ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.55
Committed: Tue Nov 27 20:29:12 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.54: +19 -19 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.55 <meta name="created" content="Tue Nov 27 21:29:04 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124     <p>Libev is an event loop: you register interest in certain events (such as a
125     file descriptor being readable or a timeout occuring), and it will manage
126 root 1.4 these event sources and provide your program with events.</p>
127 root 1.1 <p>To do this, it must take more or less complete control over your process
128     (or thread) by executing the <i>event loop</i> handler, and will then
129     communicate events via a callback mechanism.</p>
130     <p>You register interest in certain events by registering so-called <i>event
131     watchers</i>, which are relatively small C structures you initialise with the
132     details of the event, and then hand it over to libev by <i>starting</i> the
133     watcher.</p>
134    
135     </div>
136 root 1.55 <h1 id="FEATURES">FEATURES</h1>
137 root 1.1 <div id="FEATURES_CONTENT">
138 root 1.54 <p>Libev supports <code>select</code>, <code>poll</code>, the linux-specific <code>epoll</code>, the
139     bsd-specific <code>kqueue</code> and the solaris-specific event port mechanisms
140     for file descriptor events (<code>ev_io</code>), relative timers (<code>ev_timer</code>),
141     absolute timers with customised rescheduling (<code>ev_periodic</code>), synchronous
142     signals (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and
143     event watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
144     <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
145     file watchers (<code>ev_stat</code>) and even limited support for fork events
146     (<code>ev_fork</code>).</p>
147     <p>It also is quite fast (see this
148     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
149     for example).</p>
150 root 1.1
151     </div>
152 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
153 root 1.1 <div id="CONVENTIONS_CONTENT">
154 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
155     be described, which supports multiple event loops. For more info about
156     various configuration options please have a look at <strong>EMBED</strong> section in
157     this manual. If libev was configured without support for multiple event
158     loops, then all functions taking an initial argument of name <code>loop</code>
159     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
160 root 1.1
161     </div>
162 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
163 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
164 root 1.2 <p>Libev represents time as a single floating point number, representing the
165     (fractional) number of seconds since the (POSIX) epoch (somewhere near
166     the beginning of 1970, details are complicated, don't ask). This type is
167 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
168 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
169     it, you should treat it as such.</p>
170    
171 root 1.18 </div>
172 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
173 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
174 root 1.21 <p>These functions can be called anytime, even before initialising the
175     library in any way.</p>
176 root 1.1 <dl>
177     <dt>ev_tstamp ev_time ()</dt>
178     <dd>
179 root 1.28 <p>Returns the current time as libev would use it. Please note that the
180     <code>ev_now</code> function is usually faster and also often returns the timestamp
181     you actually want to know.</p>
182 root 1.1 </dd>
183     <dt>int ev_version_major ()</dt>
184     <dt>int ev_version_minor ()</dt>
185     <dd>
186     <p>You can find out the major and minor version numbers of the library
187     you linked against by calling the functions <code>ev_version_major</code> and
188     <code>ev_version_minor</code>. If you want, you can compare against the global
189     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
190     version of the library your program was compiled against.</p>
191 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
192 root 1.1 as this indicates an incompatible change. Minor versions are usually
193     compatible to older versions, so a larger minor version alone is usually
194     not a problem.</p>
195 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
196     version.</p>
197 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
198     ev_version_major () == EV_VERSION_MAJOR
199     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
200    
201     </pre>
202 root 1.1 </dd>
203 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
204     <dd>
205     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
206     value) compiled into this binary of libev (independent of their
207     availability on the system you are running on). See <code>ev_default_loop</code> for
208     a description of the set values.</p>
209 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
210     a must have and can we have a torrent of it please!!!11</p>
211     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
212     ev_supported_backends () &amp; EVBACKEND_EPOLL));
213    
214     </pre>
215 root 1.32 </dd>
216     <dt>unsigned int ev_recommended_backends ()</dt>
217     <dd>
218     <p>Return the set of all backends compiled into this binary of libev and also
219     recommended for this platform. This set is often smaller than the one
220     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
221     most BSDs and will not be autodetected unless you explicitly request it
222     (assuming you know what you are doing). This is the set of backends that
223 root 1.34 libev will probe for if you specify no backends explicitly.</p>
224 root 1.32 </dd>
225 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
226     <dd>
227     <p>Returns the set of backends that are embeddable in other event loops. This
228     is the theoretical, all-platform, value. To find which backends
229     might be supported on the current system, you would need to look at
230     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
231     recommended ones.</p>
232     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
233     </dd>
234 root 1.52 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt>
235 root 1.1 <dd>
236 root 1.52 <p>Sets the allocation function to use (the prototype and semantics are
237     identical to the realloc C function). It is used to allocate and free
238     memory (no surprises here). If it returns zero when memory needs to be
239     allocated, the library might abort or take some potentially destructive
240     action. The default is your system realloc function.</p>
241 root 1.1 <p>You could override this function in high-availability programs to, say,
242     free some memory if it cannot allocate memory, to use a special allocator,
243     or even to sleep a while and retry until some memory is available.</p>
244 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
245     retries).</p>
246 root 1.35 <pre> static void *
247 root 1.52 persistent_realloc (void *ptr, size_t size)
248 root 1.35 {
249     for (;;)
250     {
251     void *newptr = realloc (ptr, size);
252    
253     if (newptr)
254     return newptr;
255    
256     sleep (60);
257     }
258     }
259    
260     ...
261     ev_set_allocator (persistent_realloc);
262    
263     </pre>
264 root 1.1 </dd>
265     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
266     <dd>
267     <p>Set the callback function to call on a retryable syscall error (such
268     as failed select, poll, epoll_wait). The message is a printable string
269     indicating the system call or subsystem causing the problem. If this
270     callback is set, then libev will expect it to remedy the sitution, no
271 root 1.7 matter what, when it returns. That is, libev will generally retry the
272 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
273     (such as abort).</p>
274 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
275 root 1.35 <pre> static void
276     fatal_error (const char *msg)
277     {
278     perror (msg);
279     abort ();
280     }
281    
282     ...
283     ev_set_syserr_cb (fatal_error);
284    
285     </pre>
286 root 1.1 </dd>
287     </dl>
288    
289     </div>
290 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
291 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
292     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
293     types of such loops, the <i>default</i> loop, which supports signals and child
294     events, and dynamically created loops which do not.</p>
295     <p>If you use threads, a common model is to run the default event loop
296 root 1.18 in your main thread (or in a separate thread) and for each thread you
297 root 1.7 create, you also create another event loop. Libev itself does no locking
298     whatsoever, so if you mix calls to the same event loop in different
299     threads, make sure you lock (this is usually a bad idea, though, even if
300 root 1.9 done correctly, because it's hideous and inefficient).</p>
301 root 1.1 <dl>
302     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
303     <dd>
304     <p>This will initialise the default event loop if it hasn't been initialised
305     yet and return it. If the default loop could not be initialised, returns
306     false. If it already was initialised it simply returns it (and ignores the
307 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
308 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
309     function.</p>
310     <p>The flags argument can be used to specify special behaviour or specific
311 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
312     <p>The following flags are supported:</p>
313 root 1.1 <p>
314     <dl>
315 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
316 root 1.1 <dd>
317 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
318 root 1.1 thing, believe me).</p>
319     </dd>
320 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
321 root 1.1 <dd>
322 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
323     or setgid) then libev will <i>not</i> look at the environment variable
324     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
325     override the flags completely if it is found in the environment. This is
326     useful to try out specific backends to test their performance, or to work
327     around bugs.</p>
328 root 1.1 </dd>
329 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
330 root 1.29 <dd>
331     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
332     libev tries to roll its own fd_set with no limits on the number of fds,
333     but if that fails, expect a fairly low limit on the number of fds when
334     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
335     the fastest backend for a low number of fds.</p>
336     </dd>
337 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
338 root 1.29 <dd>
339     <p>And this is your standard poll(2) backend. It's more complicated than
340     select, but handles sparse fds better and has no artificial limit on the
341     number of fds you can use (except it will slow down considerably with a
342     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
343     </dd>
344 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
345 root 1.29 <dd>
346     <p>For few fds, this backend is a bit little slower than poll and select,
347     but it scales phenomenally better. While poll and select usually scale like
348     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
349     either O(1) or O(active_fds).</p>
350     <p>While stopping and starting an I/O watcher in the same iteration will
351     result in some caching, there is still a syscall per such incident
352     (because the fd could point to a different file description now), so its
353     best to avoid that. Also, dup()ed file descriptors might not work very
354     well if you register events for both fds.</p>
355 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
356     need to use non-blocking I/O or other means to avoid blocking when no data
357     (or space) is available.</p>
358 root 1.29 </dd>
359 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
360 root 1.29 <dd>
361     <p>Kqueue deserves special mention, as at the time of this writing, it
362     was broken on all BSDs except NetBSD (usually it doesn't work with
363     anything but sockets and pipes, except on Darwin, where of course its
364 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
365     unless you explicitly specify it explicitly in the flags (i.e. using
366     <code>EVBACKEND_KQUEUE</code>).</p>
367 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
368     kernel is more efficient (which says nothing about its actual speed, of
369     course). While starting and stopping an I/O watcher does not cause an
370     extra syscall as with epoll, it still adds up to four event changes per
371     incident, so its best to avoid that.</p>
372     </dd>
373 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
374 root 1.29 <dd>
375     <p>This is not implemented yet (and might never be).</p>
376     </dd>
377 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
378 root 1.29 <dd>
379     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
380     it's really slow, but it still scales very well (O(active_fds)).</p>
381 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
382     notifications, so you need to use non-blocking I/O or other means to avoid
383     blocking when no data (or space) is available.</p>
384 root 1.29 </dd>
385 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
386 root 1.29 <dd>
387 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
388     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
389 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
390 root 1.1 </dd>
391     </dl>
392     </p>
393 root 1.29 <p>If one or more of these are ored into the flags value, then only these
394     backends will be tried (in the reverse order as given here). If none are
395     specified, most compiled-in backend will be tried, usually in reverse
396     order of their flag values :)</p>
397 root 1.34 <p>The most typical usage is like this:</p>
398     <pre> if (!ev_default_loop (0))
399     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
400    
401     </pre>
402     <p>Restrict libev to the select and poll backends, and do not allow
403     environment settings to be taken into account:</p>
404     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
405    
406     </pre>
407     <p>Use whatever libev has to offer, but make sure that kqueue is used if
408     available (warning, breaks stuff, best use only with your own private
409     event loop and only if you know the OS supports your types of fds):</p>
410     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
411    
412     </pre>
413 root 1.1 </dd>
414     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
415     <dd>
416     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
417     always distinct from the default loop. Unlike the default loop, it cannot
418     handle signal and child watchers, and attempts to do so will be greeted by
419     undefined behaviour (or a failed assertion if assertions are enabled).</p>
420 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
421 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
422     if (!epoller)
423     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
424    
425     </pre>
426 root 1.1 </dd>
427     <dt>ev_default_destroy ()</dt>
428     <dd>
429     <p>Destroys the default loop again (frees all memory and kernel state
430 root 1.38 etc.). None of the active event watchers will be stopped in the normal
431     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
432     responsibility to either stop all watchers cleanly yoursef <i>before</i>
433     calling this function, or cope with the fact afterwards (which is usually
434     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
435     for example).</p>
436 root 1.1 </dd>
437     <dt>ev_loop_destroy (loop)</dt>
438     <dd>
439     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
440     earlier call to <code>ev_loop_new</code>.</p>
441     </dd>
442     <dt>ev_default_fork ()</dt>
443     <dd>
444     <p>This function reinitialises the kernel state for backends that have
445     one. Despite the name, you can call it anytime, but it makes most sense
446     after forking, in either the parent or child process (or both, but that
447     again makes little sense).</p>
448 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
449     only if you want to use the event library in both processes. If you just
450     fork+exec, you don't have to call it.</p>
451 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
452 root 1.1 it just in case after a fork. To make this easy, the function will fit in
453     quite nicely into a call to <code>pthread_atfork</code>:</p>
454     <pre> pthread_atfork (0, 0, ev_default_fork);
455    
456     </pre>
457 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
458     without calling this function, so if you force one of those backends you
459     do not need to care.</p>
460 root 1.1 </dd>
461     <dt>ev_loop_fork (loop)</dt>
462     <dd>
463     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
464     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
465     after fork, and how you do this is entirely your own problem.</p>
466     </dd>
467 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
468 root 1.1 <dd>
469 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
470 root 1.1 use.</p>
471     </dd>
472 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
473 root 1.1 <dd>
474     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
475 root 1.35 received events and started processing them. This timestamp does not
476     change as long as callbacks are being processed, and this is also the base
477     time used for relative timers. You can treat it as the timestamp of the
478     event occuring (or more correctly, libev finding out about it).</p>
479 root 1.1 </dd>
480     <dt>ev_loop (loop, int flags)</dt>
481     <dd>
482     <p>Finally, this is it, the event handler. This function usually is called
483     after you initialised all your watchers and you want to start handling
484     events.</p>
485 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
486     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
487 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
488     relying on all watchers to be stopped when deciding when a program has
489     finished (especially in interactive programs), but having a program that
490     automatically loops as long as it has to and no longer by virtue of
491     relying on its watchers stopping correctly is a thing of beauty.</p>
492 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
493     those events and any outstanding ones, but will not block your process in
494 root 1.9 case there are no events and will return after one iteration of the loop.</p>
495 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
496     neccessary) and will handle those and any outstanding ones. It will block
497 root 1.9 your process until at least one new event arrives, and will return after
498 root 1.34 one iteration of the loop. This is useful if you are waiting for some
499     external event in conjunction with something not expressible using other
500     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
501     usually a better approach for this kind of thing.</p>
502     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
503     <pre> * If there are no active watchers (reference count is zero), return.
504     - Queue prepare watchers and then call all outstanding watchers.
505     - If we have been forked, recreate the kernel state.
506     - Update the kernel state with all outstanding changes.
507     - Update the &quot;event loop time&quot;.
508     - Calculate for how long to block.
509     - Block the process, waiting for any events.
510     - Queue all outstanding I/O (fd) events.
511     - Update the &quot;event loop time&quot; and do time jump handling.
512     - Queue all outstanding timers.
513     - Queue all outstanding periodics.
514     - If no events are pending now, queue all idle watchers.
515     - Queue all check watchers.
516     - Call all queued watchers in reverse order (i.e. check watchers first).
517     Signals and child watchers are implemented as I/O watchers, and will
518     be handled here by queueing them when their watcher gets executed.
519     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
520     were used, return, otherwise continue with step *.
521 root 1.28
522     </pre>
523 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
524 root 1.35 anymore.</p>
525     <pre> ... queue jobs here, make sure they register event watchers as long
526     ... as they still have work to do (even an idle watcher will do..)
527     ev_loop (my_loop, 0);
528     ... jobs done. yeah!
529    
530     </pre>
531 root 1.1 </dd>
532     <dt>ev_unloop (loop, how)</dt>
533     <dd>
534 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
535     has processed all outstanding events). The <code>how</code> argument must be either
536 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
537 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
538 root 1.1 </dd>
539     <dt>ev_ref (loop)</dt>
540     <dt>ev_unref (loop)</dt>
541     <dd>
542 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
543     loop: Every watcher keeps one reference, and as long as the reference
544     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
545     a watcher you never unregister that should not keep <code>ev_loop</code> from
546     returning, ev_unref() after starting, and ev_ref() before stopping it. For
547     example, libev itself uses this for its internal signal pipe: It is not
548     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
549     no event watchers registered by it are active. It is also an excellent
550     way to do this for generic recurring timers or from within third-party
551     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
552 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
553 root 1.35 running when nothing else is active.</p>
554 root 1.54 <pre> struct ev_signal exitsig;
555 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
556 root 1.54 ev_signal_start (loop, &amp;exitsig);
557     evf_unref (loop);
558 root 1.35
559     </pre>
560 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
561     <pre> ev_ref (loop);
562     ev_signal_stop (loop, &amp;exitsig);
563 root 1.35
564     </pre>
565 root 1.1 </dd>
566     </dl>
567    
568 root 1.43
569    
570    
571    
572 root 1.1 </div>
573 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
574 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
575     <p>A watcher is a structure that you create and register to record your
576     interest in some event. For instance, if you want to wait for STDIN to
577 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
578 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
579     {
580     ev_io_stop (w);
581     ev_unloop (loop, EVUNLOOP_ALL);
582     }
583    
584     struct ev_loop *loop = ev_default_loop (0);
585     struct ev_io stdin_watcher;
586     ev_init (&amp;stdin_watcher, my_cb);
587     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
588     ev_io_start (loop, &amp;stdin_watcher);
589     ev_loop (loop, 0);
590    
591     </pre>
592     <p>As you can see, you are responsible for allocating the memory for your
593     watcher structures (and it is usually a bad idea to do this on the stack,
594     although this can sometimes be quite valid).</p>
595     <p>Each watcher structure must be initialised by a call to <code>ev_init
596     (watcher *, callback)</code>, which expects a callback to be provided. This
597     callback gets invoked each time the event occurs (or, in the case of io
598     watchers, each time the event loop detects that the file descriptor given
599     is readable and/or writable).</p>
600     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
601     with arguments specific to this watcher type. There is also a macro
602     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
603     (watcher *, callback, ...)</code>.</p>
604     <p>To make the watcher actually watch out for events, you have to start it
605     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
606     *)</code>), and you can stop watching for events at any time by calling the
607     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
608     <p>As long as your watcher is active (has been started but not stopped) you
609     must not touch the values stored in it. Most specifically you must never
610 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
611 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
612     registered watcher structure as second, and a bitset of received events as
613     third argument.</p>
614 root 1.14 <p>The received events usually include a single bit per event type received
615 root 1.1 (you can receive multiple events at the same time). The possible bit masks
616     are:</p>
617     <dl>
618 root 1.10 <dt><code>EV_READ</code></dt>
619     <dt><code>EV_WRITE</code></dt>
620 root 1.1 <dd>
621 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
622 root 1.1 writable.</p>
623     </dd>
624 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
625 root 1.1 <dd>
626 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
627 root 1.1 </dd>
628 root 1.10 <dt><code>EV_PERIODIC</code></dt>
629 root 1.1 <dd>
630 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
631 root 1.1 </dd>
632 root 1.10 <dt><code>EV_SIGNAL</code></dt>
633 root 1.1 <dd>
634 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
635 root 1.1 </dd>
636 root 1.10 <dt><code>EV_CHILD</code></dt>
637 root 1.1 <dd>
638 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
639 root 1.1 </dd>
640 root 1.48 <dt><code>EV_STAT</code></dt>
641     <dd>
642     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
643     </dd>
644 root 1.10 <dt><code>EV_IDLE</code></dt>
645 root 1.1 <dd>
646 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
647 root 1.1 </dd>
648 root 1.10 <dt><code>EV_PREPARE</code></dt>
649     <dt><code>EV_CHECK</code></dt>
650 root 1.1 <dd>
651 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
652     to gather new events, and all <code>ev_check</code> watchers are invoked just after
653 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
654     received events. Callbacks of both watcher types can start and stop as
655     many watchers as they want, and all of them will be taken into account
656 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
657 root 1.1 <code>ev_loop</code> from blocking).</p>
658     </dd>
659 root 1.50 <dt><code>EV_EMBED</code></dt>
660     <dd>
661     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
662     </dd>
663     <dt><code>EV_FORK</code></dt>
664     <dd>
665     <p>The event loop has been resumed in the child process after fork (see
666     <code>ev_fork</code>).</p>
667     </dd>
668 root 1.10 <dt><code>EV_ERROR</code></dt>
669 root 1.1 <dd>
670     <p>An unspecified error has occured, the watcher has been stopped. This might
671     happen because the watcher could not be properly started because libev
672     ran out of memory, a file descriptor was found to be closed or any other
673     problem. You best act on it by reporting the problem and somehow coping
674     with the watcher being stopped.</p>
675     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
676     for example it might indicate that a fd is readable or writable, and if
677     your callbacks is well-written it can just attempt the operation and cope
678     with the error from read() or write(). This will not work in multithreaded
679     programs, though, so beware.</p>
680     </dd>
681     </dl>
682    
683     </div>
684 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
685     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
686 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
687     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
688     <dl>
689     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
690     <dd>
691     <p>This macro initialises the generic portion of a watcher. The contents
692     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
693     the generic parts of the watcher are initialised, you <i>need</i> to call
694     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
695     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
696     which rolls both calls into one.</p>
697     <p>You can reinitialise a watcher at any time as long as it has been stopped
698     (or never started) and there are no pending events outstanding.</p>
699 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
700 root 1.37 int revents)</code>.</p>
701     </dd>
702     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
703     <dd>
704     <p>This macro initialises the type-specific parts of a watcher. You need to
705     call <code>ev_init</code> at least once before you call this macro, but you can
706     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
707     macro on a watcher that is active (it can be pending, however, which is a
708     difference to the <code>ev_init</code> macro).</p>
709     <p>Although some watcher types do not have type-specific arguments
710     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
711     </dd>
712     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
713     <dd>
714     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
715     calls into a single call. This is the most convinient method to initialise
716     a watcher. The same limitations apply, of course.</p>
717     </dd>
718     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
719     <dd>
720     <p>Starts (activates) the given watcher. Only active watchers will receive
721     events. If the watcher is already active nothing will happen.</p>
722     </dd>
723     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
724     <dd>
725     <p>Stops the given watcher again (if active) and clears the pending
726     status. It is possible that stopped watchers are pending (for example,
727     non-repeating timers are being stopped when they become pending), but
728     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
729     you want to free or reuse the memory used by the watcher it is therefore a
730     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
731     </dd>
732     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
733     <dd>
734     <p>Returns a true value iff the watcher is active (i.e. it has been started
735     and not yet been stopped). As long as a watcher is active you must not modify
736     it.</p>
737     </dd>
738     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
739     <dd>
740     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
741     events but its callback has not yet been invoked). As long as a watcher
742     is pending (but not active) you must not call an init function on it (but
743     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
744     libev (e.g. you cnanot <code>free ()</code> it).</p>
745     </dd>
746     <dt>callback = ev_cb (ev_TYPE *watcher)</dt>
747     <dd>
748     <p>Returns the callback currently set on the watcher.</p>
749     </dd>
750     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
751     <dd>
752     <p>Change the callback. You can change the callback at virtually any time
753     (modulo threads).</p>
754     </dd>
755     </dl>
756    
757    
758    
759    
760    
761     </div>
762 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
763     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
764     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
765 root 1.14 and read at any time, libev will completely ignore it. This can be used
766 root 1.1 to associate arbitrary data with your watcher. If you need more data and
767     don't want to allocate memory and store a pointer to it in that data
768     member, you can also &quot;subclass&quot; the watcher type and provide your own
769     data:</p>
770     <pre> struct my_io
771     {
772     struct ev_io io;
773     int otherfd;
774     void *somedata;
775     struct whatever *mostinteresting;
776     }
777    
778     </pre>
779     <p>And since your callback will be called with a pointer to the watcher, you
780     can cast it back to your own type:</p>
781     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
782     {
783     struct my_io *w = (struct my_io *)w_;
784     ...
785     }
786    
787     </pre>
788     <p>More interesting and less C-conformant ways of catsing your callback type
789     have been omitted....</p>
790    
791    
792    
793    
794    
795     </div>
796 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
797 root 1.1 <div id="WATCHER_TYPES_CONTENT">
798     <p>This section describes each watcher in detail, but will not repeat
799 root 1.48 information given in the last section. Any initialisation/set macros,
800     functions and members specific to the watcher type are explained.</p>
801     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
802     while the watcher is active, you can look at the member and expect some
803     sensible content, but you must not modify it (you can modify it while the
804     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
805     means you can expect it to have some sensible content while the watcher
806     is active, but you can also modify it. Modifying it may not do something
807     sensible or take immediate effect (or do anything at all), but libev will
808     not crash or malfunction in any way.</p>
809 root 1.1
810 root 1.35
811    
812    
813    
814 root 1.1 </div>
815 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
816 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
817 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
818 root 1.43 in each iteration of the event loop, or, more precisely, when reading
819     would not block the process and writing would at least be able to write
820     some data. This behaviour is called level-triggering because you keep
821     receiving events as long as the condition persists. Remember you can stop
822     the watcher if you don't want to act on the event and neither want to
823     receive future events.</p>
824 root 1.25 <p>In general you can register as many read and/or write event watchers per
825 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
826     descriptors to non-blocking mode is also usually a good idea (but not
827     required if you know what you are doing).</p>
828     <p>You have to be careful with dup'ed file descriptors, though. Some backends
829     (the linux epoll backend is a notable example) cannot handle dup'ed file
830     descriptors correctly if you register interest in two or more fds pointing
831 root 1.43 to the same underlying file/socket/etc. description (that is, they share
832 root 1.26 the same underlying &quot;file open&quot;).</p>
833 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
834 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
835     <code>EVBACKEND_POLL</code>).</p>
836 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
837     receive &quot;spurious&quot; readyness notifications, that is your callback might
838     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
839     because there is no data. Not only are some backends known to create a
840     lot of those (for example solaris ports), it is very easy to get into
841     this situation even with a relatively standard program structure. Thus
842     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
843     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
844     <p>If you cannot run the fd in non-blocking mode (for example you should not
845     play around with an Xlib connection), then you have to seperately re-test
846     wether a file descriptor is really ready with a known-to-be good interface
847     such as poll (fortunately in our Xlib example, Xlib already does this on
848     its own, so its quite safe to use).</p>
849 root 1.1 <dl>
850     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
851     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
852     <dd>
853 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
854     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
855     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
856 root 1.1 </dd>
857 root 1.48 <dt>int fd [read-only]</dt>
858     <dd>
859     <p>The file descriptor being watched.</p>
860     </dd>
861     <dt>int events [read-only]</dt>
862     <dd>
863     <p>The events being watched.</p>
864     </dd>
865 root 1.1 </dl>
866 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
867 root 1.35 readable, but only once. Since it is likely line-buffered, you could
868 root 1.54 attempt to read a whole line in the callback.</p>
869 root 1.35 <pre> static void
870     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
871     {
872     ev_io_stop (loop, w);
873     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
874     }
875    
876     ...
877     struct ev_loop *loop = ev_default_init (0);
878     struct ev_io stdin_readable;
879     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
880     ev_io_start (loop, &amp;stdin_readable);
881     ev_loop (loop, 0);
882    
883    
884    
885    
886     </pre>
887 root 1.1
888     </div>
889 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
890 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
891 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
892     given time, and optionally repeating in regular intervals after that.</p>
893     <p>The timers are based on real time, that is, if you register an event that
894 root 1.25 times out after an hour and you reset your system clock to last years
895 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
896 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
897 root 1.1 monotonic clock option helps a lot here).</p>
898 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
899     time. This is usually the right thing as this timestamp refers to the time
900 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
901     you suspect event processing to be delayed and you <i>need</i> to base the timeout
902 root 1.25 on the current time, use something like this to adjust for this:</p>
903 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
904    
905     </pre>
906 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
907     but if multiple timers become ready during the same loop iteration then
908     order of execution is undefined.</p>
909 root 1.1 <dl>
910     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
911     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
912     <dd>
913     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
914     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
915     timer will automatically be configured to trigger again <code>repeat</code> seconds
916     later, again, and again, until stopped manually.</p>
917     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
918     configure a timer to trigger every 10 seconds, then it will trigger at
919     exactly 10 second intervals. If, however, your program cannot keep up with
920 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
921 root 1.1 timer will not fire more than once per event loop iteration.</p>
922     </dd>
923     <dt>ev_timer_again (loop)</dt>
924     <dd>
925     <p>This will act as if the timer timed out and restart it again if it is
926     repeating. The exact semantics are:</p>
927     <p>If the timer is started but nonrepeating, stop it.</p>
928     <p>If the timer is repeating, either start it if necessary (with the repeat
929     value), or reset the running timer to the repeat value.</p>
930     <p>This sounds a bit complicated, but here is a useful and typical
931 root 1.48 example: Imagine you have a tcp connection and you want a so-called
932     idle timeout, that is, you want to be called when there have been,
933     say, 60 seconds of inactivity on the socket. The easiest way to do
934     this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
935     <code>ev_timer_again</code> each time you successfully read or write some data. If
936     you go into an idle state where you do not expect data to travel on the
937     socket, you can stop the timer, and again will automatically restart it if
938     need be.</p>
939     <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
940     and only ever use the <code>repeat</code> value:</p>
941     <pre> ev_timer_init (timer, callback, 0., 5.);
942     ev_timer_again (loop, timer);
943     ...
944     timer-&gt;again = 17.;
945     ev_timer_again (loop, timer);
946     ...
947     timer-&gt;again = 10.;
948     ev_timer_again (loop, timer);
949    
950     </pre>
951     <p>This is more efficient then stopping/starting the timer eahc time you want
952     to modify its timeout value.</p>
953     </dd>
954     <dt>ev_tstamp repeat [read-write]</dt>
955     <dd>
956     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
957     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
958     which is also when any modifications are taken into account.</p>
959 root 1.1 </dd>
960     </dl>
961 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
962 root 1.35 <pre> static void
963     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
964     {
965     .. one minute over, w is actually stopped right here
966     }
967    
968     struct ev_timer mytimer;
969     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
970     ev_timer_start (loop, &amp;mytimer);
971    
972     </pre>
973 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
974 root 1.35 inactivity.</p>
975     <pre> static void
976     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
977     {
978     .. ten seconds without any activity
979     }
980    
981     struct ev_timer mytimer;
982     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
983     ev_timer_again (&amp;mytimer); /* start timer */
984     ev_loop (loop, 0);
985    
986     // and in some piece of code that gets executed on any &quot;activity&quot;:
987     // reset the timeout to start ticking again at 10 seconds
988     ev_timer_again (&amp;mytimer);
989    
990    
991    
992    
993     </pre>
994 root 1.1
995     </div>
996 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
997 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
998 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
999     (and unfortunately a bit complex).</p>
1000 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1001 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1002     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1003 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1004     + 10.</code>) and then reset your system clock to the last year, then it will
1005 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1006 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1007     again).</p>
1008     <p>They can also be used to implement vastly more complex timers, such as
1009     triggering an event on eahc midnight, local time.</p>
1010 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1011     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1012     during the same loop iteration then order of execution is undefined.</p>
1013 root 1.1 <dl>
1014     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1015     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1016     <dd>
1017     <p>Lots of arguments, lets sort it out... There are basically three modes of
1018     operation, and we will explain them from simplest to complex:</p>
1019     <p>
1020     <dl>
1021     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1022     <dd>
1023     <p>In this configuration the watcher triggers an event at the wallclock time
1024     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1025     that is, if it is to be run at January 1st 2011 then it will run when the
1026     system time reaches or surpasses this time.</p>
1027     </dd>
1028     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1029     <dd>
1030     <p>In this mode the watcher will always be scheduled to time out at the next
1031     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1032     of any time jumps.</p>
1033     <p>This can be used to create timers that do not drift with respect to system
1034     time:</p>
1035     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1036    
1037     </pre>
1038     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1039     but only that the the callback will be called when the system time shows a
1040 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1041 root 1.1 by 3600.</p>
1042     <p>Another way to think about it (for the mathematically inclined) is that
1043 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1044 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1045     </dd>
1046     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1047     <dd>
1048     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1049     ignored. Instead, each time the periodic watcher gets scheduled, the
1050     reschedule callback will be called with the watcher as first, and the
1051     current time as second argument.</p>
1052 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1053     ever, or make any event loop modifications</i>. If you need to stop it,
1054     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1055     starting a prepare watcher).</p>
1056 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1057     ev_tstamp now)</code>, e.g.:</p>
1058 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1059     {
1060     return now + 60.;
1061     }
1062    
1063     </pre>
1064     <p>It must return the next time to trigger, based on the passed time value
1065     (that is, the lowest time value larger than to the second argument). It
1066     will usually be called just before the callback will be triggered, but
1067     might be called at other times, too.</p>
1068 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1069 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1070 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1071     triggers on each midnight, local time. To do this, you would calculate the
1072 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1073     you do this is, again, up to you (but it is not trivial, which is the main
1074     reason I omitted it as an example).</p>
1075 root 1.1 </dd>
1076     </dl>
1077     </p>
1078     </dd>
1079     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1080     <dd>
1081     <p>Simply stops and restarts the periodic watcher again. This is only useful
1082     when you changed some parameters or the reschedule callback would return
1083     a different time than the last time it was called (e.g. in a crond like
1084     program when the crontabs have changed).</p>
1085     </dd>
1086 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1087     <dd>
1088     <p>The current interval value. Can be modified any time, but changes only
1089     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1090     called.</p>
1091     </dd>
1092     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1093     <dd>
1094     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1095     switched off. Can be changed any time, but changes only take effect when
1096     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1097     </dd>
1098 root 1.1 </dl>
1099 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1100 root 1.35 system clock is divisible by 3600. The callback invocation times have
1101     potentially a lot of jittering, but good long-term stability.</p>
1102     <pre> static void
1103     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1104     {
1105     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1106     }
1107    
1108     struct ev_periodic hourly_tick;
1109     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1110     ev_periodic_start (loop, &amp;hourly_tick);
1111    
1112     </pre>
1113 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1114 root 1.35 <pre> #include &lt;math.h&gt;
1115    
1116     static ev_tstamp
1117     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1118     {
1119     return fmod (now, 3600.) + 3600.;
1120     }
1121    
1122     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1123    
1124     </pre>
1125 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1126 root 1.35 <pre> struct ev_periodic hourly_tick;
1127     ev_periodic_init (&amp;hourly_tick, clock_cb,
1128     fmod (ev_now (loop), 3600.), 3600., 0);
1129     ev_periodic_start (loop, &amp;hourly_tick);
1130    
1131    
1132    
1133    
1134     </pre>
1135 root 1.1
1136     </div>
1137 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1138 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1139 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1140     signal one or more times. Even though signals are very asynchronous, libev
1141 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1142 root 1.1 normal event processing, like any other event.</p>
1143 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1144 root 1.1 first watcher gets started will libev actually register a signal watcher
1145     with the kernel (thus it coexists with your own signal handlers as long
1146     as you don't register any with libev). Similarly, when the last signal
1147     watcher for a signal is stopped libev will reset the signal handler to
1148     SIG_DFL (regardless of what it was set to before).</p>
1149     <dl>
1150     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1151     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1152     <dd>
1153     <p>Configures the watcher to trigger on the given signal number (usually one
1154     of the <code>SIGxxx</code> constants).</p>
1155     </dd>
1156 root 1.48 <dt>int signum [read-only]</dt>
1157     <dd>
1158     <p>The signal the watcher watches out for.</p>
1159     </dd>
1160 root 1.1 </dl>
1161    
1162 root 1.36
1163    
1164    
1165    
1166 root 1.1 </div>
1167 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1168     <div id="code_ev_child_code_watch_out_for_pro-2">
1169 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1170     some child status changes (most typically when a child of yours dies).</p>
1171     <dl>
1172     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1173     <dt>ev_child_set (ev_child *, int pid)</dt>
1174     <dd>
1175     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1176     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1177     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1178 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1179     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1180     process causing the status change.</p>
1181 root 1.1 </dd>
1182 root 1.48 <dt>int pid [read-only]</dt>
1183     <dd>
1184     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1185     </dd>
1186     <dt>int rpid [read-write]</dt>
1187     <dd>
1188     <p>The process id that detected a status change.</p>
1189     </dd>
1190     <dt>int rstatus [read-write]</dt>
1191     <dd>
1192     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1193     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1194     </dd>
1195 root 1.1 </dl>
1196 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1197 root 1.35 <pre> static void
1198     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1199     {
1200     ev_unloop (loop, EVUNLOOP_ALL);
1201     }
1202    
1203     struct ev_signal signal_watcher;
1204     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1205     ev_signal_start (loop, &amp;sigint_cb);
1206    
1207    
1208    
1209    
1210     </pre>
1211 root 1.1
1212     </div>
1213 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1214     <div id="code_ev_stat_code_did_the_file_attri-2">
1215     <p>This watches a filesystem path for attribute changes. That is, it calls
1216     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1217     compared to the last time, invoking the callback if it did.</p>
1218     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1219     not exist&quot; is a status change like any other. The condition &quot;path does
1220     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1221     otherwise always forced to be at least one) and all the other fields of
1222     the stat buffer having unspecified contents.</p>
1223     <p>Since there is no standard to do this, the portable implementation simply
1224     calls <code>stat (2)</code> regulalry on the path to see if it changed somehow. You
1225     can specify a recommended polling interval for this case. If you specify
1226     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1227     unspecified default</i> value will be used (which you can expect to be around
1228     five seconds, although this might change dynamically). Libev will also
1229     impose a minimum interval which is currently around <code>0.1</code>, but thats
1230     usually overkill.</p>
1231     <p>This watcher type is not meant for massive numbers of stat watchers,
1232     as even with OS-supported change notifications, this can be
1233     resource-intensive.</p>
1234     <p>At the time of this writing, no specific OS backends are implemented, but
1235     if demand increases, at least a kqueue and inotify backend will be added.</p>
1236     <dl>
1237     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1238     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1239     <dd>
1240     <p>Configures the watcher to wait for status changes of the given
1241     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1242     be detected and should normally be specified as <code>0</code> to let libev choose
1243     a suitable value. The memory pointed to by <code>path</code> must point to the same
1244     path for as long as the watcher is active.</p>
1245     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1246     relative to the attributes at the time the watcher was started (or the
1247     last change was detected).</p>
1248     </dd>
1249     <dt>ev_stat_stat (ev_stat *)</dt>
1250     <dd>
1251     <p>Updates the stat buffer immediately with new values. If you change the
1252     watched path in your callback, you could call this fucntion to avoid
1253     detecting this change (while introducing a race condition). Can also be
1254     useful simply to find out the new values.</p>
1255     </dd>
1256     <dt>ev_statdata attr [read-only]</dt>
1257     <dd>
1258     <p>The most-recently detected attributes of the file. Although the type is of
1259     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1260     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1261     was some error while <code>stat</code>ing the file.</p>
1262     </dd>
1263     <dt>ev_statdata prev [read-only]</dt>
1264     <dd>
1265     <p>The previous attributes of the file. The callback gets invoked whenever
1266     <code>prev</code> != <code>attr</code>.</p>
1267     </dd>
1268     <dt>ev_tstamp interval [read-only]</dt>
1269     <dd>
1270     <p>The specified interval.</p>
1271     </dd>
1272     <dt>const char *path [read-only]</dt>
1273     <dd>
1274     <p>The filesystem path that is being watched.</p>
1275     </dd>
1276     </dl>
1277     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1278     <pre> static void
1279     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1280     {
1281     /* /etc/passwd changed in some way */
1282     if (w-&gt;attr.st_nlink)
1283     {
1284     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1285     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1286     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1287     }
1288     else
1289     /* you shalt not abuse printf for puts */
1290     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1291     &quot;if this is windows, they already arrived\n&quot;);
1292     }
1293    
1294     ...
1295     ev_stat passwd;
1296    
1297     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1298     ev_stat_start (loop, &amp;passwd);
1299    
1300    
1301    
1302    
1303     </pre>
1304    
1305     </div>
1306 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1307 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1308 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1309     (prepare, check and other idle watchers do not count). That is, as long
1310     as your process is busy handling sockets or timeouts (or even signals,
1311     imagine) it will not be triggered. But when your process is idle all idle
1312     watchers are being called again and again, once per event loop iteration -
1313     until stopped, that is, or your process receives more events and becomes
1314     busy.</p>
1315 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1316     active, the process will not block when waiting for new events.</p>
1317     <p>Apart from keeping your process non-blocking (which is a useful
1318     effect on its own sometimes), idle watchers are a good place to do
1319     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1320     event loop has handled all outstanding events.</p>
1321     <dl>
1322     <dt>ev_idle_init (ev_signal *, callback)</dt>
1323     <dd>
1324     <p>Initialises and configures the idle watcher - it has no parameters of any
1325     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1326     believe me.</p>
1327     </dd>
1328     </dl>
1329 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1330     callback, free it. Also, use no error checking, as usual.</p>
1331 root 1.35 <pre> static void
1332     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1333     {
1334     free (w);
1335     // now do something you wanted to do when the program has
1336     // no longer asnything immediate to do.
1337     }
1338    
1339     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1340     ev_idle_init (idle_watcher, idle_cb);
1341     ev_idle_start (loop, idle_cb);
1342    
1343    
1344    
1345    
1346     </pre>
1347 root 1.1
1348     </div>
1349 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1350 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1351 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1352 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1353 root 1.14 afterwards.</p>
1354 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1355     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1356     watchers. Other loops than the current one are fine, however. The
1357     rationale behind this is that you do not need to check for recursion in
1358     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1359     <code>ev_check</code> so if you have one watcher of each kind they will always be
1360     called in pairs bracketing the blocking call.</p>
1361 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1362     their use is somewhat advanced. This could be used, for example, to track
1363     variable changes, implement your own watchers, integrate net-snmp or a
1364 root 1.46 coroutine library and lots more. They are also occasionally useful if
1365     you cache some data and want to flush it before blocking (for example,
1366     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1367     watcher).</p>
1368 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1369 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1370     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1371     provide just this functionality). Then, in the check watcher you check for
1372     any events that occured (by checking the pending status of all watchers
1373     and stopping them) and call back into the library. The I/O and timer
1374 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1375 root 1.14 because you never know, you know?).</p>
1376     <p>As another example, the Perl Coro module uses these hooks to integrate
1377 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1378     during each prepare and only letting the process block if no coroutines
1379 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1380     with priority higher than or equal to the event loop and one coroutine
1381     of lower priority, but only once, using idle watchers to keep the event
1382     loop from blocking if lower-priority coroutines are active, thus mapping
1383     low-priority coroutines to idle/background tasks).</p>
1384 root 1.1 <dl>
1385     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1386     <dt>ev_check_init (ev_check *, callback)</dt>
1387     <dd>
1388     <p>Initialises and configures the prepare or check watcher - they have no
1389     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1390 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1391 root 1.1 </dd>
1392     </dl>
1393 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1394     and a timeout watcher in a prepare handler, as required by libadns, and
1395     in a check watcher, destroy them and call into libadns. What follows is
1396     pseudo-code only of course:</p>
1397     <pre> static ev_io iow [nfd];
1398     static ev_timer tw;
1399    
1400     static void
1401     io_cb (ev_loop *loop, ev_io *w, int revents)
1402     {
1403     // set the relevant poll flags
1404 root 1.47 // could also call adns_processreadable etc. here
1405 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1406     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1407     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1408     }
1409    
1410     // create io watchers for each fd and a timer before blocking
1411     static void
1412     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1413     {
1414     int timeout = 3600000;truct pollfd fds [nfd];
1415     // actual code will need to loop here and realloc etc.
1416     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1417    
1418     /* the callback is illegal, but won't be called as we stop during check */
1419     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1420     ev_timer_start (loop, &amp;tw);
1421    
1422     // create on ev_io per pollfd
1423     for (int i = 0; i &lt; nfd; ++i)
1424     {
1425     ev_io_init (iow + i, io_cb, fds [i].fd,
1426     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1427     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1428    
1429     fds [i].revents = 0;
1430     iow [i].data = fds + i;
1431     ev_io_start (loop, iow + i);
1432     }
1433     }
1434    
1435     // stop all watchers after blocking
1436     static void
1437     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1438     {
1439     ev_timer_stop (loop, &amp;tw);
1440    
1441     for (int i = 0; i &lt; nfd; ++i)
1442     ev_io_stop (loop, iow + i);
1443    
1444     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1445     }
1446 root 1.35
1447    
1448    
1449    
1450 root 1.46 </pre>
1451 root 1.1
1452     </div>
1453 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1454 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1455     <p>This is a rather advanced watcher type that lets you embed one event loop
1456 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1457     loop, other types of watchers might be handled in a delayed or incorrect
1458     fashion and must not be used).</p>
1459 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1460     prioritise I/O.</p>
1461     <p>As an example for a bug workaround, the kqueue backend might only support
1462     sockets on some platform, so it is unusable as generic backend, but you
1463     still want to make use of it because you have many sockets and it scales
1464     so nicely. In this case, you would create a kqueue-based loop and embed it
1465     into your default loop (which might use e.g. poll). Overall operation will
1466     be a bit slower because first libev has to poll and then call kevent, but
1467     at least you can use both at what they are best.</p>
1468     <p>As for prioritising I/O: rarely you have the case where some fds have
1469     to be watched and handled very quickly (with low latency), and even
1470     priorities and idle watchers might have too much overhead. In this case
1471     you would put all the high priority stuff in one loop and all the rest in
1472     a second one, and embed the second one in the first.</p>
1473 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1474     there might be events pending in the embedded loop. The callback must then
1475     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1476     their callbacks (you could also start an idle watcher to give the embedded
1477     loop strictly lower priority for example). You can also set the callback
1478     to <code>0</code>, in which case the embed watcher will automatically execute the
1479     embedded loop sweep.</p>
1480 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1481     callback will be invoked whenever some events have been handled. You can
1482     set the callback to <code>0</code> to avoid having to specify one if you are not
1483     interested in that.</p>
1484     <p>Also, there have not currently been made special provisions for forking:
1485     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1486     but you will also have to stop and restart any <code>ev_embed</code> watchers
1487     yourself.</p>
1488     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1489     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1490     portable one.</p>
1491     <p>So when you want to use this feature you will always have to be prepared
1492     that you cannot get an embeddable loop. The recommended way to get around
1493     this is to have a separate variables for your embeddable loop, try to
1494     create it, and if that fails, use the normal loop for everything:</p>
1495     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1496     struct ev_loop *loop_lo = 0;
1497     struct ev_embed embed;
1498    
1499     // see if there is a chance of getting one that works
1500     // (remember that a flags value of 0 means autodetection)
1501     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1502     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1503     : 0;
1504    
1505     // if we got one, then embed it, otherwise default to loop_hi
1506     if (loop_lo)
1507     {
1508     ev_embed_init (&amp;embed, 0, loop_lo);
1509     ev_embed_start (loop_hi, &amp;embed);
1510     }
1511     else
1512     loop_lo = loop_hi;
1513    
1514     </pre>
1515     <dl>
1516 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1517     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1518 root 1.36 <dd>
1519 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1520     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1521     invoked automatically, otherwise it is the responsibility of the callback
1522     to invoke it (it will continue to be called until the sweep has been done,
1523     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1524     </dd>
1525     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1526     <dd>
1527     <p>Make a single, non-blocking sweep over the embedded loop. This works
1528     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1529     apropriate way for embedded loops.</p>
1530 root 1.36 </dd>
1531 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1532     <dd>
1533     <p>The embedded event loop.</p>
1534     </dd>
1535 root 1.36 </dl>
1536    
1537    
1538    
1539    
1540    
1541     </div>
1542 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1543     <div id="code_ev_fork_code_the_audacity_to_re-2">
1544     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1545     whoever is a good citizen cared to tell libev about it by calling
1546     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1547     event loop blocks next and before <code>ev_check</code> watchers are being called,
1548     and only in the child after the fork. If whoever good citizen calling
1549     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1550     handlers will be invoked, too, of course.</p>
1551     <dl>
1552     <dt>ev_fork_init (ev_signal *, callback)</dt>
1553     <dd>
1554     <p>Initialises and configures the fork watcher - it has no parameters of any
1555     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1556     believe me.</p>
1557     </dd>
1558     </dl>
1559    
1560    
1561    
1562    
1563    
1564     </div>
1565 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1566 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1567 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1568 root 1.1 <dl>
1569     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1570     <dd>
1571     <p>This function combines a simple timer and an I/O watcher, calls your
1572     callback on whichever event happens first and automatically stop both
1573     watchers. This is useful if you want to wait for a single event on an fd
1574 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1575 root 1.1 more watchers yourself.</p>
1576 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1577     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1578     <code>events</code> set will be craeted and started.</p>
1579 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1580 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1581     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1582     dubious value.</p>
1583     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1584 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1585 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1586     value passed to <code>ev_once</code>:</p>
1587 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1588     {
1589     if (revents &amp; EV_TIMEOUT)
1590 root 1.14 /* doh, nothing entered */;
1591 root 1.1 else if (revents &amp; EV_READ)
1592 root 1.14 /* stdin might have data for us, joy! */;
1593 root 1.1 }
1594    
1595 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1596 root 1.1
1597     </pre>
1598     </dd>
1599 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1600 root 1.1 <dd>
1601     <p>Feeds the given event set into the event loop, as if the specified event
1602 root 1.14 had happened for the specified watcher (which must be a pointer to an
1603     initialised but not necessarily started event watcher).</p>
1604 root 1.1 </dd>
1605 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1606 root 1.1 <dd>
1607 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1608     the given events it.</p>
1609 root 1.1 </dd>
1610 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1611 root 1.1 <dd>
1612 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1613     loop!).</p>
1614 root 1.1 </dd>
1615     </dl>
1616    
1617 root 1.35
1618    
1619    
1620    
1621 root 1.1 </div>
1622 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1623 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1624 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1625     emulate the internals of libevent, so here are some usage hints:</p>
1626     <dl>
1627     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1628     <dt>* The following members are fully supported: ev_base, ev_callback,
1629     ev_arg, ev_fd, ev_res, ev_events.</dt>
1630     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1631     maintained by libev, it does not work exactly the same way as in libevent (consider
1632     it a private API).</dt>
1633     <dt>* Priorities are not currently supported. Initialising priorities
1634     will fail and all watchers will have the same priority, even though there
1635     is an ev_pri field.</dt>
1636     <dt>* Other members are not supported.</dt>
1637     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1638     to use the libev header file and library.</dt>
1639     </dl>
1640 root 1.23
1641     </div>
1642 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1643 root 1.23 <div id="C_SUPPORT_CONTENT">
1644 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1645     you to use some convinience methods to start/stop watchers and also change
1646     the callback model to a model using method callbacks on objects.</p>
1647     <p>To use it,</p>
1648     <pre> #include &lt;ev++.h&gt;
1649    
1650     </pre>
1651     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1652     and puts all of its definitions (many of them macros) into the global
1653     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1654     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1655     <code>EV_MULTIPLICITY</code>.</p>
1656     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1657     <dl>
1658     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1659     <dd>
1660     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1661     macros from <cite>ev.h</cite>.</p>
1662     </dd>
1663     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1664     <dd>
1665     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1666     </dd>
1667     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1668     <dd>
1669     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1670     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1671     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1672     defines by many implementations.</p>
1673     <p>All of those classes have these methods:</p>
1674     <p>
1675     <dl>
1676     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1677     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1678     <dt>ev::TYPE::~TYPE</dt>
1679     <dd>
1680     <p>The constructor takes a pointer to an object and a method pointer to
1681     the event handler callback to call in this class. The constructor calls
1682     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1683     before starting it. If you do not specify a loop then the constructor
1684     automatically associates the default loop with this watcher.</p>
1685     <p>The destructor automatically stops the watcher if it is active.</p>
1686     </dd>
1687     <dt>w-&gt;set (struct ev_loop *)</dt>
1688     <dd>
1689     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1690     do this when the watcher is inactive (and not pending either).</p>
1691     </dd>
1692     <dt>w-&gt;set ([args])</dt>
1693     <dd>
1694     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1695     called at least once. Unlike the C counterpart, an active watcher gets
1696     automatically stopped and restarted.</p>
1697     </dd>
1698     <dt>w-&gt;start ()</dt>
1699     <dd>
1700     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1701     constructor already takes the loop.</p>
1702     </dd>
1703     <dt>w-&gt;stop ()</dt>
1704     <dd>
1705     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1706     </dd>
1707     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1708     <dd>
1709     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1710     <code>ev_TYPE_again</code> function.</p>
1711     </dd>
1712     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1713     <dd>
1714     <p>Invokes <code>ev_embed_sweep</code>.</p>
1715     </dd>
1716 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1717     <dd>
1718     <p>Invokes <code>ev_stat_stat</code>.</p>
1719     </dd>
1720 root 1.39 </dl>
1721     </p>
1722     </dd>
1723     </dl>
1724     <p>Example: Define a class with an IO and idle watcher, start one of them in
1725     the constructor.</p>
1726     <pre> class myclass
1727     {
1728     ev_io io; void io_cb (ev::io &amp;w, int revents);
1729     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1730    
1731     myclass ();
1732     }
1733    
1734     myclass::myclass (int fd)
1735     : io (this, &amp;myclass::io_cb),
1736     idle (this, &amp;myclass::idle_cb)
1737     {
1738     io.start (fd, ev::READ);
1739     }
1740    
1741 root 1.50
1742    
1743    
1744     </pre>
1745    
1746     </div>
1747 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1748 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1749     <p>Libev can be compiled with a variety of options, the most fundemantal is
1750     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1751     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1752     <p>To make it easier to write programs that cope with either variant, the
1753     following macros are defined:</p>
1754     <dl>
1755     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1756     <dd>
1757     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1758     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1759     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1760     <pre> ev_unref (EV_A);
1761     ev_timer_add (EV_A_ watcher);
1762     ev_loop (EV_A_ 0);
1763    
1764     </pre>
1765     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1766     which is often provided by the following macro.</p>
1767     </dd>
1768     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1769     <dd>
1770     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1771     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1772     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1773     <pre> // this is how ev_unref is being declared
1774     static void ev_unref (EV_P);
1775    
1776     // this is how you can declare your typical callback
1777     static void cb (EV_P_ ev_timer *w, int revents)
1778    
1779     </pre>
1780     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1781     suitable for use with <code>EV_A</code>.</p>
1782     </dd>
1783     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1784     <dd>
1785     <p>Similar to the other two macros, this gives you the value of the default
1786     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1787     </dd>
1788     </dl>
1789     <p>Example: Declare and initialise a check watcher, working regardless of
1790     wether multiple loops are supported or not.</p>
1791     <pre> static void
1792     check_cb (EV_P_ ev_timer *w, int revents)
1793     {
1794     ev_check_stop (EV_A_ w);
1795     }
1796    
1797     ev_check check;
1798     ev_check_init (&amp;check, check_cb);
1799     ev_check_start (EV_DEFAULT_ &amp;check);
1800     ev_loop (EV_DEFAULT_ 0);
1801    
1802    
1803    
1804    
1805 root 1.39 </pre>
1806 root 1.23
1807     </div>
1808 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1809 root 1.40 <div id="EMBEDDING_CONTENT">
1810     <p>Libev can (and often is) directly embedded into host
1811     applications. Examples of applications that embed it include the Deliantra
1812     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1813     and rxvt-unicode.</p>
1814     <p>The goal is to enable you to just copy the neecssary files into your
1815     source directory without having to change even a single line in them, so
1816     you can easily upgrade by simply copying (or having a checked-out copy of
1817     libev somewhere in your source tree).</p>
1818    
1819     </div>
1820     <h2 id="FILESETS">FILESETS</h2>
1821     <div id="FILESETS_CONTENT">
1822     <p>Depending on what features you need you need to include one or more sets of files
1823     in your app.</p>
1824    
1825     </div>
1826     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1827     <div id="CORE_EVENT_LOOP_CONTENT">
1828     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1829     configuration (no autoconf):</p>
1830     <pre> #define EV_STANDALONE 1
1831     #include &quot;ev.c&quot;
1832    
1833     </pre>
1834     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1835     single C source file only to provide the function implementations. To use
1836     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1837     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1838     where you can put other configuration options):</p>
1839     <pre> #define EV_STANDALONE 1
1840     #include &quot;ev.h&quot;
1841    
1842     </pre>
1843     <p>Both header files and implementation files can be compiled with a C++
1844     compiler (at least, thats a stated goal, and breakage will be treated
1845     as a bug).</p>
1846     <p>You need the following files in your source tree, or in a directory
1847     in your include path (e.g. in libev/ when using -Ilibev):</p>
1848     <pre> ev.h
1849     ev.c
1850     ev_vars.h
1851     ev_wrap.h
1852    
1853     ev_win32.c required on win32 platforms only
1854    
1855 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1856 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1857     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1858     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1859     ev_port.c only when the solaris port backend is enabled (disabled by default)
1860    
1861     </pre>
1862     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1863 root 1.44 to compile this single file.</p>
1864 root 1.40
1865     </div>
1866     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1867     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1868     <p>To include the libevent compatibility API, also include:</p>
1869     <pre> #include &quot;event.c&quot;
1870    
1871     </pre>
1872     <p>in the file including <cite>ev.c</cite>, and:</p>
1873     <pre> #include &quot;event.h&quot;
1874    
1875     </pre>
1876     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1877     <p>You need the following additional files for this:</p>
1878     <pre> event.h
1879     event.c
1880    
1881     </pre>
1882    
1883     </div>
1884     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1885     <div id="AUTOCONF_SUPPORT_CONTENT">
1886     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1887     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1888 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1889     include <cite>config.h</cite> and configure itself accordingly.</p>
1890 root 1.40 <p>For this of course you need the m4 file:</p>
1891     <pre> libev.m4
1892    
1893     </pre>
1894    
1895     </div>
1896     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1897     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1898     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1899     before including any of its files. The default is not to build for multiplicity
1900     and only include the select backend.</p>
1901     <dl>
1902     <dt>EV_STANDALONE</dt>
1903     <dd>
1904     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1905     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1906     implementations for some libevent functions (such as logging, which is not
1907     supported). It will also not define any of the structs usually found in
1908     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1909     </dd>
1910     <dt>EV_USE_MONOTONIC</dt>
1911     <dd>
1912     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1913     monotonic clock option at both compiletime and runtime. Otherwise no use
1914     of the monotonic clock option will be attempted. If you enable this, you
1915     usually have to link against librt or something similar. Enabling it when
1916     the functionality isn't available is safe, though, althoguh you have
1917     to make sure you link against any libraries where the <code>clock_gettime</code>
1918     function is hiding in (often <cite>-lrt</cite>).</p>
1919     </dd>
1920     <dt>EV_USE_REALTIME</dt>
1921     <dd>
1922     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1923     realtime clock option at compiletime (and assume its availability at
1924     runtime if successful). Otherwise no use of the realtime clock option will
1925     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1926     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1927     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1928     </dd>
1929     <dt>EV_USE_SELECT</dt>
1930     <dd>
1931     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1932     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1933     other method takes over, select will be it. Otherwise the select backend
1934     will not be compiled in.</p>
1935     </dd>
1936     <dt>EV_SELECT_USE_FD_SET</dt>
1937     <dd>
1938     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1939     structure. This is useful if libev doesn't compile due to a missing
1940     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1941     exotic systems. This usually limits the range of file descriptors to some
1942     low limit such as 1024 or might have other limitations (winsocket only
1943     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1944     influence the size of the <code>fd_set</code> used.</p>
1945     </dd>
1946     <dt>EV_SELECT_IS_WINSOCKET</dt>
1947     <dd>
1948     <p>When defined to <code>1</code>, the select backend will assume that
1949     select/socket/connect etc. don't understand file descriptors but
1950     wants osf handles on win32 (this is the case when the select to
1951     be used is the winsock select). This means that it will call
1952     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1953     it is assumed that all these functions actually work on fds, even
1954     on win32. Should not be defined on non-win32 platforms.</p>
1955     </dd>
1956     <dt>EV_USE_POLL</dt>
1957     <dd>
1958     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1959     backend. Otherwise it will be enabled on non-win32 platforms. It
1960     takes precedence over select.</p>
1961     </dd>
1962     <dt>EV_USE_EPOLL</dt>
1963     <dd>
1964     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1965     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
1966     otherwise another method will be used as fallback. This is the
1967     preferred backend for GNU/Linux systems.</p>
1968     </dd>
1969     <dt>EV_USE_KQUEUE</dt>
1970     <dd>
1971     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
1972     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
1973     otherwise another method will be used as fallback. This is the preferred
1974     backend for BSD and BSD-like systems, although on most BSDs kqueue only
1975     supports some types of fds correctly (the only platform we found that
1976     supports ptys for example was NetBSD), so kqueue might be compiled in, but
1977     not be used unless explicitly requested. The best way to use it is to find
1978 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
1979 root 1.40 kqueue loop.</p>
1980     </dd>
1981     <dt>EV_USE_PORT</dt>
1982     <dd>
1983     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
1984     10 port style backend. Its availability will be detected at runtime,
1985     otherwise another method will be used as fallback. This is the preferred
1986     backend for Solaris 10 systems.</p>
1987     </dd>
1988     <dt>EV_USE_DEVPOLL</dt>
1989     <dd>
1990     <p>reserved for future expansion, works like the USE symbols above.</p>
1991     </dd>
1992     <dt>EV_H</dt>
1993     <dd>
1994     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
1995     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
1996     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
1997     </dd>
1998     <dt>EV_CONFIG_H</dt>
1999     <dd>
2000     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2001     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2002     <code>EV_H</code>, above.</p>
2003     </dd>
2004     <dt>EV_EVENT_H</dt>
2005     <dd>
2006     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2007     of how the <cite>event.h</cite> header can be found.</p>
2008     </dd>
2009     <dt>EV_PROTOTYPES</dt>
2010     <dd>
2011     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2012     prototypes, but still define all the structs and other symbols. This is
2013     occasionally useful if you want to provide your own wrapper functions
2014     around libev functions.</p>
2015     </dd>
2016     <dt>EV_MULTIPLICITY</dt>
2017     <dd>
2018     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2019     will have the <code>struct ev_loop *</code> as first argument, and you can create
2020     additional independent event loops. Otherwise there will be no support
2021     for multiple event loops and there is no first event loop pointer
2022     argument. Instead, all functions act on the single default loop.</p>
2023     </dd>
2024 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2025     <dd>
2026     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2027     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2028     code.</p>
2029     </dd>
2030     <dt>EV_EMBED_ENABLE</dt>
2031     <dd>
2032     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2033     defined to be <code>0</code>, then they are not.</p>
2034     </dd>
2035     <dt>EV_STAT_ENABLE</dt>
2036     <dd>
2037     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2038     defined to be <code>0</code>, then they are not.</p>
2039     </dd>
2040 root 1.50 <dt>EV_FORK_ENABLE</dt>
2041     <dd>
2042     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2043     defined to be <code>0</code>, then they are not.</p>
2044     </dd>
2045 root 1.48 <dt>EV_MINIMAL</dt>
2046 root 1.40 <dd>
2047 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2048     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2049     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2050 root 1.40 </dd>
2051 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2052     <dd>
2053     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2054     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2055     than enough. If you need to manage thousands of children you might want to
2056     increase this value.</p>
2057     </dd>
2058 root 1.40 <dt>EV_COMMON</dt>
2059     <dd>
2060     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2061     this macro to a something else you can include more and other types of
2062     members. You have to define it each time you include one of the files,
2063     though, and it must be identical each time.</p>
2064     <p>For example, the perl EV module uses something like this:</p>
2065     <pre> #define EV_COMMON \
2066     SV *self; /* contains this struct */ \
2067     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2068    
2069     </pre>
2070     </dd>
2071 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2072     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2073     <dt>ev_set_cb (ev, cb)</dt>
2074 root 1.40 <dd>
2075     <p>Can be used to change the callback member declaration in each watcher,
2076     and the way callbacks are invoked and set. Must expand to a struct member
2077     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2078     their default definitions. One possible use for overriding these is to
2079 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2080     method calls instead of plain function calls in C++.</p>
2081 root 1.40
2082     </div>
2083     <h2 id="EXAMPLES">EXAMPLES</h2>
2084     <div id="EXAMPLES_CONTENT">
2085     <p>For a real-world example of a program the includes libev
2086     verbatim, you can have a look at the EV perl module
2087     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2088     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2089     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2090     will be compiled. It is pretty complex because it provides its own header
2091     file.</p>
2092     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2093     that everybody includes and which overrides some autoconf choices:</p>
2094 root 1.41 <pre> #define EV_USE_POLL 0
2095     #define EV_MULTIPLICITY 0
2096     #define EV_PERIODICS 0
2097     #define EV_CONFIG_H &lt;config.h&gt;
2098 root 1.40
2099 root 1.41 #include &quot;ev++.h&quot;
2100 root 1.40
2101     </pre>
2102     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2103 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2104     #include &quot;ev.c&quot;
2105 root 1.40
2106 root 1.47
2107    
2108    
2109 root 1.40 </pre>
2110    
2111     </div>
2112 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2113 root 1.47 <div id="COMPLEXITIES_CONTENT">
2114     <p>In this section the complexities of (many of) the algorithms used inside
2115     libev will be explained. For complexity discussions about backends see the
2116     documentation for <code>ev_default_init</code>.</p>
2117     <p>
2118     <dl>
2119     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2120     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2121     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2122     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2123     <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % 16))</dt>
2124     <dt>Finding the next timer per loop iteration: O(1)</dt>
2125     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2126     <dt>Activating one watcher: O(1)</dt>
2127     </dl>
2128     </p>
2129    
2130    
2131    
2132    
2133    
2134     </div>
2135 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2136 root 1.1 <div id="AUTHOR_CONTENT">
2137 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2138 root 1.1
2139     </div>
2140     </div></body>
2141     </html>