it will not be triggered. But when your process is idle all idle
1302     watchers are being called again and again, once per event loop iteration -
1303     until stopped, that is, or your process receives more events and becomes
1304     busy.</p>
1305 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1306     active, the process will not block when waiting for new events.</p>
1307     <p>Apart from keeping your process non-blocking (which is a useful
1308     effect on its own sometimes), idle watchers are a good place to do
1309     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1310     event loop has handled all outstanding events.</p>
1311     <dl>
1312     <dt>ev_idle_init (ev_signal *, callback)</dt>
1313     <dd>
1314     <p>Initialises and configures the idle watcher - it has no parameters of any
1315     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1316     believe me.</p>
1317     </dd>
1318     </dl>
1319 root 1.35 <p>Example: dynamically allocate an <code>ev_idle</code>, start it, and in the
1320     callback, free it. Alos, use no error checking, as usual.</p>
1321     <pre> static void
1322     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1323     {
1324     free (w);
1325     // now do something you wanted to do when the program has
1326     // no longer asnything immediate to do.
1327     }
1328    
1329     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1330     ev_idle_init (idle_watcher, idle_cb);
1331     ev_idle_start (loop, idle_cb);
1332    
1333    
1334    
1335    
1336     </pre>
1337 root 1.1
1338     </div>
1339 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1340 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1341 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1342 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1343 root 1.14 afterwards.</p>
1344 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1345     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1346     watchers. Other loops than the current one are fine, however. The
1347     rationale behind this is that you do not need to check for recursion in
1348     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1349     <code>ev_check</code> so if you have one watcher of each kind they will always be
1350     called in pairs bracketing the blocking call.</p>
1351 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1352     their use is somewhat advanced. This could be used, for example, to track
1353     variable changes, implement your own watchers, integrate net-snmp or a
1354 root 1.46 coroutine library and lots more. They are also occasionally useful if
1355     you cache some data and want to flush it before blocking (for example,
1356     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1357     watcher).</p>
1358 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1359 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1360     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1361     provide just this functionality). Then, in the check watcher you check for
1362     any events that occured (by checking the pending status of all watchers
1363     and stopping them) and call back into the library. The I/O and timer
1364 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1365 root 1.14 because you never know, you know?).</p>
1366     <p>As another example, the Perl Coro module uses these hooks to integrate
1367 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1368     during each prepare and only letting the process block if no coroutines
1369 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1370     with priority higher than or equal to the event loop and one coroutine
1371     of lower priority, but only once, using idle watchers to keep the event
1372     loop from blocking if lower-priority coroutines are active, thus mapping
1373     low-priority coroutines to idle/background tasks).</p>
1374 root 1.1 <dl>
1375     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1376     <dt>ev_check_init (ev_check *, callback)</dt>
1377     <dd>
1378     <p>Initialises and configures the prepare or check watcher - they have no
1379     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1380 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1381 root 1.1 </dd>
1382     </dl>
1383 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1384     and a timeout watcher in a prepare handler, as required by libadns, and
1385     in a check watcher, destroy them and call into libadns. What follows is
1386     pseudo-code only of course:</p>
1387     <pre> static ev_io iow [nfd];
1388     static ev_timer tw;
1389    
1390     static void
1391     io_cb (ev_loop *loop, ev_io *w, int revents)
1392     {
1393     // set the relevant poll flags
1394 root 1.47 // could also call adns_processreadable etc. here
1395 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1396     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1397     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1398     }
1399    
1400     // create io watchers for each fd and a timer before blocking
1401     static void
1402     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1403     {
1404     int timeout = 3600000;truct pollfd fds [nfd];
1405     // actual code will need to loop here and realloc etc.
1406     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1407    
1408     /* the callback is illegal, but won't be called as we stop during check */
1409     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1410     ev_timer_start (loop, &amp;tw);
1411    
1412     // create on ev_io per pollfd
1413     for (int i = 0; i &lt; nfd; ++i)
1414     {
1415     ev_io_init (iow + i, io_cb, fds [i].fd,
1416     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1417     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1418    
1419     fds [i].revents = 0;
1420     iow [i].data = fds + i;
1421     ev_io_start (loop, iow + i);
1422     }
1423     }
1424    
1425     // stop all watchers after blocking
1426     static void
1427     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1428     {
1429     ev_timer_stop (loop, &amp;tw);
1430    
1431     for (int i = 0; i &lt; nfd; ++i)
1432     ev_io_stop (loop, iow + i);
1433    
1434     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1435     }
1436 root 1.35
1437    
1438    
1439    
1440 root 1.46 </pre>
1441 root 1.1
1442     </div>
1443 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1444 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1445     <p>This is a rather advanced watcher type that lets you embed one event loop
1446 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1447     loop, other types of watchers might be handled in a delayed or incorrect
1448     fashion and must not be used).</p>
1449 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1450     prioritise I/O.</p>
1451     <p>As an example for a bug workaround, the kqueue backend might only support
1452     sockets on some platform, so it is unusable as generic backend, but you
1453     still want to make use of it because you have many sockets and it scales
1454     so nicely. In this case, you would create a kqueue-based loop and embed it
1455     into your default loop (which might use e.g. poll). Overall operation will
1456     be a bit slower because first libev has to poll and then call kevent, but
1457     at least you can use both at what they are best.</p>
1458     <p>As for prioritising I/O: rarely you have the case where some fds have
1459     to be watched and handled very quickly (with low latency), and even
1460     priorities and idle watchers might have too much overhead. In this case
1461     you would put all the high priority stuff in one loop and all the rest in
1462     a second one, and embed the second one in the first.</p>
1463 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1464     there might be events pending in the embedded loop. The callback must then
1465     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1466     their callbacks (you could also start an idle watcher to give the embedded
1467     loop strictly lower priority for example). You can also set the callback
1468     to <code>0</code>, in which case the embed watcher will automatically execute the
1469     embedded loop sweep.</p>
1470 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1471     callback will be invoked whenever some events have been handled. You can
1472     set the callback to <code>0</code> to avoid having to specify one if you are not
1473     interested in that.</p>
1474     <p>Also, there have not currently been made special provisions for forking:
1475     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1476     but you will also have to stop and restart any <code>ev_embed</code> watchers
1477     yourself.</p>
1478     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1479     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1480     portable one.</p>
1481     <p>So when you want to use this feature you will always have to be prepared
1482     that you cannot get an embeddable loop. The recommended way to get around
1483     this is to have a separate variables for your embeddable loop, try to
1484     create it, and if that fails, use the normal loop for everything:</p>
1485     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1486     struct ev_loop *loop_lo = 0;
1487     struct ev_embed embed;
1488    
1489     // see if there is a chance of getting one that works
1490     // (remember that a flags value of 0 means autodetection)
1491     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1492     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1493     : 0;
1494    
1495     // if we got one, then embed it, otherwise default to loop_hi
1496     if (loop_lo)
1497     {
1498     ev_embed_init (&amp;embed, 0, loop_lo);
1499     ev_embed_start (loop_hi, &amp;embed);
1500     }
1501     else
1502     loop_lo = loop_hi;
1503    
1504     </pre>
1505     <dl>
1506 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1507     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1508 root 1.36 <dd>
1509 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1510     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1511     invoked automatically, otherwise it is the responsibility of the callback
1512     to invoke it (it will continue to be called until the sweep has been done,
1513     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1514     </dd>
1515     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1516     <dd>
1517     <p>Make a single, non-blocking sweep over the embedded loop. This works
1518     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1519     apropriate way for embedded loops.</p>
1520 root 1.36 </dd>
1521 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1522     <dd>
1523     <p>The embedded event loop.</p>
1524     </dd>
1525 root 1.36 </dl>
1526    
1527    
1528    
1529    
1530    
1531     </div>
1532 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1533     <div id="code_ev_fork_code_the_audacity_to_re-2">
1534     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1535     whoever is a good citizen cared to tell libev about it by calling
1536     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1537     event loop blocks next and before <code>ev_check</code> watchers are being called,
1538     and only in the child after the fork. If whoever good citizen calling
1539     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1540     handlers will be invoked, too, of course.</p>
1541     <dl>
1542     <dt>ev_fork_init (ev_signal *, callback)</dt>
1543     <dd>
1544     <p>Initialises and configures the fork watcher - it has no parameters of any
1545     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1546     believe me.</p>
1547     </dd>
1548     </dl>
1549    
1550    
1551    
1552    
1553    
1554     </div>
1555 root 1.1 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1><p><a href="#TOP" class="toplink">Top</a></p>
1556     <div id="OTHER_FUNCTIONS_CONTENT">
1557 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1558 root 1.1 <dl>
1559     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1560     <dd>
1561     <p>This function combines a simple timer and an I/O watcher, calls your
1562     callback on whichever event happens first and automatically stop both
1563     watchers. This is useful if you want to wait for a single event on an fd
1564 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1565 root 1.1 more watchers yourself.</p>
1566 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1567     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1568     <code>events</code> set will be craeted and started.</p>
1569 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1570 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1571     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1572     dubious value.</p>
1573     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1574 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1575 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1576     value passed to <code>ev_once</code>:</p>
1577 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1578     {
1579     if (revents &amp; EV_TIMEOUT)
1580 root 1.14 /* doh, nothing entered */;
1581 root 1.1 else if (revents &amp; EV_READ)
1582 root 1.14 /* stdin might have data for us, joy! */;
1583 root 1.1 }
1584    
1585 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1586 root 1.1
1587     </pre>
1588     </dd>
1589 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1590 root 1.1 <dd>
1591     <p>Feeds the given event set into the event loop, as if the specified event
1592 root 1.14 had happened for the specified watcher (which must be a pointer to an
1593     initialised but not necessarily started event watcher).</p>
1594 root 1.1 </dd>
1595 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1596 root 1.1 <dd>
1597 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1598     the given events it.</p>
1599 root 1.1 </dd>
1600 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1601 root 1.1 <dd>
1602 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1603     loop!).</p>
1604 root 1.1 </dd>
1605     </dl>
1606    
1607 root 1.35
1608    
1609    
1610    
1611 root 1.1 </div>
1612 root 1.23 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1><p><a href="#TOP" class="toplink">Top</a></p>
1613     <div id="LIBEVENT_EMULATION_CONTENT">
1614 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1615     emulate the internals of libevent, so here are some usage hints:</p>
1616     <dl>
1617     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1618     <dt>* The following members are fully supported: ev_base, ev_callback,
1619     ev_arg, ev_fd, ev_res, ev_events.</dt>
1620     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1621     maintained by libev, it does not work exactly the same way as in libevent (consider
1622     it a private API).</dt>
1623     <dt>* Priorities are not currently supported. Initialising priorities
1624     will fail and all watchers will have the same priority, even though there
1625     is an ev_pri field.</dt>
1626     <dt>* Other members are not supported.</dt>
1627     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1628     to use the libev header file and library.</dt>
1629     </dl>
1630 root 1.23
1631     </div>
1632     <h1 id="C_SUPPORT">C++ SUPPORT</h1><p><a href="#TOP" class="toplink">Top</a></p>
1633     <div id="C_SUPPORT_CONTENT">
1634 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1635     you to use some convinience methods to start/stop watchers and also change
1636     the callback model to a model using method callbacks on objects.</p>
1637     <p>To use it,</p>
1638     <pre> #include &lt;ev++.h&gt;
1639    
1640     </pre>
1641     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1642     and puts all of its definitions (many of them macros) into the global
1643     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1644     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1645     <code>EV_MULTIPLICITY</code>.</p>
1646     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1647     <dl>
1648     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1649     <dd>
1650     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1651     macros from <cite>ev.h</cite>.</p>
1652     </dd>
1653     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1654     <dd>
1655     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1656     </dd>
1657     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1658     <dd>
1659     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1660     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1661     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1662     defines by many implementations.</p>
1663     <p>All of those classes have these methods:</p>
1664     <p>
1665     <dl>
1666     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1667     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1668     <dt>ev::TYPE::~TYPE</dt>
1669     <dd>
1670     <p>The constructor takes a pointer to an object and a method pointer to
1671     the event handler callback to call in this class. The constructor calls
1672     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1673     before starting it. If you do not specify a loop then the constructor
1674     automatically associates the default loop with this watcher.</p>
1675     <p>The destructor automatically stops the watcher if it is active.</p>
1676     </dd>
1677     <dt>w-&gt;set (struct ev_loop *)</dt>
1678     <dd>
1679     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1680     do this when the watcher is inactive (and not pending either).</p>
1681     </dd>
1682     <dt>w-&gt;set ([args])</dt>
1683     <dd>
1684     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1685     called at least once. Unlike the C counterpart, an active watcher gets
1686     automatically stopped and restarted.</p>
1687     </dd>
1688     <dt>w-&gt;start ()</dt>
1689     <dd>
1690     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1691     constructor already takes the loop.</p>
1692     </dd>
1693     <dt>w-&gt;stop ()</dt>
1694     <dd>
1695     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1696     </dd>
1697     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1698     <dd>
1699     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1700     <code>ev_TYPE_again</code> function.</p>
1701     </dd>
1702     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1703     <dd>
1704     <p>Invokes <code>ev_embed_sweep</code>.</p>
1705     </dd>
1706 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1707     <dd>
1708     <p>Invokes <code>ev_stat_stat</code>.</p>
1709     </dd>
1710 root 1.39 </dl>
1711     </p>
1712     </dd>
1713     </dl>
1714     <p>Example: Define a class with an IO and idle watcher, start one of them in
1715     the constructor.</p>
1716     <pre> class myclass
1717     {
1718     ev_io io; void io_cb (ev::io &amp;w, int revents);
1719     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1720    
1721     myclass ();
1722     }
1723    
1724     myclass::myclass (int fd)
1725     : io (this, &amp;myclass::io_cb),
1726     idle (this, &amp;myclass::idle_cb)
1727     {
1728     io.start (fd, ev::READ);
1729     }
1730    
1731 root 1.50
1732    
1733    
1734     </pre>
1735    
1736     </div>
1737     <h1 id="MACRO_MAGIC">MACRO MAGIC</h1><p><a href="#TOP" class="toplink">Top</a></p>
1738     <div id="MACRO_MAGIC_CONTENT">
1739     <p>Libev can be compiled with a variety of options, the most fundemantal is
1740     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1741     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1742     <p>To make it easier to write programs that cope with either variant, the
1743     following macros are defined:</p>
1744     <dl>
1745     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1746     <dd>
1747     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1748     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1749     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1750     <pre> ev_unref (EV_A);
1751     ev_timer_add (EV_A_ watcher);
1752     ev_loop (EV_A_ 0);
1753    
1754     </pre>
1755     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1756     which is often provided by the following macro.</p>
1757     </dd>
1758     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1759     <dd>
1760     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1761     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1762     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1763     <pre> // this is how ev_unref is being declared
1764     static void ev_unref (EV_P);
1765    
1766     // this is how you can declare your typical callback
1767     static void cb (EV_P_ ev_timer *w, int revents)
1768    
1769     </pre>
1770     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1771     suitable for use with <code>EV_A</code>.</p>
1772     </dd>
1773     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1774     <dd>
1775     <p>Similar to the other two macros, this gives you the value of the default
1776     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1777     </dd>
1778     </dl>
1779     <p>Example: Declare and initialise a check watcher, working regardless of
1780     wether multiple loops are supported or not.</p>
1781     <pre> static void
1782     check_cb (EV_P_ ev_timer *w, int revents)
1783     {
1784     ev_check_stop (EV_A_ w);
1785     }
1786    
1787     ev_check check;
1788     ev_check_init (&amp;check, check_cb);
1789     ev_check_start (EV_DEFAULT_ &amp;check);
1790     ev_loop (EV_DEFAULT_ 0);
1791    
1792    
1793    
1794    
1795 root 1.39 </pre>
1796 root 1.23
1797     </div>
1798 root 1.40 <h1 id="EMBEDDING">EMBEDDING</h1><p><a href="#TOP" class="toplink">Top</a></p>
1799     <div id="EMBEDDING_CONTENT">
1800     <p>Libev can (and often is) directly embedded into host
1801     applications. Examples of applications that embed it include the Deliantra
1802     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1803     and rxvt-unicode.</p>
1804     <p>The goal is to enable you to just copy the neecssary files into your
1805     source directory without having to change even a single line in them, so
1806     you can easily upgrade by simply copying (or having a checked-out copy of
1807     libev somewhere in your source tree).</p>
1808    
1809     </div>
1810     <h2 id="FILESETS">FILESETS</h2>
1811     <div id="FILESETS_CONTENT">
1812     <p>Depending on what features you need you need to include one or more sets of files
1813     in your app.</p>
1814    
1815     </div>
1816     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1817     <div id="CORE_EVENT_LOOP_CONTENT">
1818     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1819     configuration (no autoconf):</p>
1820     <pre> #define EV_STANDALONE 1
1821     #include &quot;ev.c&quot;
1822    
1823     </pre>
1824     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1825     single C source file only to provide the function implementations. To use
1826     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1827     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1828     where you can put other configuration options):</p>
1829     <pre> #define EV_STANDALONE 1
1830     #include &quot;ev.h&quot;
1831    
1832     </pre>
1833     <p>Both header files and implementation files can be compiled with a C++
1834     compiler (at least, thats a stated goal, and breakage will be treated
1835     as a bug).</p>
1836     <p>You need the following files in your source tree, or in a directory
1837     in your include path (e.g. in libev/ when using -Ilibev):</p>
1838     <pre> ev.h
1839     ev.c
1840     ev_vars.h
1841     ev_wrap.h
1842    
1843     ev_win32.c required on win32 platforms only
1844    
1845 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1846 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1847     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1848     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1849     ev_port.c only when the solaris port backend is enabled (disabled by default)
1850    
1851     </pre>
1852     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1853 root 1.44 to compile this single file.</p>
1854 root 1.40
1855     </div>
1856     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1857     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1858     <p>To include the libevent compatibility API, also include:</p>
1859     <pre> #include &quot;event.c&quot;
1860    
1861     </pre>
1862     <p>in the file including <cite>ev.c</cite>, and:</p>
1863     <pre> #include &quot;event.h&quot;
1864    
1865     </pre>
1866     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1867     <p>You need the following additional files for this:</p>
1868     <pre> event.h
1869     event.c
1870    
1871     </pre>
1872    
1873     </div>
1874     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1875     <div id="AUTOCONF_SUPPORT_CONTENT">
1876     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1877     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1878 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1879     include <cite>config.h</cite> and configure itself accordingly.</p>
1880 root 1.40 <p>For this of course you need the m4 file:</p>
1881     <pre> libev.m4
1882    
1883     </pre>
1884    
1885     </div>
1886     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1887     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1888     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1889     before including any of its files. The default is not to build for multiplicity
1890     and only include the select backend.</p>
1891     <dl>
1892     <dt>EV_STANDALONE</dt>
1893     <dd>
1894     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1895     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1896     implementations for some libevent functions (such as logging, which is not
1897     supported). It will also not define any of the structs usually found in
1898     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1899     </dd>
1900     <dt>EV_USE_MONOTONIC</dt>
1901     <dd>
1902     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1903     monotonic clock option at both compiletime and runtime. Otherwise no use
1904     of the monotonic clock option will be attempted. If you enable this, you
1905     usually have to link against librt or something similar. Enabling it when
1906     the functionality isn't available is safe, though, althoguh you have
1907     to make sure you link against any libraries where the <code>clock_gettime</code>
1908     function is hiding in (often <cite>-lrt</cite>).</p>
1909     </dd>
1910     <dt>EV_USE_REALTIME</dt>
1911     <dd>
1912     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1913     realtime clock option at compiletime (and assume its availability at
1914     runtime if successful). Otherwise no use of the realtime clock option will
1915     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1916     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1917     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1918     </dd>
1919     <dt>EV_USE_SELECT</dt>
1920     <dd>
1921     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1922     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1923     other method takes over, select will be it. Otherwise the select backend
1924     will not be compiled in.</p>
1925     </dd>
1926     <dt>EV_SELECT_USE_FD_SET</dt>
1927     <dd>
1928     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1929     structure. This is useful if libev doesn't compile due to a missing
1930     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1931     exotic systems. This usually limits the range of file descriptors to some
1932     low limit such as 1024 or might have other limitations (winsocket only
1933     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1934     influence the size of the <code>fd_set</code> used.</p>
1935     </dd>
1936     <dt>EV_SELECT_IS_WINSOCKET</dt>
1937     <dd>
1938     <p>When defined to <code>1</code>, the select backend will assume that
1939     select/socket/connect etc. don't understand file descriptors but
1940     wants osf handles on win32 (this is the case when the select to
1941     be used is the winsock select). This means that it will call
1942     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1943     it is assumed that all these functions actually work on fds, even
1944     on win32. Should not be defined on non-win32 platforms.</p>
1945     </dd>
1946     <dt>EV_USE_POLL</dt>
1947     <dd>
1948     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1949     backend. Otherwise it will be enabled on non-win32 platforms. It
1950     takes precedence over select.</p>
1951     </dd>
1952     <dt>EV_USE_EPOLL</dt>
1953     <dd>
1954     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1955     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1956     otherwise another method will be used as fallback. This is the
1957     preferred backend for GNU/Linux systems.</p>
1958     </dd>
1959     <dt>EV_USE_KQUEUE</dt>
1960     <dd>
1961     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1962     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1963     otherwise another method will be used as fallback. This is the preferred
1964     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1965     supports some types of fds correctly (the only platform we found that
1966     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1967     not be used unless explicitly requested. The best way to use it is to find
1968 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1969 root 1.40 kqueue loop.</p>
1970     </dd>
1971     <dt>EV_USE_PORT</dt>
1972     <dd>
1973     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1974     10 port style backend. Its availability will be detected at runtime,
1975     otherwise another method will be used as fallback. This is the preferred
1976     backend for Solaris 10 systems.</p>
1977     </dd>
1978     <dt>EV_USE_DEVPOLL</dt>
1979     <dd>
1980     <p>reserved for future expansion, works like the USE symbols above.</p>
1981     </dd>
1982     <dt>EV_H</dt>
1983     <dd>
1984     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1985     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1986     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1987     </dd>
1988     <dt>EV_CONFIG_H</dt>
1989     <dd>
1990     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
1991     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
1992     <code>EV_H</code>, above.</p>
1993     </dd>
1994     <dt>EV_EVENT_H</dt>
1995     <dd>
1996     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
1997     of how the <cite>event.h</cite> header can be found.</p>
1998     </dd>
1999     <dt>EV_PROTOTYPES</dt>
2000     <dd>
2001     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2002     prototypes, but still define all the structs and other symbols. This is
2003     occasionally useful if you want to provide your own wrapper functions
2004     around libev functions.</p>
2005     </dd>
2006     <dt>EV_MULTIPLICITY</dt>
2007     <dd>
2008     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2009     will have the <code>struct ev_loop *</code> as first argument, and you can create
2010     additional independent event loops. Otherwise there will be no support
2011     for multiple event loops and there is no first event loop pointer
2012     argument. Instead, all functions act on the single default loop.</p>
2013     </dd>
2014 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2015     <dd>
2016     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2017     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2018     code.</p>
2019     </dd>
2020     <dt>EV_EMBED_ENABLE</dt>
2021     <dd>
2022     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2023     defined to be <code>0</code>, then they are not.</p>
2024     </dd>
2025     <dt>EV_STAT_ENABLE</dt>
2026     <dd>
2027     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2028     defined to be <code>0</code>, then they are not.</p>
2029     </dd>
2030 root 1.50 <dt>EV_FORK_ENABLE</dt>
2031     <dd>
2032     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2033     defined to be <code>0</code>, then they are not.</p>
2034     </dd>
2035 root 1.48 <dt>EV_MINIMAL</dt>
2036 root 1.40 <dd>
2037 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2038     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2039     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2040 root 1.40 </dd>
2041 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2042     <dd>
2043     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2044     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2045     than enough. If you need to manage thousands of children you might want to
2046     increase this value.</p>
2047     </dd>
2048 root 1.40 <dt>EV_COMMON</dt>
2049     <dd>
2050     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2051     this macro to a something else you can include more and other types of
2052     members. You have to define it each time you include one of the files,
2053     though, and it must be identical each time.</p>
2054     <p>For example, the perl EV module uses something like this:</p>
2055     <pre> #define EV_COMMON \
2056     SV *self; /* contains this struct */ \
2057     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2058    
2059     </pre>
2060     </dd>
2061 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2062     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2063     <dt>ev_set_cb (ev, cb)</dt>
2064 root 1.40 <dd>
2065     <p>Can be used to change the callback member declaration in each watcher,
2066     and the way callbacks are invoked and set. Must expand to a struct member
2067     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2068     their default definitions. One possible use for overriding these is to
2069 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2070     method calls instead of plain function calls in C++.</p>
2071 root 1.40
2072     </div>
2073     <h2 id="EXAMPLES">EXAMPLES</h2>
2074     <div id="EXAMPLES_CONTENT">
2075     <p>For a real-world example of a program the includes libev
2076     verbatim, you can have a look at the EV perl module
2077     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2078     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2079     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2080     will be compiled. It is pretty complex because it provides its own header
2081     file.</p>
2082     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2083     that everybody includes and which overrides some autoconf choices:</p>
2084 root 1.41 <pre> #define EV_USE_POLL 0
2085     #define EV_MULTIPLICITY 0
2086     #define EV_PERIODICS 0
2087     #define EV_CONFIG_H &lt;config.h&gt;
2088 root 1.40
2089 root 1.41 #include &quot;ev++.h&quot;
2090 root 1.40
2091     </pre>
2092     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2093 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2094     #include &quot;ev.c&quot;
2095 root 1.40
2096 root 1.47
2097    
2098    
2099 root 1.40 </pre>
2100    
2101     </div>
2102 root 1.47 <h1 id="COMPLEXITIES">COMPLEXITIES</h1><p><a href="#TOP" class="toplink">Top</a></p>
2103     <div id="COMPLEXITIES_CONTENT">
2104     <p>In this section the complexities of (many of) the algorithms used inside
2105     libev will be explained. For complexity discussions about backends see the
2106     documentation for <code>ev_default_init</code>.</p>
2107     <p>
2108     <dl>
2109     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2110     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2111     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2112     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2113     <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
2114     <dt>Finding the next timer per loop iteration: O(1)</dt>
2115     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2116     <dt>Activating one watcher: O(1)</dt>
2117     </dl>
2118     </p>
2119    
2120    
2121    
2122    
2123    
2124     </div>
2125 root 1.1 <h1 id="AUTHOR">AUTHOR</h1><p><a href="#TOP" class="toplink">Top</a></p>
2126     <div id="AUTHOR_CONTENT">
2127 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2128 root 1.1
2129     </div>
2130     </div></body>
2131     </html>