ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.58
Committed: Wed Nov 28 11:31:34 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.57: +8 -7 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.58 <meta name="created" content="Wed Nov 28 12:31:29 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124     <p>Libev is an event loop: you register interest in certain events (such as a
125     file descriptor being readable or a timeout occuring), and it will manage
126 root 1.4 these event sources and provide your program with events.</p>
127 root 1.1 <p>To do this, it must take more or less complete control over your process
128     (or thread) by executing the <i>event loop</i> handler, and will then
129     communicate events via a callback mechanism.</p>
130     <p>You register interest in certain events by registering so-called <i>event
131     watchers</i>, which are relatively small C structures you initialise with the
132     details of the event, and then hand it over to libev by <i>starting</i> the
133     watcher.</p>
134    
135     </div>
136 root 1.55 <h1 id="FEATURES">FEATURES</h1>
137 root 1.1 <div id="FEATURES_CONTENT">
138 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
139     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
140     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
141     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
142     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
143     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
144     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
145 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
146     file watchers (<code>ev_stat</code>) and even limited support for fork events
147     (<code>ev_fork</code>).</p>
148     <p>It also is quite fast (see this
149     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
150     for example).</p>
151 root 1.1
152     </div>
153 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
154 root 1.1 <div id="CONVENTIONS_CONTENT">
155 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
156     be described, which supports multiple event loops. For more info about
157     various configuration options please have a look at <strong>EMBED</strong> section in
158     this manual. If libev was configured without support for multiple event
159     loops, then all functions taking an initial argument of name <code>loop</code>
160     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
161 root 1.1
162     </div>
163 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
164 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
165 root 1.2 <p>Libev represents time as a single floating point number, representing the
166     (fractional) number of seconds since the (POSIX) epoch (somewhere near
167     the beginning of 1970, details are complicated, don't ask). This type is
168 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
169 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
170     it, you should treat it as such.</p>
171    
172 root 1.18 </div>
173 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
174 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
175 root 1.21 <p>These functions can be called anytime, even before initialising the
176     library in any way.</p>
177 root 1.1 <dl>
178     <dt>ev_tstamp ev_time ()</dt>
179     <dd>
180 root 1.28 <p>Returns the current time as libev would use it. Please note that the
181     <code>ev_now</code> function is usually faster and also often returns the timestamp
182     you actually want to know.</p>
183 root 1.1 </dd>
184     <dt>int ev_version_major ()</dt>
185     <dt>int ev_version_minor ()</dt>
186     <dd>
187     <p>You can find out the major and minor version numbers of the library
188     you linked against by calling the functions <code>ev_version_major</code> and
189     <code>ev_version_minor</code>. If you want, you can compare against the global
190     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
191     version of the library your program was compiled against.</p>
192 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
193 root 1.1 as this indicates an incompatible change. Minor versions are usually
194     compatible to older versions, so a larger minor version alone is usually
195     not a problem.</p>
196 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
197     version.</p>
198 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
199     ev_version_major () == EV_VERSION_MAJOR
200     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
201    
202     </pre>
203 root 1.1 </dd>
204 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
205     <dd>
206     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
207     value) compiled into this binary of libev (independent of their
208     availability on the system you are running on). See <code>ev_default_loop</code> for
209     a description of the set values.</p>
210 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
211     a must have and can we have a torrent of it please!!!11</p>
212     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
213     ev_supported_backends () &amp; EVBACKEND_EPOLL));
214    
215     </pre>
216 root 1.32 </dd>
217     <dt>unsigned int ev_recommended_backends ()</dt>
218     <dd>
219     <p>Return the set of all backends compiled into this binary of libev and also
220     recommended for this platform. This set is often smaller than the one
221     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
222     most BSDs and will not be autodetected unless you explicitly request it
223     (assuming you know what you are doing). This is the set of backends that
224 root 1.34 libev will probe for if you specify no backends explicitly.</p>
225 root 1.32 </dd>
226 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
227     <dd>
228     <p>Returns the set of backends that are embeddable in other event loops. This
229     is the theoretical, all-platform, value. To find which backends
230     might be supported on the current system, you would need to look at
231     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
232     recommended ones.</p>
233     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
234     </dd>
235 root 1.52 <dt>ev_set_allocator (void *(*cb)(void *ptr, size_t size))</dt>
236 root 1.1 <dd>
237 root 1.52 <p>Sets the allocation function to use (the prototype and semantics are
238     identical to the realloc C function). It is used to allocate and free
239     memory (no surprises here). If it returns zero when memory needs to be
240     allocated, the library might abort or take some potentially destructive
241     action. The default is your system realloc function.</p>
242 root 1.1 <p>You could override this function in high-availability programs to, say,
243     free some memory if it cannot allocate memory, to use a special allocator,
244     or even to sleep a while and retry until some memory is available.</p>
245 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
246     retries).</p>
247 root 1.35 <pre> static void *
248 root 1.52 persistent_realloc (void *ptr, size_t size)
249 root 1.35 {
250     for (;;)
251     {
252     void *newptr = realloc (ptr, size);
253    
254     if (newptr)
255     return newptr;
256    
257     sleep (60);
258     }
259     }
260    
261     ...
262     ev_set_allocator (persistent_realloc);
263    
264     </pre>
265 root 1.1 </dd>
266     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
267     <dd>
268     <p>Set the callback function to call on a retryable syscall error (such
269     as failed select, poll, epoll_wait). The message is a printable string
270     indicating the system call or subsystem causing the problem. If this
271     callback is set, then libev will expect it to remedy the sitution, no
272 root 1.7 matter what, when it returns. That is, libev will generally retry the
273 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
274     (such as abort).</p>
275 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
276 root 1.35 <pre> static void
277     fatal_error (const char *msg)
278     {
279     perror (msg);
280     abort ();
281     }
282    
283     ...
284     ev_set_syserr_cb (fatal_error);
285    
286     </pre>
287 root 1.1 </dd>
288     </dl>
289    
290     </div>
291 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
292 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
293     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
294     types of such loops, the <i>default</i> loop, which supports signals and child
295     events, and dynamically created loops which do not.</p>
296     <p>If you use threads, a common model is to run the default event loop
297 root 1.18 in your main thread (or in a separate thread) and for each thread you
298 root 1.7 create, you also create another event loop. Libev itself does no locking
299     whatsoever, so if you mix calls to the same event loop in different
300     threads, make sure you lock (this is usually a bad idea, though, even if
301 root 1.9 done correctly, because it's hideous and inefficient).</p>
302 root 1.1 <dl>
303     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
304     <dd>
305     <p>This will initialise the default event loop if it hasn't been initialised
306     yet and return it. If the default loop could not be initialised, returns
307     false. If it already was initialised it simply returns it (and ignores the
308 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
309 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
310     function.</p>
311     <p>The flags argument can be used to specify special behaviour or specific
312 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
313     <p>The following flags are supported:</p>
314 root 1.1 <p>
315     <dl>
316 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
317 root 1.1 <dd>
318 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
319 root 1.1 thing, believe me).</p>
320     </dd>
321 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
322 root 1.1 <dd>
323 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
324     or setgid) then libev will <i>not</i> look at the environment variable
325     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
326     override the flags completely if it is found in the environment. This is
327     useful to try out specific backends to test their performance, or to work
328     around bugs.</p>
329 root 1.1 </dd>
330 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
331 root 1.29 <dd>
332     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
333     libev tries to roll its own fd_set with no limits on the number of fds,
334     but if that fails, expect a fairly low limit on the number of fds when
335     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
336     the fastest backend for a low number of fds.</p>
337     </dd>
338 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
339 root 1.29 <dd>
340     <p>And this is your standard poll(2) backend. It's more complicated than
341     select, but handles sparse fds better and has no artificial limit on the
342     number of fds you can use (except it will slow down considerably with a
343     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
344     </dd>
345 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
346 root 1.29 <dd>
347     <p>For few fds, this backend is a bit little slower than poll and select,
348     but it scales phenomenally better. While poll and select usually scale like
349     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
350     either O(1) or O(active_fds).</p>
351     <p>While stopping and starting an I/O watcher in the same iteration will
352     result in some caching, there is still a syscall per such incident
353     (because the fd could point to a different file description now), so its
354     best to avoid that. Also, dup()ed file descriptors might not work very
355     well if you register events for both fds.</p>
356 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
357     need to use non-blocking I/O or other means to avoid blocking when no data
358     (or space) is available.</p>
359 root 1.29 </dd>
360 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
361 root 1.29 <dd>
362     <p>Kqueue deserves special mention, as at the time of this writing, it
363     was broken on all BSDs except NetBSD (usually it doesn't work with
364     anything but sockets and pipes, except on Darwin, where of course its
365 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
366     unless you explicitly specify it explicitly in the flags (i.e. using
367     <code>EVBACKEND_KQUEUE</code>).</p>
368 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
369     kernel is more efficient (which says nothing about its actual speed, of
370     course). While starting and stopping an I/O watcher does not cause an
371     extra syscall as with epoll, it still adds up to four event changes per
372     incident, so its best to avoid that.</p>
373     </dd>
374 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
375 root 1.29 <dd>
376     <p>This is not implemented yet (and might never be).</p>
377     </dd>
378 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
379 root 1.29 <dd>
380     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
381     it's really slow, but it still scales very well (O(active_fds)).</p>
382 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
383     notifications, so you need to use non-blocking I/O or other means to avoid
384     blocking when no data (or space) is available.</p>
385 root 1.29 </dd>
386 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
387 root 1.29 <dd>
388 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
389     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
390 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
391 root 1.1 </dd>
392     </dl>
393     </p>
394 root 1.29 <p>If one or more of these are ored into the flags value, then only these
395     backends will be tried (in the reverse order as given here). If none are
396     specified, most compiled-in backend will be tried, usually in reverse
397     order of their flag values :)</p>
398 root 1.34 <p>The most typical usage is like this:</p>
399     <pre> if (!ev_default_loop (0))
400     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
401    
402     </pre>
403     <p>Restrict libev to the select and poll backends, and do not allow
404     environment settings to be taken into account:</p>
405     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
406    
407     </pre>
408     <p>Use whatever libev has to offer, but make sure that kqueue is used if
409     available (warning, breaks stuff, best use only with your own private
410     event loop and only if you know the OS supports your types of fds):</p>
411     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
412    
413     </pre>
414 root 1.1 </dd>
415     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
416     <dd>
417     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
418     always distinct from the default loop. Unlike the default loop, it cannot
419     handle signal and child watchers, and attempts to do so will be greeted by
420     undefined behaviour (or a failed assertion if assertions are enabled).</p>
421 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
422 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
423     if (!epoller)
424     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
425    
426     </pre>
427 root 1.1 </dd>
428     <dt>ev_default_destroy ()</dt>
429     <dd>
430     <p>Destroys the default loop again (frees all memory and kernel state
431 root 1.38 etc.). None of the active event watchers will be stopped in the normal
432     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
433     responsibility to either stop all watchers cleanly yoursef <i>before</i>
434     calling this function, or cope with the fact afterwards (which is usually
435     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
436     for example).</p>
437 root 1.1 </dd>
438     <dt>ev_loop_destroy (loop)</dt>
439     <dd>
440     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
441     earlier call to <code>ev_loop_new</code>.</p>
442     </dd>
443     <dt>ev_default_fork ()</dt>
444     <dd>
445     <p>This function reinitialises the kernel state for backends that have
446     one. Despite the name, you can call it anytime, but it makes most sense
447     after forking, in either the parent or child process (or both, but that
448     again makes little sense).</p>
449 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
450     only if you want to use the event library in both processes. If you just
451     fork+exec, you don't have to call it.</p>
452 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
453 root 1.1 it just in case after a fork. To make this easy, the function will fit in
454     quite nicely into a call to <code>pthread_atfork</code>:</p>
455     <pre> pthread_atfork (0, 0, ev_default_fork);
456    
457     </pre>
458 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
459     without calling this function, so if you force one of those backends you
460     do not need to care.</p>
461 root 1.1 </dd>
462     <dt>ev_loop_fork (loop)</dt>
463     <dd>
464     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
465     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
466     after fork, and how you do this is entirely your own problem.</p>
467     </dd>
468 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
469 root 1.1 <dd>
470 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
471 root 1.1 use.</p>
472     </dd>
473 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
474 root 1.1 <dd>
475     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
476 root 1.35 received events and started processing them. This timestamp does not
477     change as long as callbacks are being processed, and this is also the base
478     time used for relative timers. You can treat it as the timestamp of the
479     event occuring (or more correctly, libev finding out about it).</p>
480 root 1.1 </dd>
481     <dt>ev_loop (loop, int flags)</dt>
482     <dd>
483     <p>Finally, this is it, the event handler. This function usually is called
484     after you initialised all your watchers and you want to start handling
485     events.</p>
486 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
487     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
488 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
489     relying on all watchers to be stopped when deciding when a program has
490     finished (especially in interactive programs), but having a program that
491     automatically loops as long as it has to and no longer by virtue of
492     relying on its watchers stopping correctly is a thing of beauty.</p>
493 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
494     those events and any outstanding ones, but will not block your process in
495 root 1.9 case there are no events and will return after one iteration of the loop.</p>
496 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
497     neccessary) and will handle those and any outstanding ones. It will block
498 root 1.9 your process until at least one new event arrives, and will return after
499 root 1.34 one iteration of the loop. This is useful if you are waiting for some
500     external event in conjunction with something not expressible using other
501     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
502     usually a better approach for this kind of thing.</p>
503     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
504     <pre> * If there are no active watchers (reference count is zero), return.
505     - Queue prepare watchers and then call all outstanding watchers.
506     - If we have been forked, recreate the kernel state.
507     - Update the kernel state with all outstanding changes.
508     - Update the &quot;event loop time&quot;.
509     - Calculate for how long to block.
510     - Block the process, waiting for any events.
511     - Queue all outstanding I/O (fd) events.
512     - Update the &quot;event loop time&quot; and do time jump handling.
513     - Queue all outstanding timers.
514     - Queue all outstanding periodics.
515     - If no events are pending now, queue all idle watchers.
516     - Queue all check watchers.
517     - Call all queued watchers in reverse order (i.e. check watchers first).
518     Signals and child watchers are implemented as I/O watchers, and will
519     be handled here by queueing them when their watcher gets executed.
520     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
521     were used, return, otherwise continue with step *.
522 root 1.28
523     </pre>
524 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
525 root 1.35 anymore.</p>
526     <pre> ... queue jobs here, make sure they register event watchers as long
527     ... as they still have work to do (even an idle watcher will do..)
528     ev_loop (my_loop, 0);
529     ... jobs done. yeah!
530    
531     </pre>
532 root 1.1 </dd>
533     <dt>ev_unloop (loop, how)</dt>
534     <dd>
535 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
536     has processed all outstanding events). The <code>how</code> argument must be either
537 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
538 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
539 root 1.1 </dd>
540     <dt>ev_ref (loop)</dt>
541     <dt>ev_unref (loop)</dt>
542     <dd>
543 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
544     loop: Every watcher keeps one reference, and as long as the reference
545     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
546     a watcher you never unregister that should not keep <code>ev_loop</code> from
547     returning, ev_unref() after starting, and ev_ref() before stopping it. For
548     example, libev itself uses this for its internal signal pipe: It is not
549     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
550     no event watchers registered by it are active. It is also an excellent
551     way to do this for generic recurring timers or from within third-party
552     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
553 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
554 root 1.35 running when nothing else is active.</p>
555 root 1.54 <pre> struct ev_signal exitsig;
556 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
557 root 1.54 ev_signal_start (loop, &amp;exitsig);
558     evf_unref (loop);
559 root 1.35
560     </pre>
561 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
562     <pre> ev_ref (loop);
563     ev_signal_stop (loop, &amp;exitsig);
564 root 1.35
565     </pre>
566 root 1.1 </dd>
567     </dl>
568    
569 root 1.43
570    
571    
572    
573 root 1.1 </div>
574 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
575 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
576     <p>A watcher is a structure that you create and register to record your
577     interest in some event. For instance, if you want to wait for STDIN to
578 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
579 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
580     {
581     ev_io_stop (w);
582     ev_unloop (loop, EVUNLOOP_ALL);
583     }
584    
585     struct ev_loop *loop = ev_default_loop (0);
586     struct ev_io stdin_watcher;
587     ev_init (&amp;stdin_watcher, my_cb);
588     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
589     ev_io_start (loop, &amp;stdin_watcher);
590     ev_loop (loop, 0);
591    
592     </pre>
593     <p>As you can see, you are responsible for allocating the memory for your
594     watcher structures (and it is usually a bad idea to do this on the stack,
595     although this can sometimes be quite valid).</p>
596     <p>Each watcher structure must be initialised by a call to <code>ev_init
597     (watcher *, callback)</code>, which expects a callback to be provided. This
598     callback gets invoked each time the event occurs (or, in the case of io
599     watchers, each time the event loop detects that the file descriptor given
600     is readable and/or writable).</p>
601     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
602     with arguments specific to this watcher type. There is also a macro
603     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
604     (watcher *, callback, ...)</code>.</p>
605     <p>To make the watcher actually watch out for events, you have to start it
606     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
607     *)</code>), and you can stop watching for events at any time by calling the
608     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
609     <p>As long as your watcher is active (has been started but not stopped) you
610     must not touch the values stored in it. Most specifically you must never
611 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
612 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
613     registered watcher structure as second, and a bitset of received events as
614     third argument.</p>
615 root 1.14 <p>The received events usually include a single bit per event type received
616 root 1.1 (you can receive multiple events at the same time). The possible bit masks
617     are:</p>
618     <dl>
619 root 1.10 <dt><code>EV_READ</code></dt>
620     <dt><code>EV_WRITE</code></dt>
621 root 1.1 <dd>
622 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
623 root 1.1 writable.</p>
624     </dd>
625 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
626 root 1.1 <dd>
627 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
628 root 1.1 </dd>
629 root 1.10 <dt><code>EV_PERIODIC</code></dt>
630 root 1.1 <dd>
631 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
632 root 1.1 </dd>
633 root 1.10 <dt><code>EV_SIGNAL</code></dt>
634 root 1.1 <dd>
635 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
636 root 1.1 </dd>
637 root 1.10 <dt><code>EV_CHILD</code></dt>
638 root 1.1 <dd>
639 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
640 root 1.1 </dd>
641 root 1.48 <dt><code>EV_STAT</code></dt>
642     <dd>
643     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
644     </dd>
645 root 1.10 <dt><code>EV_IDLE</code></dt>
646 root 1.1 <dd>
647 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
648 root 1.1 </dd>
649 root 1.10 <dt><code>EV_PREPARE</code></dt>
650     <dt><code>EV_CHECK</code></dt>
651 root 1.1 <dd>
652 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
653     to gather new events, and all <code>ev_check</code> watchers are invoked just after
654 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
655     received events. Callbacks of both watcher types can start and stop as
656     many watchers as they want, and all of them will be taken into account
657 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
658 root 1.1 <code>ev_loop</code> from blocking).</p>
659     </dd>
660 root 1.50 <dt><code>EV_EMBED</code></dt>
661     <dd>
662     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
663     </dd>
664     <dt><code>EV_FORK</code></dt>
665     <dd>
666     <p>The event loop has been resumed in the child process after fork (see
667     <code>ev_fork</code>).</p>
668     </dd>
669 root 1.10 <dt><code>EV_ERROR</code></dt>
670 root 1.1 <dd>
671     <p>An unspecified error has occured, the watcher has been stopped. This might
672     happen because the watcher could not be properly started because libev
673     ran out of memory, a file descriptor was found to be closed or any other
674     problem. You best act on it by reporting the problem and somehow coping
675     with the watcher being stopped.</p>
676     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
677     for example it might indicate that a fd is readable or writable, and if
678     your callbacks is well-written it can just attempt the operation and cope
679     with the error from read() or write(). This will not work in multithreaded
680     programs, though, so beware.</p>
681     </dd>
682     </dl>
683    
684     </div>
685 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
686     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
687 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
688     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
689     <dl>
690     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
691     <dd>
692     <p>This macro initialises the generic portion of a watcher. The contents
693     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
694     the generic parts of the watcher are initialised, you <i>need</i> to call
695     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
696     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
697     which rolls both calls into one.</p>
698     <p>You can reinitialise a watcher at any time as long as it has been stopped
699     (or never started) and there are no pending events outstanding.</p>
700 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
701 root 1.37 int revents)</code>.</p>
702     </dd>
703     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
704     <dd>
705     <p>This macro initialises the type-specific parts of a watcher. You need to
706     call <code>ev_init</code> at least once before you call this macro, but you can
707     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
708     macro on a watcher that is active (it can be pending, however, which is a
709     difference to the <code>ev_init</code> macro).</p>
710     <p>Although some watcher types do not have type-specific arguments
711     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
712     </dd>
713     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
714     <dd>
715     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
716     calls into a single call. This is the most convinient method to initialise
717     a watcher. The same limitations apply, of course.</p>
718     </dd>
719     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
720     <dd>
721     <p>Starts (activates) the given watcher. Only active watchers will receive
722     events. If the watcher is already active nothing will happen.</p>
723     </dd>
724     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
725     <dd>
726     <p>Stops the given watcher again (if active) and clears the pending
727     status. It is possible that stopped watchers are pending (for example,
728     non-repeating timers are being stopped when they become pending), but
729     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
730     you want to free or reuse the memory used by the watcher it is therefore a
731     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
732     </dd>
733     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
734     <dd>
735     <p>Returns a true value iff the watcher is active (i.e. it has been started
736     and not yet been stopped). As long as a watcher is active you must not modify
737     it.</p>
738     </dd>
739     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
740     <dd>
741     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
742     events but its callback has not yet been invoked). As long as a watcher
743     is pending (but not active) you must not call an init function on it (but
744     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
745     libev (e.g. you cnanot <code>free ()</code> it).</p>
746     </dd>
747 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
748 root 1.37 <dd>
749     <p>Returns the callback currently set on the watcher.</p>
750     </dd>
751     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
752     <dd>
753     <p>Change the callback. You can change the callback at virtually any time
754     (modulo threads).</p>
755     </dd>
756     </dl>
757    
758    
759    
760    
761    
762     </div>
763 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
764     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
765     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
766 root 1.14 and read at any time, libev will completely ignore it. This can be used
767 root 1.1 to associate arbitrary data with your watcher. If you need more data and
768     don't want to allocate memory and store a pointer to it in that data
769     member, you can also &quot;subclass&quot; the watcher type and provide your own
770     data:</p>
771     <pre> struct my_io
772     {
773     struct ev_io io;
774     int otherfd;
775     void *somedata;
776     struct whatever *mostinteresting;
777     }
778    
779     </pre>
780     <p>And since your callback will be called with a pointer to the watcher, you
781     can cast it back to your own type:</p>
782     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
783     {
784     struct my_io *w = (struct my_io *)w_;
785     ...
786     }
787    
788     </pre>
789 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
790     instead have been omitted.</p>
791     <p>Another common scenario is having some data structure with multiple
792     watchers:</p>
793     <pre> struct my_biggy
794     {
795     int some_data;
796     ev_timer t1;
797     ev_timer t2;
798     }
799 root 1.1
800 root 1.56 </pre>
801     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
802     you need to use <code>offsetof</code>:</p>
803     <pre> #include &lt;stddef.h&gt;
804 root 1.1
805 root 1.56 static void
806     t1_cb (EV_P_ struct ev_timer *w, int revents)
807     {
808     struct my_biggy big = (struct my_biggy *
809     (((char *)w) - offsetof (struct my_biggy, t1));
810     }
811    
812     static void
813     t2_cb (EV_P_ struct ev_timer *w, int revents)
814     {
815     struct my_biggy big = (struct my_biggy *
816     (((char *)w) - offsetof (struct my_biggy, t2));
817     }
818 root 1.1
819    
820    
821 root 1.56
822     </pre>
823    
824 root 1.1 </div>
825 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
826 root 1.1 <div id="WATCHER_TYPES_CONTENT">
827     <p>This section describes each watcher in detail, but will not repeat
828 root 1.48 information given in the last section. Any initialisation/set macros,
829     functions and members specific to the watcher type are explained.</p>
830     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
831     while the watcher is active, you can look at the member and expect some
832     sensible content, but you must not modify it (you can modify it while the
833     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
834     means you can expect it to have some sensible content while the watcher
835     is active, but you can also modify it. Modifying it may not do something
836     sensible or take immediate effect (or do anything at all), but libev will
837     not crash or malfunction in any way.</p>
838 root 1.1
839 root 1.35
840    
841    
842    
843 root 1.1 </div>
844 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
845 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
846 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
847 root 1.43 in each iteration of the event loop, or, more precisely, when reading
848     would not block the process and writing would at least be able to write
849     some data. This behaviour is called level-triggering because you keep
850     receiving events as long as the condition persists. Remember you can stop
851     the watcher if you don't want to act on the event and neither want to
852     receive future events.</p>
853 root 1.25 <p>In general you can register as many read and/or write event watchers per
854 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
855     descriptors to non-blocking mode is also usually a good idea (but not
856     required if you know what you are doing).</p>
857     <p>You have to be careful with dup'ed file descriptors, though. Some backends
858     (the linux epoll backend is a notable example) cannot handle dup'ed file
859     descriptors correctly if you register interest in two or more fds pointing
860 root 1.43 to the same underlying file/socket/etc. description (that is, they share
861 root 1.26 the same underlying &quot;file open&quot;).</p>
862 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
863 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
864     <code>EVBACKEND_POLL</code>).</p>
865 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
866     receive &quot;spurious&quot; readyness notifications, that is your callback might
867     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
868     because there is no data. Not only are some backends known to create a
869     lot of those (for example solaris ports), it is very easy to get into
870     this situation even with a relatively standard program structure. Thus
871     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
872     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
873     <p>If you cannot run the fd in non-blocking mode (for example you should not
874     play around with an Xlib connection), then you have to seperately re-test
875     wether a file descriptor is really ready with a known-to-be good interface
876     such as poll (fortunately in our Xlib example, Xlib already does this on
877     its own, so its quite safe to use).</p>
878 root 1.1 <dl>
879     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
880     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
881     <dd>
882 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
883     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
884     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
885 root 1.1 </dd>
886 root 1.48 <dt>int fd [read-only]</dt>
887     <dd>
888     <p>The file descriptor being watched.</p>
889     </dd>
890     <dt>int events [read-only]</dt>
891     <dd>
892     <p>The events being watched.</p>
893     </dd>
894 root 1.1 </dl>
895 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
896 root 1.35 readable, but only once. Since it is likely line-buffered, you could
897 root 1.54 attempt to read a whole line in the callback.</p>
898 root 1.35 <pre> static void
899     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
900     {
901     ev_io_stop (loop, w);
902     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
903     }
904    
905     ...
906     struct ev_loop *loop = ev_default_init (0);
907     struct ev_io stdin_readable;
908     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
909     ev_io_start (loop, &amp;stdin_readable);
910     ev_loop (loop, 0);
911    
912    
913    
914    
915     </pre>
916 root 1.1
917     </div>
918 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
919 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
920 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
921     given time, and optionally repeating in regular intervals after that.</p>
922     <p>The timers are based on real time, that is, if you register an event that
923 root 1.25 times out after an hour and you reset your system clock to last years
924 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
925 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
926 root 1.1 monotonic clock option helps a lot here).</p>
927 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
928     time. This is usually the right thing as this timestamp refers to the time
929 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
930     you suspect event processing to be delayed and you <i>need</i> to base the timeout
931 root 1.25 on the current time, use something like this to adjust for this:</p>
932 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
933    
934     </pre>
935 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
936     but if multiple timers become ready during the same loop iteration then
937     order of execution is undefined.</p>
938 root 1.1 <dl>
939     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
940     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
941     <dd>
942     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
943     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
944     timer will automatically be configured to trigger again <code>repeat</code> seconds
945     later, again, and again, until stopped manually.</p>
946     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
947     configure a timer to trigger every 10 seconds, then it will trigger at
948     exactly 10 second intervals. If, however, your program cannot keep up with
949 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
950 root 1.1 timer will not fire more than once per event loop iteration.</p>
951     </dd>
952     <dt>ev_timer_again (loop)</dt>
953     <dd>
954     <p>This will act as if the timer timed out and restart it again if it is
955     repeating. The exact semantics are:</p>
956     <p>If the timer is started but nonrepeating, stop it.</p>
957     <p>If the timer is repeating, either start it if necessary (with the repeat
958     value), or reset the running timer to the repeat value.</p>
959     <p>This sounds a bit complicated, but here is a useful and typical
960 root 1.48 example: Imagine you have a tcp connection and you want a so-called
961     idle timeout, that is, you want to be called when there have been,
962     say, 60 seconds of inactivity on the socket. The easiest way to do
963     this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
964     <code>ev_timer_again</code> each time you successfully read or write some data. If
965     you go into an idle state where you do not expect data to travel on the
966     socket, you can stop the timer, and again will automatically restart it if
967     need be.</p>
968     <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
969     and only ever use the <code>repeat</code> value:</p>
970     <pre> ev_timer_init (timer, callback, 0., 5.);
971     ev_timer_again (loop, timer);
972     ...
973     timer-&gt;again = 17.;
974     ev_timer_again (loop, timer);
975     ...
976     timer-&gt;again = 10.;
977     ev_timer_again (loop, timer);
978    
979     </pre>
980     <p>This is more efficient then stopping/starting the timer eahc time you want
981     to modify its timeout value.</p>
982     </dd>
983     <dt>ev_tstamp repeat [read-write]</dt>
984     <dd>
985     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
986     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
987     which is also when any modifications are taken into account.</p>
988 root 1.1 </dd>
989     </dl>
990 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
991 root 1.35 <pre> static void
992     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
993     {
994     .. one minute over, w is actually stopped right here
995     }
996    
997     struct ev_timer mytimer;
998     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
999     ev_timer_start (loop, &amp;mytimer);
1000    
1001     </pre>
1002 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1003 root 1.35 inactivity.</p>
1004     <pre> static void
1005     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1006     {
1007     .. ten seconds without any activity
1008     }
1009    
1010     struct ev_timer mytimer;
1011     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1012     ev_timer_again (&amp;mytimer); /* start timer */
1013     ev_loop (loop, 0);
1014    
1015     // and in some piece of code that gets executed on any &quot;activity&quot;:
1016     // reset the timeout to start ticking again at 10 seconds
1017     ev_timer_again (&amp;mytimer);
1018    
1019    
1020    
1021    
1022     </pre>
1023 root 1.1
1024     </div>
1025 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1026 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1027 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1028     (and unfortunately a bit complex).</p>
1029 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1030 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1031     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1032 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1033     + 10.</code>) and then reset your system clock to the last year, then it will
1034 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1035 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1036     again).</p>
1037     <p>They can also be used to implement vastly more complex timers, such as
1038     triggering an event on eahc midnight, local time.</p>
1039 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1040     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1041     during the same loop iteration then order of execution is undefined.</p>
1042 root 1.1 <dl>
1043     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1044     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1045     <dd>
1046     <p>Lots of arguments, lets sort it out... There are basically three modes of
1047     operation, and we will explain them from simplest to complex:</p>
1048     <p>
1049     <dl>
1050     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1051     <dd>
1052     <p>In this configuration the watcher triggers an event at the wallclock time
1053     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1054     that is, if it is to be run at January 1st 2011 then it will run when the
1055     system time reaches or surpasses this time.</p>
1056     </dd>
1057     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1058     <dd>
1059     <p>In this mode the watcher will always be scheduled to time out at the next
1060     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1061     of any time jumps.</p>
1062     <p>This can be used to create timers that do not drift with respect to system
1063     time:</p>
1064     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1065    
1066     </pre>
1067     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1068     but only that the the callback will be called when the system time shows a
1069 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1070 root 1.1 by 3600.</p>
1071     <p>Another way to think about it (for the mathematically inclined) is that
1072 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1073 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1074     </dd>
1075     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1076     <dd>
1077     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1078     ignored. Instead, each time the periodic watcher gets scheduled, the
1079     reschedule callback will be called with the watcher as first, and the
1080     current time as second argument.</p>
1081 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1082     ever, or make any event loop modifications</i>. If you need to stop it,
1083     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1084     starting a prepare watcher).</p>
1085 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1086     ev_tstamp now)</code>, e.g.:</p>
1087 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1088     {
1089     return now + 60.;
1090     }
1091    
1092     </pre>
1093     <p>It must return the next time to trigger, based on the passed time value
1094     (that is, the lowest time value larger than to the second argument). It
1095     will usually be called just before the callback will be triggered, but
1096     might be called at other times, too.</p>
1097 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1098 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1099 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1100     triggers on each midnight, local time. To do this, you would calculate the
1101 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1102     you do this is, again, up to you (but it is not trivial, which is the main
1103     reason I omitted it as an example).</p>
1104 root 1.1 </dd>
1105     </dl>
1106     </p>
1107     </dd>
1108     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1109     <dd>
1110     <p>Simply stops and restarts the periodic watcher again. This is only useful
1111     when you changed some parameters or the reschedule callback would return
1112     a different time than the last time it was called (e.g. in a crond like
1113     program when the crontabs have changed).</p>
1114     </dd>
1115 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1116     <dd>
1117     <p>The current interval value. Can be modified any time, but changes only
1118     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1119     called.</p>
1120     </dd>
1121     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1122     <dd>
1123     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1124     switched off. Can be changed any time, but changes only take effect when
1125     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1126     </dd>
1127 root 1.1 </dl>
1128 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1129 root 1.35 system clock is divisible by 3600. The callback invocation times have
1130     potentially a lot of jittering, but good long-term stability.</p>
1131     <pre> static void
1132     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1133     {
1134     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1135     }
1136    
1137     struct ev_periodic hourly_tick;
1138     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1139     ev_periodic_start (loop, &amp;hourly_tick);
1140    
1141     </pre>
1142 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1143 root 1.35 <pre> #include &lt;math.h&gt;
1144    
1145     static ev_tstamp
1146     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1147     {
1148     return fmod (now, 3600.) + 3600.;
1149     }
1150    
1151     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1152    
1153     </pre>
1154 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1155 root 1.35 <pre> struct ev_periodic hourly_tick;
1156     ev_periodic_init (&amp;hourly_tick, clock_cb,
1157     fmod (ev_now (loop), 3600.), 3600., 0);
1158     ev_periodic_start (loop, &amp;hourly_tick);
1159    
1160    
1161    
1162    
1163     </pre>
1164 root 1.1
1165     </div>
1166 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1167 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1168 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1169     signal one or more times. Even though signals are very asynchronous, libev
1170 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1171 root 1.1 normal event processing, like any other event.</p>
1172 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1173 root 1.1 first watcher gets started will libev actually register a signal watcher
1174     with the kernel (thus it coexists with your own signal handlers as long
1175     as you don't register any with libev). Similarly, when the last signal
1176     watcher for a signal is stopped libev will reset the signal handler to
1177     SIG_DFL (regardless of what it was set to before).</p>
1178     <dl>
1179     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1180     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1181     <dd>
1182     <p>Configures the watcher to trigger on the given signal number (usually one
1183     of the <code>SIGxxx</code> constants).</p>
1184     </dd>
1185 root 1.48 <dt>int signum [read-only]</dt>
1186     <dd>
1187     <p>The signal the watcher watches out for.</p>
1188     </dd>
1189 root 1.1 </dl>
1190    
1191 root 1.36
1192    
1193    
1194    
1195 root 1.1 </div>
1196 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1197     <div id="code_ev_child_code_watch_out_for_pro-2">
1198 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1199     some child status changes (most typically when a child of yours dies).</p>
1200     <dl>
1201     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1202     <dt>ev_child_set (ev_child *, int pid)</dt>
1203     <dd>
1204     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1205     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1206     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1207 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1208     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1209     process causing the status change.</p>
1210 root 1.1 </dd>
1211 root 1.48 <dt>int pid [read-only]</dt>
1212     <dd>
1213     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1214     </dd>
1215     <dt>int rpid [read-write]</dt>
1216     <dd>
1217     <p>The process id that detected a status change.</p>
1218     </dd>
1219     <dt>int rstatus [read-write]</dt>
1220     <dd>
1221     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1222     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1223     </dd>
1224 root 1.1 </dl>
1225 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1226 root 1.35 <pre> static void
1227     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1228     {
1229     ev_unloop (loop, EVUNLOOP_ALL);
1230     }
1231    
1232     struct ev_signal signal_watcher;
1233     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1234     ev_signal_start (loop, &amp;sigint_cb);
1235    
1236    
1237    
1238    
1239     </pre>
1240 root 1.1
1241     </div>
1242 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1243     <div id="code_ev_stat_code_did_the_file_attri-2">
1244     <p>This watches a filesystem path for attribute changes. That is, it calls
1245     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1246     compared to the last time, invoking the callback if it did.</p>
1247     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1248     not exist&quot; is a status change like any other. The condition &quot;path does
1249     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1250     otherwise always forced to be at least one) and all the other fields of
1251     the stat buffer having unspecified contents.</p>
1252     <p>Since there is no standard to do this, the portable implementation simply
1253 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1254 root 1.48 can specify a recommended polling interval for this case. If you specify
1255     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1256     unspecified default</i> value will be used (which you can expect to be around
1257     five seconds, although this might change dynamically). Libev will also
1258     impose a minimum interval which is currently around <code>0.1</code>, but thats
1259     usually overkill.</p>
1260     <p>This watcher type is not meant for massive numbers of stat watchers,
1261     as even with OS-supported change notifications, this can be
1262     resource-intensive.</p>
1263 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1264     implemented (implementing kqueue support is left as an exercise for the
1265     reader). Inotify will be used to give hints only and should not change the
1266     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1267     to fall back to regular polling again even with inotify, but changes are
1268     usually detected immediately, and if the file exists there will be no
1269     polling.</p>
1270 root 1.48 <dl>
1271     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1272     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1273     <dd>
1274     <p>Configures the watcher to wait for status changes of the given
1275     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1276     be detected and should normally be specified as <code>0</code> to let libev choose
1277     a suitable value. The memory pointed to by <code>path</code> must point to the same
1278     path for as long as the watcher is active.</p>
1279     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1280     relative to the attributes at the time the watcher was started (or the
1281     last change was detected).</p>
1282     </dd>
1283     <dt>ev_stat_stat (ev_stat *)</dt>
1284     <dd>
1285     <p>Updates the stat buffer immediately with new values. If you change the
1286     watched path in your callback, you could call this fucntion to avoid
1287     detecting this change (while introducing a race condition). Can also be
1288     useful simply to find out the new values.</p>
1289     </dd>
1290     <dt>ev_statdata attr [read-only]</dt>
1291     <dd>
1292     <p>The most-recently detected attributes of the file. Although the type is of
1293     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1294     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1295     was some error while <code>stat</code>ing the file.</p>
1296     </dd>
1297     <dt>ev_statdata prev [read-only]</dt>
1298     <dd>
1299     <p>The previous attributes of the file. The callback gets invoked whenever
1300     <code>prev</code> != <code>attr</code>.</p>
1301     </dd>
1302     <dt>ev_tstamp interval [read-only]</dt>
1303     <dd>
1304     <p>The specified interval.</p>
1305     </dd>
1306     <dt>const char *path [read-only]</dt>
1307     <dd>
1308     <p>The filesystem path that is being watched.</p>
1309     </dd>
1310     </dl>
1311     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1312     <pre> static void
1313     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1314     {
1315     /* /etc/passwd changed in some way */
1316     if (w-&gt;attr.st_nlink)
1317     {
1318     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1319     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1320     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1321     }
1322     else
1323     /* you shalt not abuse printf for puts */
1324     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1325     &quot;if this is windows, they already arrived\n&quot;);
1326     }
1327    
1328     ...
1329     ev_stat passwd;
1330    
1331     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1332     ev_stat_start (loop, &amp;passwd);
1333    
1334    
1335    
1336    
1337     </pre>
1338    
1339     </div>
1340 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1341 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1342 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1343     (prepare, check and other idle watchers do not count). That is, as long
1344     as your process is busy handling sockets or timeouts (or even signals,
1345     imagine) it will not be triggered. But when your process is idle all idle
1346     watchers are being called again and again, once per event loop iteration -
1347     until stopped, that is, or your process receives more events and becomes
1348     busy.</p>
1349 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1350     active, the process will not block when waiting for new events.</p>
1351     <p>Apart from keeping your process non-blocking (which is a useful
1352     effect on its own sometimes), idle watchers are a good place to do
1353     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1354     event loop has handled all outstanding events.</p>
1355     <dl>
1356     <dt>ev_idle_init (ev_signal *, callback)</dt>
1357     <dd>
1358     <p>Initialises and configures the idle watcher - it has no parameters of any
1359     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1360     believe me.</p>
1361     </dd>
1362     </dl>
1363 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1364     callback, free it. Also, use no error checking, as usual.</p>
1365 root 1.35 <pre> static void
1366     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1367     {
1368     free (w);
1369     // now do something you wanted to do when the program has
1370     // no longer asnything immediate to do.
1371     }
1372    
1373     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1374     ev_idle_init (idle_watcher, idle_cb);
1375     ev_idle_start (loop, idle_cb);
1376    
1377    
1378    
1379    
1380     </pre>
1381 root 1.1
1382     </div>
1383 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1384 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1385 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1386 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1387 root 1.14 afterwards.</p>
1388 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1389     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1390     watchers. Other loops than the current one are fine, however. The
1391     rationale behind this is that you do not need to check for recursion in
1392     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1393     <code>ev_check</code> so if you have one watcher of each kind they will always be
1394     called in pairs bracketing the blocking call.</p>
1395 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1396     their use is somewhat advanced. This could be used, for example, to track
1397     variable changes, implement your own watchers, integrate net-snmp or a
1398 root 1.46 coroutine library and lots more. They are also occasionally useful if
1399     you cache some data and want to flush it before blocking (for example,
1400     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1401     watcher).</p>
1402 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1403 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1404     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1405     provide just this functionality). Then, in the check watcher you check for
1406     any events that occured (by checking the pending status of all watchers
1407     and stopping them) and call back into the library. The I/O and timer
1408 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1409 root 1.14 because you never know, you know?).</p>
1410     <p>As another example, the Perl Coro module uses these hooks to integrate
1411 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1412     during each prepare and only letting the process block if no coroutines
1413 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1414     with priority higher than or equal to the event loop and one coroutine
1415     of lower priority, but only once, using idle watchers to keep the event
1416     loop from blocking if lower-priority coroutines are active, thus mapping
1417     low-priority coroutines to idle/background tasks).</p>
1418 root 1.1 <dl>
1419     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1420     <dt>ev_check_init (ev_check *, callback)</dt>
1421     <dd>
1422     <p>Initialises and configures the prepare or check watcher - they have no
1423     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1424 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1425 root 1.1 </dd>
1426     </dl>
1427 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1428     and a timeout watcher in a prepare handler, as required by libadns, and
1429     in a check watcher, destroy them and call into libadns. What follows is
1430     pseudo-code only of course:</p>
1431     <pre> static ev_io iow [nfd];
1432     static ev_timer tw;
1433    
1434     static void
1435     io_cb (ev_loop *loop, ev_io *w, int revents)
1436     {
1437     // set the relevant poll flags
1438 root 1.47 // could also call adns_processreadable etc. here
1439 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1440     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1441     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1442     }
1443    
1444     // create io watchers for each fd and a timer before blocking
1445     static void
1446     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1447     {
1448     int timeout = 3600000;truct pollfd fds [nfd];
1449     // actual code will need to loop here and realloc etc.
1450     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1451    
1452     /* the callback is illegal, but won't be called as we stop during check */
1453     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1454     ev_timer_start (loop, &amp;tw);
1455    
1456     // create on ev_io per pollfd
1457     for (int i = 0; i &lt; nfd; ++i)
1458     {
1459     ev_io_init (iow + i, io_cb, fds [i].fd,
1460     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1461     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1462    
1463     fds [i].revents = 0;
1464     iow [i].data = fds + i;
1465     ev_io_start (loop, iow + i);
1466     }
1467     }
1468    
1469     // stop all watchers after blocking
1470     static void
1471     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1472     {
1473     ev_timer_stop (loop, &amp;tw);
1474    
1475     for (int i = 0; i &lt; nfd; ++i)
1476     ev_io_stop (loop, iow + i);
1477    
1478     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1479     }
1480 root 1.35
1481    
1482    
1483    
1484 root 1.46 </pre>
1485 root 1.1
1486     </div>
1487 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1488 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1489     <p>This is a rather advanced watcher type that lets you embed one event loop
1490 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1491     loop, other types of watchers might be handled in a delayed or incorrect
1492     fashion and must not be used).</p>
1493 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1494     prioritise I/O.</p>
1495     <p>As an example for a bug workaround, the kqueue backend might only support
1496     sockets on some platform, so it is unusable as generic backend, but you
1497     still want to make use of it because you have many sockets and it scales
1498     so nicely. In this case, you would create a kqueue-based loop and embed it
1499     into your default loop (which might use e.g. poll). Overall operation will
1500     be a bit slower because first libev has to poll and then call kevent, but
1501     at least you can use both at what they are best.</p>
1502     <p>As for prioritising I/O: rarely you have the case where some fds have
1503     to be watched and handled very quickly (with low latency), and even
1504     priorities and idle watchers might have too much overhead. In this case
1505     you would put all the high priority stuff in one loop and all the rest in
1506     a second one, and embed the second one in the first.</p>
1507 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1508     there might be events pending in the embedded loop. The callback must then
1509     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1510     their callbacks (you could also start an idle watcher to give the embedded
1511     loop strictly lower priority for example). You can also set the callback
1512     to <code>0</code>, in which case the embed watcher will automatically execute the
1513     embedded loop sweep.</p>
1514 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1515     callback will be invoked whenever some events have been handled. You can
1516     set the callback to <code>0</code> to avoid having to specify one if you are not
1517     interested in that.</p>
1518     <p>Also, there have not currently been made special provisions for forking:
1519     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1520     but you will also have to stop and restart any <code>ev_embed</code> watchers
1521     yourself.</p>
1522     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1523     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1524     portable one.</p>
1525     <p>So when you want to use this feature you will always have to be prepared
1526     that you cannot get an embeddable loop. The recommended way to get around
1527     this is to have a separate variables for your embeddable loop, try to
1528     create it, and if that fails, use the normal loop for everything:</p>
1529     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1530     struct ev_loop *loop_lo = 0;
1531     struct ev_embed embed;
1532    
1533     // see if there is a chance of getting one that works
1534     // (remember that a flags value of 0 means autodetection)
1535     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1536     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1537     : 0;
1538    
1539     // if we got one, then embed it, otherwise default to loop_hi
1540     if (loop_lo)
1541     {
1542     ev_embed_init (&amp;embed, 0, loop_lo);
1543     ev_embed_start (loop_hi, &amp;embed);
1544     }
1545     else
1546     loop_lo = loop_hi;
1547    
1548     </pre>
1549     <dl>
1550 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1551     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1552 root 1.36 <dd>
1553 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1554     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1555     invoked automatically, otherwise it is the responsibility of the callback
1556     to invoke it (it will continue to be called until the sweep has been done,
1557     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1558     </dd>
1559     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1560     <dd>
1561     <p>Make a single, non-blocking sweep over the embedded loop. This works
1562     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1563     apropriate way for embedded loops.</p>
1564 root 1.36 </dd>
1565 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1566     <dd>
1567     <p>The embedded event loop.</p>
1568     </dd>
1569 root 1.36 </dl>
1570    
1571    
1572    
1573    
1574    
1575     </div>
1576 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1577     <div id="code_ev_fork_code_the_audacity_to_re-2">
1578     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1579     whoever is a good citizen cared to tell libev about it by calling
1580     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1581     event loop blocks next and before <code>ev_check</code> watchers are being called,
1582     and only in the child after the fork. If whoever good citizen calling
1583     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1584     handlers will be invoked, too, of course.</p>
1585     <dl>
1586     <dt>ev_fork_init (ev_signal *, callback)</dt>
1587     <dd>
1588     <p>Initialises and configures the fork watcher - it has no parameters of any
1589     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1590     believe me.</p>
1591     </dd>
1592     </dl>
1593    
1594    
1595    
1596    
1597    
1598     </div>
1599 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1600 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1601 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1602 root 1.1 <dl>
1603     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1604     <dd>
1605     <p>This function combines a simple timer and an I/O watcher, calls your
1606     callback on whichever event happens first and automatically stop both
1607     watchers. This is useful if you want to wait for a single event on an fd
1608 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1609 root 1.1 more watchers yourself.</p>
1610 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1611     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1612     <code>events</code> set will be craeted and started.</p>
1613 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1614 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1615     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1616     dubious value.</p>
1617     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1618 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1619 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1620     value passed to <code>ev_once</code>:</p>
1621 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1622     {
1623     if (revents &amp; EV_TIMEOUT)
1624 root 1.14 /* doh, nothing entered */;
1625 root 1.1 else if (revents &amp; EV_READ)
1626 root 1.14 /* stdin might have data for us, joy! */;
1627 root 1.1 }
1628    
1629 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1630 root 1.1
1631     </pre>
1632     </dd>
1633 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1634 root 1.1 <dd>
1635     <p>Feeds the given event set into the event loop, as if the specified event
1636 root 1.14 had happened for the specified watcher (which must be a pointer to an
1637     initialised but not necessarily started event watcher).</p>
1638 root 1.1 </dd>
1639 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1640 root 1.1 <dd>
1641 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1642     the given events it.</p>
1643 root 1.1 </dd>
1644 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1645 root 1.1 <dd>
1646 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1647     loop!).</p>
1648 root 1.1 </dd>
1649     </dl>
1650    
1651 root 1.35
1652    
1653    
1654    
1655 root 1.1 </div>
1656 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1657 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1658 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1659     emulate the internals of libevent, so here are some usage hints:</p>
1660     <dl>
1661     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1662     <dt>* The following members are fully supported: ev_base, ev_callback,
1663     ev_arg, ev_fd, ev_res, ev_events.</dt>
1664     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1665     maintained by libev, it does not work exactly the same way as in libevent (consider
1666     it a private API).</dt>
1667     <dt>* Priorities are not currently supported. Initialising priorities
1668     will fail and all watchers will have the same priority, even though there
1669     is an ev_pri field.</dt>
1670     <dt>* Other members are not supported.</dt>
1671     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1672     to use the libev header file and library.</dt>
1673     </dl>
1674 root 1.23
1675     </div>
1676 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1677 root 1.23 <div id="C_SUPPORT_CONTENT">
1678 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1679     you to use some convinience methods to start/stop watchers and also change
1680     the callback model to a model using method callbacks on objects.</p>
1681     <p>To use it,</p>
1682     <pre> #include &lt;ev++.h&gt;
1683    
1684     </pre>
1685     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1686     and puts all of its definitions (many of them macros) into the global
1687     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1688     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1689     <code>EV_MULTIPLICITY</code>.</p>
1690     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1691     <dl>
1692     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1693     <dd>
1694     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1695     macros from <cite>ev.h</cite>.</p>
1696     </dd>
1697     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1698     <dd>
1699     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1700     </dd>
1701     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1702     <dd>
1703     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1704     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1705     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1706     defines by many implementations.</p>
1707     <p>All of those classes have these methods:</p>
1708     <p>
1709     <dl>
1710     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1711     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1712     <dt>ev::TYPE::~TYPE</dt>
1713     <dd>
1714     <p>The constructor takes a pointer to an object and a method pointer to
1715     the event handler callback to call in this class. The constructor calls
1716     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1717     before starting it. If you do not specify a loop then the constructor
1718     automatically associates the default loop with this watcher.</p>
1719     <p>The destructor automatically stops the watcher if it is active.</p>
1720     </dd>
1721     <dt>w-&gt;set (struct ev_loop *)</dt>
1722     <dd>
1723     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1724     do this when the watcher is inactive (and not pending either).</p>
1725     </dd>
1726     <dt>w-&gt;set ([args])</dt>
1727     <dd>
1728     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1729     called at least once. Unlike the C counterpart, an active watcher gets
1730     automatically stopped and restarted.</p>
1731     </dd>
1732     <dt>w-&gt;start ()</dt>
1733     <dd>
1734     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1735     constructor already takes the loop.</p>
1736     </dd>
1737     <dt>w-&gt;stop ()</dt>
1738     <dd>
1739     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1740     </dd>
1741     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1742     <dd>
1743     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1744     <code>ev_TYPE_again</code> function.</p>
1745     </dd>
1746     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1747     <dd>
1748     <p>Invokes <code>ev_embed_sweep</code>.</p>
1749     </dd>
1750 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1751     <dd>
1752     <p>Invokes <code>ev_stat_stat</code>.</p>
1753     </dd>
1754 root 1.39 </dl>
1755     </p>
1756     </dd>
1757     </dl>
1758     <p>Example: Define a class with an IO and idle watcher, start one of them in
1759     the constructor.</p>
1760     <pre> class myclass
1761     {
1762     ev_io io; void io_cb (ev::io &amp;w, int revents);
1763     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1764    
1765     myclass ();
1766     }
1767    
1768     myclass::myclass (int fd)
1769     : io (this, &amp;myclass::io_cb),
1770     idle (this, &amp;myclass::idle_cb)
1771     {
1772     io.start (fd, ev::READ);
1773     }
1774    
1775 root 1.50
1776    
1777    
1778     </pre>
1779    
1780     </div>
1781 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1782 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1783     <p>Libev can be compiled with a variety of options, the most fundemantal is
1784     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1785     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1786     <p>To make it easier to write programs that cope with either variant, the
1787     following macros are defined:</p>
1788     <dl>
1789     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1790     <dd>
1791     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1792     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1793     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1794     <pre> ev_unref (EV_A);
1795     ev_timer_add (EV_A_ watcher);
1796     ev_loop (EV_A_ 0);
1797    
1798     </pre>
1799     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1800     which is often provided by the following macro.</p>
1801     </dd>
1802     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1803     <dd>
1804     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1805     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1806     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1807     <pre> // this is how ev_unref is being declared
1808     static void ev_unref (EV_P);
1809    
1810     // this is how you can declare your typical callback
1811     static void cb (EV_P_ ev_timer *w, int revents)
1812    
1813     </pre>
1814     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1815     suitable for use with <code>EV_A</code>.</p>
1816     </dd>
1817     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1818     <dd>
1819     <p>Similar to the other two macros, this gives you the value of the default
1820     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1821     </dd>
1822     </dl>
1823     <p>Example: Declare and initialise a check watcher, working regardless of
1824     wether multiple loops are supported or not.</p>
1825     <pre> static void
1826     check_cb (EV_P_ ev_timer *w, int revents)
1827     {
1828     ev_check_stop (EV_A_ w);
1829     }
1830    
1831     ev_check check;
1832     ev_check_init (&amp;check, check_cb);
1833     ev_check_start (EV_DEFAULT_ &amp;check);
1834     ev_loop (EV_DEFAULT_ 0);
1835    
1836    
1837    
1838    
1839 root 1.39 </pre>
1840 root 1.23
1841     </div>
1842 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1843 root 1.40 <div id="EMBEDDING_CONTENT">
1844     <p>Libev can (and often is) directly embedded into host
1845     applications. Examples of applications that embed it include the Deliantra
1846     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1847     and rxvt-unicode.</p>
1848     <p>The goal is to enable you to just copy the neecssary files into your
1849     source directory without having to change even a single line in them, so
1850     you can easily upgrade by simply copying (or having a checked-out copy of
1851     libev somewhere in your source tree).</p>
1852    
1853     </div>
1854     <h2 id="FILESETS">FILESETS</h2>
1855     <div id="FILESETS_CONTENT">
1856     <p>Depending on what features you need you need to include one or more sets of files
1857     in your app.</p>
1858    
1859     </div>
1860     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1861     <div id="CORE_EVENT_LOOP_CONTENT">
1862     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1863     configuration (no autoconf):</p>
1864     <pre> #define EV_STANDALONE 1
1865     #include &quot;ev.c&quot;
1866    
1867     </pre>
1868     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1869     single C source file only to provide the function implementations. To use
1870     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1871     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1872     where you can put other configuration options):</p>
1873     <pre> #define EV_STANDALONE 1
1874     #include &quot;ev.h&quot;
1875    
1876     </pre>
1877     <p>Both header files and implementation files can be compiled with a C++
1878     compiler (at least, thats a stated goal, and breakage will be treated
1879     as a bug).</p>
1880     <p>You need the following files in your source tree, or in a directory
1881     in your include path (e.g. in libev/ when using -Ilibev):</p>
1882     <pre> ev.h
1883     ev.c
1884     ev_vars.h
1885     ev_wrap.h
1886    
1887     ev_win32.c required on win32 platforms only
1888    
1889 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1890 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1891     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1892     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1893     ev_port.c only when the solaris port backend is enabled (disabled by default)
1894    
1895     </pre>
1896     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1897 root 1.44 to compile this single file.</p>
1898 root 1.40
1899     </div>
1900     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1901     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1902     <p>To include the libevent compatibility API, also include:</p>
1903     <pre> #include &quot;event.c&quot;
1904    
1905     </pre>
1906     <p>in the file including <cite>ev.c</cite>, and:</p>
1907     <pre> #include &quot;event.h&quot;
1908    
1909     </pre>
1910     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1911     <p>You need the following additional files for this:</p>
1912     <pre> event.h
1913     event.c
1914    
1915     </pre>
1916    
1917     </div>
1918     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1919     <div id="AUTOCONF_SUPPORT_CONTENT">
1920     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1921     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1922 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1923     include <cite>config.h</cite> and configure itself accordingly.</p>
1924 root 1.40 <p>For this of course you need the m4 file:</p>
1925     <pre> libev.m4
1926    
1927     </pre>
1928    
1929     </div>
1930     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1931     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1932     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1933     before including any of its files. The default is not to build for multiplicity
1934     and only include the select backend.</p>
1935     <dl>
1936     <dt>EV_STANDALONE</dt>
1937     <dd>
1938     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1939     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1940     implementations for some libevent functions (such as logging, which is not
1941     supported). It will also not define any of the structs usually found in
1942     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1943     </dd>
1944     <dt>EV_USE_MONOTONIC</dt>
1945     <dd>
1946     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1947     monotonic clock option at both compiletime and runtime. Otherwise no use
1948     of the monotonic clock option will be attempted. If you enable this, you
1949     usually have to link against librt or something similar. Enabling it when
1950     the functionality isn't available is safe, though, althoguh you have
1951     to make sure you link against any libraries where the <code>clock_gettime</code>
1952     function is hiding in (often <cite>-lrt</cite>).</p>
1953     </dd>
1954     <dt>EV_USE_REALTIME</dt>
1955     <dd>
1956     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1957     realtime clock option at compiletime (and assume its availability at
1958     runtime if successful). Otherwise no use of the realtime clock option will
1959     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1960     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1961     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1962     </dd>
1963     <dt>EV_USE_SELECT</dt>
1964     <dd>
1965     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1966     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1967     other method takes over, select will be it. Otherwise the select backend
1968     will not be compiled in.</p>
1969     </dd>
1970     <dt>EV_SELECT_USE_FD_SET</dt>
1971     <dd>
1972     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1973     structure. This is useful if libev doesn't compile due to a missing
1974     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1975     exotic systems. This usually limits the range of file descriptors to some
1976     low limit such as 1024 or might have other limitations (winsocket only
1977     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1978     influence the size of the <code>fd_set</code> used.</p>
1979     </dd>
1980     <dt>EV_SELECT_IS_WINSOCKET</dt>
1981     <dd>
1982     <p>When defined to <code>1</code>, the select backend will assume that
1983     select/socket/connect etc. don't understand file descriptors but
1984     wants osf handles on win32 (this is the case when the select to
1985     be used is the winsock select). This means that it will call
1986     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1987     it is assumed that all these functions actually work on fds, even
1988     on win32. Should not be defined on non-win32 platforms.</p>
1989     </dd>
1990     <dt>EV_USE_POLL</dt>
1991     <dd>
1992     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1993     backend. Otherwise it will be enabled on non-win32 platforms. It
1994     takes precedence over select.</p>
1995     </dd>
1996     <dt>EV_USE_EPOLL</dt>
1997     <dd>
1998     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
1999     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2000     otherwise another method will be used as fallback. This is the
2001     preferred backend for GNU/Linux systems.</p>
2002     </dd>
2003     <dt>EV_USE_KQUEUE</dt>
2004     <dd>
2005     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2006     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2007     otherwise another method will be used as fallback. This is the preferred
2008     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2009     supports some types of fds correctly (the only platform we found that
2010     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2011     not be used unless explicitly requested. The best way to use it is to find
2012 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2013 root 1.40 kqueue loop.</p>
2014     </dd>
2015     <dt>EV_USE_PORT</dt>
2016     <dd>
2017     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2018     10 port style backend. Its availability will be detected at runtime,
2019     otherwise another method will be used as fallback. This is the preferred
2020     backend for Solaris 10 systems.</p>
2021     </dd>
2022     <dt>EV_USE_DEVPOLL</dt>
2023     <dd>
2024     <p>reserved for future expansion, works like the USE symbols above.</p>
2025     </dd>
2026 root 1.57 <dt>EV_USE_INOTIFY</dt>
2027     <dd>
2028     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2029     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2030     be detected at runtime.</p>
2031     </dd>
2032 root 1.40 <dt>EV_H</dt>
2033     <dd>
2034     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2035     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2036     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2037     </dd>
2038     <dt>EV_CONFIG_H</dt>
2039     <dd>
2040     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2041     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2042     <code>EV_H</code>, above.</p>
2043     </dd>
2044     <dt>EV_EVENT_H</dt>
2045     <dd>
2046     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2047     of how the <cite>event.h</cite> header can be found.</p>
2048     </dd>
2049     <dt>EV_PROTOTYPES</dt>
2050     <dd>
2051     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2052     prototypes, but still define all the structs and other symbols. This is
2053     occasionally useful if you want to provide your own wrapper functions
2054     around libev functions.</p>
2055     </dd>
2056     <dt>EV_MULTIPLICITY</dt>
2057     <dd>
2058     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2059     will have the <code>struct ev_loop *</code> as first argument, and you can create
2060     additional independent event loops. Otherwise there will be no support
2061     for multiple event loops and there is no first event loop pointer
2062     argument. Instead, all functions act on the single default loop.</p>
2063     </dd>
2064 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2065     <dd>
2066     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2067     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2068     code.</p>
2069     </dd>
2070     <dt>EV_EMBED_ENABLE</dt>
2071     <dd>
2072     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2073     defined to be <code>0</code>, then they are not.</p>
2074     </dd>
2075     <dt>EV_STAT_ENABLE</dt>
2076     <dd>
2077     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2078     defined to be <code>0</code>, then they are not.</p>
2079     </dd>
2080 root 1.50 <dt>EV_FORK_ENABLE</dt>
2081     <dd>
2082     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2083     defined to be <code>0</code>, then they are not.</p>
2084     </dd>
2085 root 1.48 <dt>EV_MINIMAL</dt>
2086 root 1.40 <dd>
2087 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2088     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2089     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2090 root 1.40 </dd>
2091 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2092     <dd>
2093     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2094     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2095     than enough. If you need to manage thousands of children you might want to
2096 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2097     </dd>
2098     <dt>EV_INOTIFY_HASHSIZE</dt>
2099     <dd>
2100     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2101     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2102     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2103     watchers you might want to increase this value (<i>must</i> be a power of
2104     two).</p>
2105 root 1.51 </dd>
2106 root 1.40 <dt>EV_COMMON</dt>
2107     <dd>
2108     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2109     this macro to a something else you can include more and other types of
2110     members. You have to define it each time you include one of the files,
2111     though, and it must be identical each time.</p>
2112     <p>For example, the perl EV module uses something like this:</p>
2113     <pre> #define EV_COMMON \
2114     SV *self; /* contains this struct */ \
2115     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2116    
2117     </pre>
2118     </dd>
2119 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2120     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2121     <dt>ev_set_cb (ev, cb)</dt>
2122 root 1.40 <dd>
2123     <p>Can be used to change the callback member declaration in each watcher,
2124     and the way callbacks are invoked and set. Must expand to a struct member
2125     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2126     their default definitions. One possible use for overriding these is to
2127 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2128     method calls instead of plain function calls in C++.</p>
2129 root 1.40
2130     </div>
2131     <h2 id="EXAMPLES">EXAMPLES</h2>
2132     <div id="EXAMPLES_CONTENT">
2133     <p>For a real-world example of a program the includes libev
2134     verbatim, you can have a look at the EV perl module
2135     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2136     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2137     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2138     will be compiled. It is pretty complex because it provides its own header
2139     file.</p>
2140     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2141     that everybody includes and which overrides some autoconf choices:</p>
2142 root 1.41 <pre> #define EV_USE_POLL 0
2143     #define EV_MULTIPLICITY 0
2144     #define EV_PERIODICS 0
2145     #define EV_CONFIG_H &lt;config.h&gt;
2146 root 1.40
2147 root 1.41 #include &quot;ev++.h&quot;
2148 root 1.40
2149     </pre>
2150     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2151 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2152     #include &quot;ev.c&quot;
2153 root 1.40
2154 root 1.47
2155    
2156    
2157 root 1.40 </pre>
2158    
2159     </div>
2160 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2161 root 1.47 <div id="COMPLEXITIES_CONTENT">
2162     <p>In this section the complexities of (many of) the algorithms used inside
2163     libev will be explained. For complexity discussions about backends see the
2164     documentation for <code>ev_default_init</code>.</p>
2165     <p>
2166     <dl>
2167     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2168     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2169     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2170     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2171 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2172 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2173     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2174     <dt>Activating one watcher: O(1)</dt>
2175     </dl>
2176     </p>
2177    
2178    
2179    
2180    
2181    
2182     </div>
2183 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2184 root 1.1 <div id="AUTHOR_CONTENT">
2185 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2186 root 1.1
2187     </div>
2188     </div></body>
2189     </html>