ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.60
Committed: Wed Nov 28 18:29:29 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
CVS Tags: rel-1_5
Changes since 1.59: +3 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.60 <meta name="created" content="Wed Nov 28 19:29:25 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124     <p>Libev is an event loop: you register interest in certain events (such as a
125     file descriptor being readable or a timeout occuring), and it will manage
126 root 1.4 these event sources and provide your program with events.</p>
127 root 1.1 <p>To do this, it must take more or less complete control over your process
128     (or thread) by executing the <i>event loop</i> handler, and will then
129     communicate events via a callback mechanism.</p>
130     <p>You register interest in certain events by registering so-called <i>event
131     watchers</i>, which are relatively small C structures you initialise with the
132     details of the event, and then hand it over to libev by <i>starting</i> the
133     watcher.</p>
134    
135     </div>
136 root 1.55 <h1 id="FEATURES">FEATURES</h1>
137 root 1.1 <div id="FEATURES_CONTENT">
138 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
139     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
140     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
141     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
142     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
143     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
144     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
145 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
146     file watchers (<code>ev_stat</code>) and even limited support for fork events
147     (<code>ev_fork</code>).</p>
148     <p>It also is quite fast (see this
149     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
150     for example).</p>
151 root 1.1
152     </div>
153 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
154 root 1.1 <div id="CONVENTIONS_CONTENT">
155 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
156     be described, which supports multiple event loops. For more info about
157     various configuration options please have a look at <strong>EMBED</strong> section in
158     this manual. If libev was configured without support for multiple event
159     loops, then all functions taking an initial argument of name <code>loop</code>
160     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
161 root 1.1
162     </div>
163 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
164 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
165 root 1.2 <p>Libev represents time as a single floating point number, representing the
166     (fractional) number of seconds since the (POSIX) epoch (somewhere near
167     the beginning of 1970, details are complicated, don't ask). This type is
168 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
169 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
170     it, you should treat it as such.</p>
171    
172 root 1.18 </div>
173 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
174 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
175 root 1.21 <p>These functions can be called anytime, even before initialising the
176     library in any way.</p>
177 root 1.1 <dl>
178     <dt>ev_tstamp ev_time ()</dt>
179     <dd>
180 root 1.28 <p>Returns the current time as libev would use it. Please note that the
181     <code>ev_now</code> function is usually faster and also often returns the timestamp
182     you actually want to know.</p>
183 root 1.1 </dd>
184     <dt>int ev_version_major ()</dt>
185     <dt>int ev_version_minor ()</dt>
186     <dd>
187     <p>You can find out the major and minor version numbers of the library
188     you linked against by calling the functions <code>ev_version_major</code> and
189     <code>ev_version_minor</code>. If you want, you can compare against the global
190     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
191     version of the library your program was compiled against.</p>
192 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
193 root 1.1 as this indicates an incompatible change. Minor versions are usually
194     compatible to older versions, so a larger minor version alone is usually
195     not a problem.</p>
196 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
197     version.</p>
198 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
199     ev_version_major () == EV_VERSION_MAJOR
200     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
201    
202     </pre>
203 root 1.1 </dd>
204 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
205     <dd>
206     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
207     value) compiled into this binary of libev (independent of their
208     availability on the system you are running on). See <code>ev_default_loop</code> for
209     a description of the set values.</p>
210 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
211     a must have and can we have a torrent of it please!!!11</p>
212     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
213     ev_supported_backends () &amp; EVBACKEND_EPOLL));
214    
215     </pre>
216 root 1.32 </dd>
217     <dt>unsigned int ev_recommended_backends ()</dt>
218     <dd>
219     <p>Return the set of all backends compiled into this binary of libev and also
220     recommended for this platform. This set is often smaller than the one
221     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
222     most BSDs and will not be autodetected unless you explicitly request it
223     (assuming you know what you are doing). This is the set of backends that
224 root 1.34 libev will probe for if you specify no backends explicitly.</p>
225 root 1.32 </dd>
226 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
227     <dd>
228     <p>Returns the set of backends that are embeddable in other event loops. This
229     is the theoretical, all-platform, value. To find which backends
230     might be supported on the current system, you would need to look at
231     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
232     recommended ones.</p>
233     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
234     </dd>
235 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
236 root 1.1 <dd>
237 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
238     semantics is identical - to the realloc C function). It is used to
239     allocate and free memory (no surprises here). If it returns zero when
240     memory needs to be allocated, the library might abort or take some
241     potentially destructive action. The default is your system realloc
242     function.</p>
243 root 1.1 <p>You could override this function in high-availability programs to, say,
244     free some memory if it cannot allocate memory, to use a special allocator,
245     or even to sleep a while and retry until some memory is available.</p>
246 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
247     retries).</p>
248 root 1.35 <pre> static void *
249 root 1.52 persistent_realloc (void *ptr, size_t size)
250 root 1.35 {
251     for (;;)
252     {
253     void *newptr = realloc (ptr, size);
254    
255     if (newptr)
256     return newptr;
257    
258     sleep (60);
259     }
260     }
261    
262     ...
263     ev_set_allocator (persistent_realloc);
264    
265     </pre>
266 root 1.1 </dd>
267     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
268     <dd>
269     <p>Set the callback function to call on a retryable syscall error (such
270     as failed select, poll, epoll_wait). The message is a printable string
271     indicating the system call or subsystem causing the problem. If this
272     callback is set, then libev will expect it to remedy the sitution, no
273 root 1.7 matter what, when it returns. That is, libev will generally retry the
274 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
275     (such as abort).</p>
276 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
277 root 1.35 <pre> static void
278     fatal_error (const char *msg)
279     {
280     perror (msg);
281     abort ();
282     }
283    
284     ...
285     ev_set_syserr_cb (fatal_error);
286    
287     </pre>
288 root 1.1 </dd>
289     </dl>
290    
291     </div>
292 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
293 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
294     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
295     types of such loops, the <i>default</i> loop, which supports signals and child
296     events, and dynamically created loops which do not.</p>
297     <p>If you use threads, a common model is to run the default event loop
298 root 1.18 in your main thread (or in a separate thread) and for each thread you
299 root 1.7 create, you also create another event loop. Libev itself does no locking
300     whatsoever, so if you mix calls to the same event loop in different
301     threads, make sure you lock (this is usually a bad idea, though, even if
302 root 1.9 done correctly, because it's hideous and inefficient).</p>
303 root 1.1 <dl>
304     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
305     <dd>
306     <p>This will initialise the default event loop if it hasn't been initialised
307     yet and return it. If the default loop could not be initialised, returns
308     false. If it already was initialised it simply returns it (and ignores the
309 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
310 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
311     function.</p>
312     <p>The flags argument can be used to specify special behaviour or specific
313 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
314     <p>The following flags are supported:</p>
315 root 1.1 <p>
316     <dl>
317 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
318 root 1.1 <dd>
319 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
320 root 1.1 thing, believe me).</p>
321     </dd>
322 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
323 root 1.1 <dd>
324 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
325     or setgid) then libev will <i>not</i> look at the environment variable
326     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
327     override the flags completely if it is found in the environment. This is
328     useful to try out specific backends to test their performance, or to work
329     around bugs.</p>
330 root 1.1 </dd>
331 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
332 root 1.29 <dd>
333     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
334     libev tries to roll its own fd_set with no limits on the number of fds,
335     but if that fails, expect a fairly low limit on the number of fds when
336     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
337     the fastest backend for a low number of fds.</p>
338     </dd>
339 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
340 root 1.29 <dd>
341     <p>And this is your standard poll(2) backend. It's more complicated than
342     select, but handles sparse fds better and has no artificial limit on the
343     number of fds you can use (except it will slow down considerably with a
344     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
345     </dd>
346 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
347 root 1.29 <dd>
348     <p>For few fds, this backend is a bit little slower than poll and select,
349     but it scales phenomenally better. While poll and select usually scale like
350     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
351     either O(1) or O(active_fds).</p>
352     <p>While stopping and starting an I/O watcher in the same iteration will
353     result in some caching, there is still a syscall per such incident
354     (because the fd could point to a different file description now), so its
355     best to avoid that. Also, dup()ed file descriptors might not work very
356     well if you register events for both fds.</p>
357 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
358     need to use non-blocking I/O or other means to avoid blocking when no data
359     (or space) is available.</p>
360 root 1.29 </dd>
361 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
362 root 1.29 <dd>
363     <p>Kqueue deserves special mention, as at the time of this writing, it
364     was broken on all BSDs except NetBSD (usually it doesn't work with
365     anything but sockets and pipes, except on Darwin, where of course its
366 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
367     unless you explicitly specify it explicitly in the flags (i.e. using
368     <code>EVBACKEND_KQUEUE</code>).</p>
369 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
370     kernel is more efficient (which says nothing about its actual speed, of
371     course). While starting and stopping an I/O watcher does not cause an
372     extra syscall as with epoll, it still adds up to four event changes per
373     incident, so its best to avoid that.</p>
374     </dd>
375 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
376 root 1.29 <dd>
377     <p>This is not implemented yet (and might never be).</p>
378     </dd>
379 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
380 root 1.29 <dd>
381     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
382     it's really slow, but it still scales very well (O(active_fds)).</p>
383 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
384     notifications, so you need to use non-blocking I/O or other means to avoid
385     blocking when no data (or space) is available.</p>
386 root 1.29 </dd>
387 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
388 root 1.29 <dd>
389 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
390     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
391 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
392 root 1.1 </dd>
393     </dl>
394     </p>
395 root 1.29 <p>If one or more of these are ored into the flags value, then only these
396     backends will be tried (in the reverse order as given here). If none are
397     specified, most compiled-in backend will be tried, usually in reverse
398     order of their flag values :)</p>
399 root 1.34 <p>The most typical usage is like this:</p>
400     <pre> if (!ev_default_loop (0))
401     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
402    
403     </pre>
404     <p>Restrict libev to the select and poll backends, and do not allow
405     environment settings to be taken into account:</p>
406     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
407    
408     </pre>
409     <p>Use whatever libev has to offer, but make sure that kqueue is used if
410     available (warning, breaks stuff, best use only with your own private
411     event loop and only if you know the OS supports your types of fds):</p>
412     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
413    
414     </pre>
415 root 1.1 </dd>
416     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
417     <dd>
418     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
419     always distinct from the default loop. Unlike the default loop, it cannot
420     handle signal and child watchers, and attempts to do so will be greeted by
421     undefined behaviour (or a failed assertion if assertions are enabled).</p>
422 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
423 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
424     if (!epoller)
425     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
426    
427     </pre>
428 root 1.1 </dd>
429     <dt>ev_default_destroy ()</dt>
430     <dd>
431     <p>Destroys the default loop again (frees all memory and kernel state
432 root 1.38 etc.). None of the active event watchers will be stopped in the normal
433     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
434     responsibility to either stop all watchers cleanly yoursef <i>before</i>
435     calling this function, or cope with the fact afterwards (which is usually
436     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
437     for example).</p>
438 root 1.1 </dd>
439     <dt>ev_loop_destroy (loop)</dt>
440     <dd>
441     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
442     earlier call to <code>ev_loop_new</code>.</p>
443     </dd>
444     <dt>ev_default_fork ()</dt>
445     <dd>
446     <p>This function reinitialises the kernel state for backends that have
447     one. Despite the name, you can call it anytime, but it makes most sense
448     after forking, in either the parent or child process (or both, but that
449     again makes little sense).</p>
450 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
451     only if you want to use the event library in both processes. If you just
452     fork+exec, you don't have to call it.</p>
453 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
454 root 1.1 it just in case after a fork. To make this easy, the function will fit in
455     quite nicely into a call to <code>pthread_atfork</code>:</p>
456     <pre> pthread_atfork (0, 0, ev_default_fork);
457    
458     </pre>
459 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
460     without calling this function, so if you force one of those backends you
461     do not need to care.</p>
462 root 1.1 </dd>
463     <dt>ev_loop_fork (loop)</dt>
464     <dd>
465     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
466     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
467     after fork, and how you do this is entirely your own problem.</p>
468     </dd>
469 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
470 root 1.1 <dd>
471 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
472 root 1.1 use.</p>
473     </dd>
474 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
475 root 1.1 <dd>
476     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
477 root 1.35 received events and started processing them. This timestamp does not
478     change as long as callbacks are being processed, and this is also the base
479     time used for relative timers. You can treat it as the timestamp of the
480     event occuring (or more correctly, libev finding out about it).</p>
481 root 1.1 </dd>
482     <dt>ev_loop (loop, int flags)</dt>
483     <dd>
484     <p>Finally, this is it, the event handler. This function usually is called
485     after you initialised all your watchers and you want to start handling
486     events.</p>
487 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
488     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
489 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
490     relying on all watchers to be stopped when deciding when a program has
491     finished (especially in interactive programs), but having a program that
492     automatically loops as long as it has to and no longer by virtue of
493     relying on its watchers stopping correctly is a thing of beauty.</p>
494 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
495     those events and any outstanding ones, but will not block your process in
496 root 1.9 case there are no events and will return after one iteration of the loop.</p>
497 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
498     neccessary) and will handle those and any outstanding ones. It will block
499 root 1.9 your process until at least one new event arrives, and will return after
500 root 1.34 one iteration of the loop. This is useful if you are waiting for some
501     external event in conjunction with something not expressible using other
502     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
503     usually a better approach for this kind of thing.</p>
504     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
505     <pre> * If there are no active watchers (reference count is zero), return.
506     - Queue prepare watchers and then call all outstanding watchers.
507     - If we have been forked, recreate the kernel state.
508     - Update the kernel state with all outstanding changes.
509     - Update the &quot;event loop time&quot;.
510     - Calculate for how long to block.
511     - Block the process, waiting for any events.
512     - Queue all outstanding I/O (fd) events.
513     - Update the &quot;event loop time&quot; and do time jump handling.
514     - Queue all outstanding timers.
515     - Queue all outstanding periodics.
516     - If no events are pending now, queue all idle watchers.
517     - Queue all check watchers.
518     - Call all queued watchers in reverse order (i.e. check watchers first).
519     Signals and child watchers are implemented as I/O watchers, and will
520     be handled here by queueing them when their watcher gets executed.
521     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
522     were used, return, otherwise continue with step *.
523 root 1.28
524     </pre>
525 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
526 root 1.35 anymore.</p>
527     <pre> ... queue jobs here, make sure they register event watchers as long
528     ... as they still have work to do (even an idle watcher will do..)
529     ev_loop (my_loop, 0);
530     ... jobs done. yeah!
531    
532     </pre>
533 root 1.1 </dd>
534     <dt>ev_unloop (loop, how)</dt>
535     <dd>
536 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
537     has processed all outstanding events). The <code>how</code> argument must be either
538 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
539 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
540 root 1.1 </dd>
541     <dt>ev_ref (loop)</dt>
542     <dt>ev_unref (loop)</dt>
543     <dd>
544 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
545     loop: Every watcher keeps one reference, and as long as the reference
546     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
547     a watcher you never unregister that should not keep <code>ev_loop</code> from
548     returning, ev_unref() after starting, and ev_ref() before stopping it. For
549     example, libev itself uses this for its internal signal pipe: It is not
550     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
551     no event watchers registered by it are active. It is also an excellent
552     way to do this for generic recurring timers or from within third-party
553     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
554 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
555 root 1.35 running when nothing else is active.</p>
556 root 1.54 <pre> struct ev_signal exitsig;
557 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
558 root 1.54 ev_signal_start (loop, &amp;exitsig);
559     evf_unref (loop);
560 root 1.35
561     </pre>
562 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
563     <pre> ev_ref (loop);
564     ev_signal_stop (loop, &amp;exitsig);
565 root 1.35
566     </pre>
567 root 1.1 </dd>
568     </dl>
569    
570 root 1.43
571    
572    
573    
574 root 1.1 </div>
575 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
576 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
577     <p>A watcher is a structure that you create and register to record your
578     interest in some event. For instance, if you want to wait for STDIN to
579 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
580 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
581     {
582     ev_io_stop (w);
583     ev_unloop (loop, EVUNLOOP_ALL);
584     }
585    
586     struct ev_loop *loop = ev_default_loop (0);
587     struct ev_io stdin_watcher;
588     ev_init (&amp;stdin_watcher, my_cb);
589     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
590     ev_io_start (loop, &amp;stdin_watcher);
591     ev_loop (loop, 0);
592    
593     </pre>
594     <p>As you can see, you are responsible for allocating the memory for your
595     watcher structures (and it is usually a bad idea to do this on the stack,
596     although this can sometimes be quite valid).</p>
597     <p>Each watcher structure must be initialised by a call to <code>ev_init
598     (watcher *, callback)</code>, which expects a callback to be provided. This
599     callback gets invoked each time the event occurs (or, in the case of io
600     watchers, each time the event loop detects that the file descriptor given
601     is readable and/or writable).</p>
602     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
603     with arguments specific to this watcher type. There is also a macro
604     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
605     (watcher *, callback, ...)</code>.</p>
606     <p>To make the watcher actually watch out for events, you have to start it
607     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
608     *)</code>), and you can stop watching for events at any time by calling the
609     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
610     <p>As long as your watcher is active (has been started but not stopped) you
611     must not touch the values stored in it. Most specifically you must never
612 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
613 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
614     registered watcher structure as second, and a bitset of received events as
615     third argument.</p>
616 root 1.14 <p>The received events usually include a single bit per event type received
617 root 1.1 (you can receive multiple events at the same time). The possible bit masks
618     are:</p>
619     <dl>
620 root 1.10 <dt><code>EV_READ</code></dt>
621     <dt><code>EV_WRITE</code></dt>
622 root 1.1 <dd>
623 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
624 root 1.1 writable.</p>
625     </dd>
626 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
627 root 1.1 <dd>
628 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
629 root 1.1 </dd>
630 root 1.10 <dt><code>EV_PERIODIC</code></dt>
631 root 1.1 <dd>
632 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
633 root 1.1 </dd>
634 root 1.10 <dt><code>EV_SIGNAL</code></dt>
635 root 1.1 <dd>
636 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
637 root 1.1 </dd>
638 root 1.10 <dt><code>EV_CHILD</code></dt>
639 root 1.1 <dd>
640 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
641 root 1.1 </dd>
642 root 1.48 <dt><code>EV_STAT</code></dt>
643     <dd>
644     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
645     </dd>
646 root 1.10 <dt><code>EV_IDLE</code></dt>
647 root 1.1 <dd>
648 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
649 root 1.1 </dd>
650 root 1.10 <dt><code>EV_PREPARE</code></dt>
651     <dt><code>EV_CHECK</code></dt>
652 root 1.1 <dd>
653 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
654     to gather new events, and all <code>ev_check</code> watchers are invoked just after
655 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
656     received events. Callbacks of both watcher types can start and stop as
657     many watchers as they want, and all of them will be taken into account
658 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
659 root 1.1 <code>ev_loop</code> from blocking).</p>
660     </dd>
661 root 1.50 <dt><code>EV_EMBED</code></dt>
662     <dd>
663     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
664     </dd>
665     <dt><code>EV_FORK</code></dt>
666     <dd>
667     <p>The event loop has been resumed in the child process after fork (see
668     <code>ev_fork</code>).</p>
669     </dd>
670 root 1.10 <dt><code>EV_ERROR</code></dt>
671 root 1.1 <dd>
672     <p>An unspecified error has occured, the watcher has been stopped. This might
673     happen because the watcher could not be properly started because libev
674     ran out of memory, a file descriptor was found to be closed or any other
675     problem. You best act on it by reporting the problem and somehow coping
676     with the watcher being stopped.</p>
677     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
678     for example it might indicate that a fd is readable or writable, and if
679     your callbacks is well-written it can just attempt the operation and cope
680     with the error from read() or write(). This will not work in multithreaded
681     programs, though, so beware.</p>
682     </dd>
683     </dl>
684    
685     </div>
686 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
687     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
688 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
689     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
690     <dl>
691     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
692     <dd>
693     <p>This macro initialises the generic portion of a watcher. The contents
694     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
695     the generic parts of the watcher are initialised, you <i>need</i> to call
696     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
697     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
698     which rolls both calls into one.</p>
699     <p>You can reinitialise a watcher at any time as long as it has been stopped
700     (or never started) and there are no pending events outstanding.</p>
701 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
702 root 1.37 int revents)</code>.</p>
703     </dd>
704     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
705     <dd>
706     <p>This macro initialises the type-specific parts of a watcher. You need to
707     call <code>ev_init</code> at least once before you call this macro, but you can
708     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
709     macro on a watcher that is active (it can be pending, however, which is a
710     difference to the <code>ev_init</code> macro).</p>
711     <p>Although some watcher types do not have type-specific arguments
712     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
713     </dd>
714     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
715     <dd>
716     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
717     calls into a single call. This is the most convinient method to initialise
718     a watcher. The same limitations apply, of course.</p>
719     </dd>
720     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
721     <dd>
722     <p>Starts (activates) the given watcher. Only active watchers will receive
723     events. If the watcher is already active nothing will happen.</p>
724     </dd>
725     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
726     <dd>
727     <p>Stops the given watcher again (if active) and clears the pending
728     status. It is possible that stopped watchers are pending (for example,
729     non-repeating timers are being stopped when they become pending), but
730     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
731     you want to free or reuse the memory used by the watcher it is therefore a
732     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
733     </dd>
734     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
735     <dd>
736     <p>Returns a true value iff the watcher is active (i.e. it has been started
737     and not yet been stopped). As long as a watcher is active you must not modify
738     it.</p>
739     </dd>
740     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
741     <dd>
742     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
743     events but its callback has not yet been invoked). As long as a watcher
744     is pending (but not active) you must not call an init function on it (but
745     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
746     libev (e.g. you cnanot <code>free ()</code> it).</p>
747     </dd>
748 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
749 root 1.37 <dd>
750     <p>Returns the callback currently set on the watcher.</p>
751     </dd>
752     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
753     <dd>
754     <p>Change the callback. You can change the callback at virtually any time
755     (modulo threads).</p>
756     </dd>
757     </dl>
758    
759    
760    
761    
762    
763     </div>
764 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
765     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
766     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
767 root 1.14 and read at any time, libev will completely ignore it. This can be used
768 root 1.1 to associate arbitrary data with your watcher. If you need more data and
769     don't want to allocate memory and store a pointer to it in that data
770     member, you can also &quot;subclass&quot; the watcher type and provide your own
771     data:</p>
772     <pre> struct my_io
773     {
774     struct ev_io io;
775     int otherfd;
776     void *somedata;
777     struct whatever *mostinteresting;
778     }
779    
780     </pre>
781     <p>And since your callback will be called with a pointer to the watcher, you
782     can cast it back to your own type:</p>
783     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
784     {
785     struct my_io *w = (struct my_io *)w_;
786     ...
787     }
788    
789     </pre>
790 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
791     instead have been omitted.</p>
792     <p>Another common scenario is having some data structure with multiple
793     watchers:</p>
794     <pre> struct my_biggy
795     {
796     int some_data;
797     ev_timer t1;
798     ev_timer t2;
799     }
800 root 1.1
801 root 1.56 </pre>
802     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
803     you need to use <code>offsetof</code>:</p>
804     <pre> #include &lt;stddef.h&gt;
805 root 1.1
806 root 1.56 static void
807     t1_cb (EV_P_ struct ev_timer *w, int revents)
808     {
809     struct my_biggy big = (struct my_biggy *
810     (((char *)w) - offsetof (struct my_biggy, t1));
811     }
812    
813     static void
814     t2_cb (EV_P_ struct ev_timer *w, int revents)
815     {
816     struct my_biggy big = (struct my_biggy *
817     (((char *)w) - offsetof (struct my_biggy, t2));
818     }
819 root 1.1
820    
821    
822 root 1.56
823     </pre>
824    
825 root 1.1 </div>
826 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
827 root 1.1 <div id="WATCHER_TYPES_CONTENT">
828     <p>This section describes each watcher in detail, but will not repeat
829 root 1.48 information given in the last section. Any initialisation/set macros,
830     functions and members specific to the watcher type are explained.</p>
831     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
832     while the watcher is active, you can look at the member and expect some
833     sensible content, but you must not modify it (you can modify it while the
834     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
835     means you can expect it to have some sensible content while the watcher
836     is active, but you can also modify it. Modifying it may not do something
837     sensible or take immediate effect (or do anything at all), but libev will
838     not crash or malfunction in any way.</p>
839 root 1.1
840 root 1.35
841    
842    
843    
844 root 1.1 </div>
845 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
846 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
847 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
848 root 1.43 in each iteration of the event loop, or, more precisely, when reading
849     would not block the process and writing would at least be able to write
850     some data. This behaviour is called level-triggering because you keep
851     receiving events as long as the condition persists. Remember you can stop
852     the watcher if you don't want to act on the event and neither want to
853     receive future events.</p>
854 root 1.25 <p>In general you can register as many read and/or write event watchers per
855 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
856     descriptors to non-blocking mode is also usually a good idea (but not
857     required if you know what you are doing).</p>
858     <p>You have to be careful with dup'ed file descriptors, though. Some backends
859     (the linux epoll backend is a notable example) cannot handle dup'ed file
860     descriptors correctly if you register interest in two or more fds pointing
861 root 1.43 to the same underlying file/socket/etc. description (that is, they share
862 root 1.26 the same underlying &quot;file open&quot;).</p>
863 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
864 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
865     <code>EVBACKEND_POLL</code>).</p>
866 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
867     receive &quot;spurious&quot; readyness notifications, that is your callback might
868     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
869     because there is no data. Not only are some backends known to create a
870     lot of those (for example solaris ports), it is very easy to get into
871     this situation even with a relatively standard program structure. Thus
872     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
873     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
874     <p>If you cannot run the fd in non-blocking mode (for example you should not
875     play around with an Xlib connection), then you have to seperately re-test
876     wether a file descriptor is really ready with a known-to-be good interface
877     such as poll (fortunately in our Xlib example, Xlib already does this on
878     its own, so its quite safe to use).</p>
879 root 1.1 <dl>
880     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
881     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
882     <dd>
883 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
884     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
885     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
886 root 1.1 </dd>
887 root 1.48 <dt>int fd [read-only]</dt>
888     <dd>
889     <p>The file descriptor being watched.</p>
890     </dd>
891     <dt>int events [read-only]</dt>
892     <dd>
893     <p>The events being watched.</p>
894     </dd>
895 root 1.1 </dl>
896 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
897 root 1.35 readable, but only once. Since it is likely line-buffered, you could
898 root 1.54 attempt to read a whole line in the callback.</p>
899 root 1.35 <pre> static void
900     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
901     {
902     ev_io_stop (loop, w);
903     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
904     }
905    
906     ...
907     struct ev_loop *loop = ev_default_init (0);
908     struct ev_io stdin_readable;
909     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
910     ev_io_start (loop, &amp;stdin_readable);
911     ev_loop (loop, 0);
912    
913    
914    
915    
916     </pre>
917 root 1.1
918     </div>
919 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
920 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
921 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
922     given time, and optionally repeating in regular intervals after that.</p>
923     <p>The timers are based on real time, that is, if you register an event that
924 root 1.25 times out after an hour and you reset your system clock to last years
925 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
926 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
927 root 1.1 monotonic clock option helps a lot here).</p>
928 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
929     time. This is usually the right thing as this timestamp refers to the time
930 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
931     you suspect event processing to be delayed and you <i>need</i> to base the timeout
932 root 1.25 on the current time, use something like this to adjust for this:</p>
933 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
934    
935     </pre>
936 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
937     but if multiple timers become ready during the same loop iteration then
938     order of execution is undefined.</p>
939 root 1.1 <dl>
940     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
941     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
942     <dd>
943     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
944     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
945     timer will automatically be configured to trigger again <code>repeat</code> seconds
946     later, again, and again, until stopped manually.</p>
947     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
948     configure a timer to trigger every 10 seconds, then it will trigger at
949     exactly 10 second intervals. If, however, your program cannot keep up with
950 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
951 root 1.1 timer will not fire more than once per event loop iteration.</p>
952     </dd>
953     <dt>ev_timer_again (loop)</dt>
954     <dd>
955     <p>This will act as if the timer timed out and restart it again if it is
956     repeating. The exact semantics are:</p>
957     <p>If the timer is started but nonrepeating, stop it.</p>
958     <p>If the timer is repeating, either start it if necessary (with the repeat
959     value), or reset the running timer to the repeat value.</p>
960     <p>This sounds a bit complicated, but here is a useful and typical
961 root 1.48 example: Imagine you have a tcp connection and you want a so-called
962     idle timeout, that is, you want to be called when there have been,
963     say, 60 seconds of inactivity on the socket. The easiest way to do
964     this is to configure an <code>ev_timer</code> with <code>after</code>=<code>repeat</code>=<code>60</code> and calling
965     <code>ev_timer_again</code> each time you successfully read or write some data. If
966     you go into an idle state where you do not expect data to travel on the
967     socket, you can stop the timer, and again will automatically restart it if
968     need be.</p>
969     <p>You can also ignore the <code>after</code> value and <code>ev_timer_start</code> altogether
970     and only ever use the <code>repeat</code> value:</p>
971     <pre> ev_timer_init (timer, callback, 0., 5.);
972     ev_timer_again (loop, timer);
973     ...
974     timer-&gt;again = 17.;
975     ev_timer_again (loop, timer);
976     ...
977     timer-&gt;again = 10.;
978     ev_timer_again (loop, timer);
979    
980     </pre>
981     <p>This is more efficient then stopping/starting the timer eahc time you want
982     to modify its timeout value.</p>
983     </dd>
984     <dt>ev_tstamp repeat [read-write]</dt>
985     <dd>
986     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
987     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
988     which is also when any modifications are taken into account.</p>
989 root 1.1 </dd>
990     </dl>
991 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
992 root 1.35 <pre> static void
993     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
994     {
995     .. one minute over, w is actually stopped right here
996     }
997    
998     struct ev_timer mytimer;
999     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1000     ev_timer_start (loop, &amp;mytimer);
1001    
1002     </pre>
1003 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1004 root 1.35 inactivity.</p>
1005     <pre> static void
1006     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1007     {
1008     .. ten seconds without any activity
1009     }
1010    
1011     struct ev_timer mytimer;
1012     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1013     ev_timer_again (&amp;mytimer); /* start timer */
1014     ev_loop (loop, 0);
1015    
1016     // and in some piece of code that gets executed on any &quot;activity&quot;:
1017     // reset the timeout to start ticking again at 10 seconds
1018     ev_timer_again (&amp;mytimer);
1019    
1020    
1021    
1022    
1023     </pre>
1024 root 1.1
1025     </div>
1026 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1027 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1028 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1029     (and unfortunately a bit complex).</p>
1030 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1031 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1032     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1033 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1034     + 10.</code>) and then reset your system clock to the last year, then it will
1035 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1036 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1037     again).</p>
1038     <p>They can also be used to implement vastly more complex timers, such as
1039     triggering an event on eahc midnight, local time.</p>
1040 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1041     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1042     during the same loop iteration then order of execution is undefined.</p>
1043 root 1.1 <dl>
1044     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1045     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1046     <dd>
1047     <p>Lots of arguments, lets sort it out... There are basically three modes of
1048     operation, and we will explain them from simplest to complex:</p>
1049     <p>
1050     <dl>
1051     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1052     <dd>
1053     <p>In this configuration the watcher triggers an event at the wallclock time
1054     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1055     that is, if it is to be run at January 1st 2011 then it will run when the
1056     system time reaches or surpasses this time.</p>
1057     </dd>
1058     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1059     <dd>
1060     <p>In this mode the watcher will always be scheduled to time out at the next
1061     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1062     of any time jumps.</p>
1063     <p>This can be used to create timers that do not drift with respect to system
1064     time:</p>
1065     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1066    
1067     </pre>
1068     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1069     but only that the the callback will be called when the system time shows a
1070 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1071 root 1.1 by 3600.</p>
1072     <p>Another way to think about it (for the mathematically inclined) is that
1073 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1074 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1075     </dd>
1076     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1077     <dd>
1078     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1079     ignored. Instead, each time the periodic watcher gets scheduled, the
1080     reschedule callback will be called with the watcher as first, and the
1081     current time as second argument.</p>
1082 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1083     ever, or make any event loop modifications</i>. If you need to stop it,
1084     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1085     starting a prepare watcher).</p>
1086 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1087     ev_tstamp now)</code>, e.g.:</p>
1088 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1089     {
1090     return now + 60.;
1091     }
1092    
1093     </pre>
1094     <p>It must return the next time to trigger, based on the passed time value
1095     (that is, the lowest time value larger than to the second argument). It
1096     will usually be called just before the callback will be triggered, but
1097     might be called at other times, too.</p>
1098 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1099 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1100 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1101     triggers on each midnight, local time. To do this, you would calculate the
1102 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1103     you do this is, again, up to you (but it is not trivial, which is the main
1104     reason I omitted it as an example).</p>
1105 root 1.1 </dd>
1106     </dl>
1107     </p>
1108     </dd>
1109     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1110     <dd>
1111     <p>Simply stops and restarts the periodic watcher again. This is only useful
1112     when you changed some parameters or the reschedule callback would return
1113     a different time than the last time it was called (e.g. in a crond like
1114     program when the crontabs have changed).</p>
1115     </dd>
1116 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1117     <dd>
1118     <p>The current interval value. Can be modified any time, but changes only
1119     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1120     called.</p>
1121     </dd>
1122     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1123     <dd>
1124     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1125     switched off. Can be changed any time, but changes only take effect when
1126     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1127     </dd>
1128 root 1.1 </dl>
1129 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1130 root 1.35 system clock is divisible by 3600. The callback invocation times have
1131     potentially a lot of jittering, but good long-term stability.</p>
1132     <pre> static void
1133     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1134     {
1135     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1136     }
1137    
1138     struct ev_periodic hourly_tick;
1139     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1140     ev_periodic_start (loop, &amp;hourly_tick);
1141    
1142     </pre>
1143 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1144 root 1.35 <pre> #include &lt;math.h&gt;
1145    
1146     static ev_tstamp
1147     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1148     {
1149     return fmod (now, 3600.) + 3600.;
1150     }
1151    
1152     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1153    
1154     </pre>
1155 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1156 root 1.35 <pre> struct ev_periodic hourly_tick;
1157     ev_periodic_init (&amp;hourly_tick, clock_cb,
1158     fmod (ev_now (loop), 3600.), 3600., 0);
1159     ev_periodic_start (loop, &amp;hourly_tick);
1160    
1161    
1162    
1163    
1164     </pre>
1165 root 1.1
1166     </div>
1167 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1168 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1169 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1170     signal one or more times. Even though signals are very asynchronous, libev
1171 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1172 root 1.1 normal event processing, like any other event.</p>
1173 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1174 root 1.1 first watcher gets started will libev actually register a signal watcher
1175     with the kernel (thus it coexists with your own signal handlers as long
1176     as you don't register any with libev). Similarly, when the last signal
1177     watcher for a signal is stopped libev will reset the signal handler to
1178     SIG_DFL (regardless of what it was set to before).</p>
1179     <dl>
1180     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1181     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1182     <dd>
1183     <p>Configures the watcher to trigger on the given signal number (usually one
1184     of the <code>SIGxxx</code> constants).</p>
1185     </dd>
1186 root 1.48 <dt>int signum [read-only]</dt>
1187     <dd>
1188     <p>The signal the watcher watches out for.</p>
1189     </dd>
1190 root 1.1 </dl>
1191    
1192 root 1.36
1193    
1194    
1195    
1196 root 1.1 </div>
1197 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1198     <div id="code_ev_child_code_watch_out_for_pro-2">
1199 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1200     some child status changes (most typically when a child of yours dies).</p>
1201     <dl>
1202     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1203     <dt>ev_child_set (ev_child *, int pid)</dt>
1204     <dd>
1205     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1206     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1207     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1208 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1209     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1210     process causing the status change.</p>
1211 root 1.1 </dd>
1212 root 1.48 <dt>int pid [read-only]</dt>
1213     <dd>
1214     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1215     </dd>
1216     <dt>int rpid [read-write]</dt>
1217     <dd>
1218     <p>The process id that detected a status change.</p>
1219     </dd>
1220     <dt>int rstatus [read-write]</dt>
1221     <dd>
1222     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1223     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1224     </dd>
1225 root 1.1 </dl>
1226 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1227 root 1.35 <pre> static void
1228     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1229     {
1230     ev_unloop (loop, EVUNLOOP_ALL);
1231     }
1232    
1233     struct ev_signal signal_watcher;
1234     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1235     ev_signal_start (loop, &amp;sigint_cb);
1236    
1237    
1238    
1239    
1240     </pre>
1241 root 1.1
1242     </div>
1243 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1244     <div id="code_ev_stat_code_did_the_file_attri-2">
1245     <p>This watches a filesystem path for attribute changes. That is, it calls
1246     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1247     compared to the last time, invoking the callback if it did.</p>
1248     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1249     not exist&quot; is a status change like any other. The condition &quot;path does
1250     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1251     otherwise always forced to be at least one) and all the other fields of
1252     the stat buffer having unspecified contents.</p>
1253 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1254     relative and your working directory changes, the behaviour is undefined.</p>
1255 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1256 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1257 root 1.48 can specify a recommended polling interval for this case. If you specify
1258     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1259     unspecified default</i> value will be used (which you can expect to be around
1260     five seconds, although this might change dynamically). Libev will also
1261     impose a minimum interval which is currently around <code>0.1</code>, but thats
1262     usually overkill.</p>
1263     <p>This watcher type is not meant for massive numbers of stat watchers,
1264     as even with OS-supported change notifications, this can be
1265     resource-intensive.</p>
1266 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1267     implemented (implementing kqueue support is left as an exercise for the
1268     reader). Inotify will be used to give hints only and should not change the
1269     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1270     to fall back to regular polling again even with inotify, but changes are
1271     usually detected immediately, and if the file exists there will be no
1272     polling.</p>
1273 root 1.48 <dl>
1274     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1275     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1276     <dd>
1277     <p>Configures the watcher to wait for status changes of the given
1278     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1279     be detected and should normally be specified as <code>0</code> to let libev choose
1280     a suitable value. The memory pointed to by <code>path</code> must point to the same
1281     path for as long as the watcher is active.</p>
1282     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1283     relative to the attributes at the time the watcher was started (or the
1284     last change was detected).</p>
1285     </dd>
1286     <dt>ev_stat_stat (ev_stat *)</dt>
1287     <dd>
1288     <p>Updates the stat buffer immediately with new values. If you change the
1289     watched path in your callback, you could call this fucntion to avoid
1290     detecting this change (while introducing a race condition). Can also be
1291     useful simply to find out the new values.</p>
1292     </dd>
1293     <dt>ev_statdata attr [read-only]</dt>
1294     <dd>
1295     <p>The most-recently detected attributes of the file. Although the type is of
1296     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1297     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1298     was some error while <code>stat</code>ing the file.</p>
1299     </dd>
1300     <dt>ev_statdata prev [read-only]</dt>
1301     <dd>
1302     <p>The previous attributes of the file. The callback gets invoked whenever
1303     <code>prev</code> != <code>attr</code>.</p>
1304     </dd>
1305     <dt>ev_tstamp interval [read-only]</dt>
1306     <dd>
1307     <p>The specified interval.</p>
1308     </dd>
1309     <dt>const char *path [read-only]</dt>
1310     <dd>
1311     <p>The filesystem path that is being watched.</p>
1312     </dd>
1313     </dl>
1314     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1315     <pre> static void
1316     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1317     {
1318     /* /etc/passwd changed in some way */
1319     if (w-&gt;attr.st_nlink)
1320     {
1321     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1322     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1323     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1324     }
1325     else
1326     /* you shalt not abuse printf for puts */
1327     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1328     &quot;if this is windows, they already arrived\n&quot;);
1329     }
1330    
1331     ...
1332     ev_stat passwd;
1333    
1334     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1335     ev_stat_start (loop, &amp;passwd);
1336    
1337    
1338    
1339    
1340     </pre>
1341    
1342     </div>
1343 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1344 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1345 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1346     (prepare, check and other idle watchers do not count). That is, as long
1347     as your process is busy handling sockets or timeouts (or even signals,
1348     imagine) it will not be triggered. But when your process is idle all idle
1349     watchers are being called again and again, once per event loop iteration -
1350     until stopped, that is, or your process receives more events and becomes
1351     busy.</p>
1352 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1353     active, the process will not block when waiting for new events.</p>
1354     <p>Apart from keeping your process non-blocking (which is a useful
1355     effect on its own sometimes), idle watchers are a good place to do
1356     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1357     event loop has handled all outstanding events.</p>
1358     <dl>
1359     <dt>ev_idle_init (ev_signal *, callback)</dt>
1360     <dd>
1361     <p>Initialises and configures the idle watcher - it has no parameters of any
1362     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1363     believe me.</p>
1364     </dd>
1365     </dl>
1366 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1367     callback, free it. Also, use no error checking, as usual.</p>
1368 root 1.35 <pre> static void
1369     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1370     {
1371     free (w);
1372     // now do something you wanted to do when the program has
1373     // no longer asnything immediate to do.
1374     }
1375    
1376     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1377     ev_idle_init (idle_watcher, idle_cb);
1378     ev_idle_start (loop, idle_cb);
1379    
1380    
1381    
1382    
1383     </pre>
1384 root 1.1
1385     </div>
1386 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1387 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1388 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1389 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1390 root 1.14 afterwards.</p>
1391 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1392     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1393     watchers. Other loops than the current one are fine, however. The
1394     rationale behind this is that you do not need to check for recursion in
1395     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1396     <code>ev_check</code> so if you have one watcher of each kind they will always be
1397     called in pairs bracketing the blocking call.</p>
1398 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1399     their use is somewhat advanced. This could be used, for example, to track
1400     variable changes, implement your own watchers, integrate net-snmp or a
1401 root 1.46 coroutine library and lots more. They are also occasionally useful if
1402     you cache some data and want to flush it before blocking (for example,
1403     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1404     watcher).</p>
1405 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1406 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1407     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1408     provide just this functionality). Then, in the check watcher you check for
1409     any events that occured (by checking the pending status of all watchers
1410     and stopping them) and call back into the library. The I/O and timer
1411 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1412 root 1.14 because you never know, you know?).</p>
1413     <p>As another example, the Perl Coro module uses these hooks to integrate
1414 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1415     during each prepare and only letting the process block if no coroutines
1416 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1417     with priority higher than or equal to the event loop and one coroutine
1418     of lower priority, but only once, using idle watchers to keep the event
1419     loop from blocking if lower-priority coroutines are active, thus mapping
1420     low-priority coroutines to idle/background tasks).</p>
1421 root 1.1 <dl>
1422     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1423     <dt>ev_check_init (ev_check *, callback)</dt>
1424     <dd>
1425     <p>Initialises and configures the prepare or check watcher - they have no
1426     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1427 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1428 root 1.1 </dd>
1429     </dl>
1430 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1431     and a timeout watcher in a prepare handler, as required by libadns, and
1432     in a check watcher, destroy them and call into libadns. What follows is
1433     pseudo-code only of course:</p>
1434     <pre> static ev_io iow [nfd];
1435     static ev_timer tw;
1436    
1437     static void
1438     io_cb (ev_loop *loop, ev_io *w, int revents)
1439     {
1440     // set the relevant poll flags
1441 root 1.47 // could also call adns_processreadable etc. here
1442 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1443     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1444     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1445     }
1446    
1447     // create io watchers for each fd and a timer before blocking
1448     static void
1449     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1450     {
1451     int timeout = 3600000;truct pollfd fds [nfd];
1452     // actual code will need to loop here and realloc etc.
1453     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1454    
1455     /* the callback is illegal, but won't be called as we stop during check */
1456     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1457     ev_timer_start (loop, &amp;tw);
1458    
1459     // create on ev_io per pollfd
1460     for (int i = 0; i &lt; nfd; ++i)
1461     {
1462     ev_io_init (iow + i, io_cb, fds [i].fd,
1463     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1464     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1465    
1466     fds [i].revents = 0;
1467     iow [i].data = fds + i;
1468     ev_io_start (loop, iow + i);
1469     }
1470     }
1471    
1472     // stop all watchers after blocking
1473     static void
1474     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1475     {
1476     ev_timer_stop (loop, &amp;tw);
1477    
1478     for (int i = 0; i &lt; nfd; ++i)
1479     ev_io_stop (loop, iow + i);
1480    
1481     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1482     }
1483 root 1.35
1484    
1485    
1486    
1487 root 1.46 </pre>
1488 root 1.1
1489     </div>
1490 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1491 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1492     <p>This is a rather advanced watcher type that lets you embed one event loop
1493 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1494     loop, other types of watchers might be handled in a delayed or incorrect
1495     fashion and must not be used).</p>
1496 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1497     prioritise I/O.</p>
1498     <p>As an example for a bug workaround, the kqueue backend might only support
1499     sockets on some platform, so it is unusable as generic backend, but you
1500     still want to make use of it because you have many sockets and it scales
1501     so nicely. In this case, you would create a kqueue-based loop and embed it
1502     into your default loop (which might use e.g. poll). Overall operation will
1503     be a bit slower because first libev has to poll and then call kevent, but
1504     at least you can use both at what they are best.</p>
1505     <p>As for prioritising I/O: rarely you have the case where some fds have
1506     to be watched and handled very quickly (with low latency), and even
1507     priorities and idle watchers might have too much overhead. In this case
1508     you would put all the high priority stuff in one loop and all the rest in
1509     a second one, and embed the second one in the first.</p>
1510 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1511     there might be events pending in the embedded loop. The callback must then
1512     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1513     their callbacks (you could also start an idle watcher to give the embedded
1514     loop strictly lower priority for example). You can also set the callback
1515     to <code>0</code>, in which case the embed watcher will automatically execute the
1516     embedded loop sweep.</p>
1517 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1518     callback will be invoked whenever some events have been handled. You can
1519     set the callback to <code>0</code> to avoid having to specify one if you are not
1520     interested in that.</p>
1521     <p>Also, there have not currently been made special provisions for forking:
1522     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1523     but you will also have to stop and restart any <code>ev_embed</code> watchers
1524     yourself.</p>
1525     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1526     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1527     portable one.</p>
1528     <p>So when you want to use this feature you will always have to be prepared
1529     that you cannot get an embeddable loop. The recommended way to get around
1530     this is to have a separate variables for your embeddable loop, try to
1531     create it, and if that fails, use the normal loop for everything:</p>
1532     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1533     struct ev_loop *loop_lo = 0;
1534     struct ev_embed embed;
1535    
1536     // see if there is a chance of getting one that works
1537     // (remember that a flags value of 0 means autodetection)
1538     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1539     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1540     : 0;
1541    
1542     // if we got one, then embed it, otherwise default to loop_hi
1543     if (loop_lo)
1544     {
1545     ev_embed_init (&amp;embed, 0, loop_lo);
1546     ev_embed_start (loop_hi, &amp;embed);
1547     }
1548     else
1549     loop_lo = loop_hi;
1550    
1551     </pre>
1552     <dl>
1553 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1554     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1555 root 1.36 <dd>
1556 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1557     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1558     invoked automatically, otherwise it is the responsibility of the callback
1559     to invoke it (it will continue to be called until the sweep has been done,
1560     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1561     </dd>
1562     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1563     <dd>
1564     <p>Make a single, non-blocking sweep over the embedded loop. This works
1565     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1566     apropriate way for embedded loops.</p>
1567 root 1.36 </dd>
1568 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1569     <dd>
1570     <p>The embedded event loop.</p>
1571     </dd>
1572 root 1.36 </dl>
1573    
1574    
1575    
1576    
1577    
1578     </div>
1579 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1580     <div id="code_ev_fork_code_the_audacity_to_re-2">
1581     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1582     whoever is a good citizen cared to tell libev about it by calling
1583     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1584     event loop blocks next and before <code>ev_check</code> watchers are being called,
1585     and only in the child after the fork. If whoever good citizen calling
1586     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1587     handlers will be invoked, too, of course.</p>
1588     <dl>
1589     <dt>ev_fork_init (ev_signal *, callback)</dt>
1590     <dd>
1591     <p>Initialises and configures the fork watcher - it has no parameters of any
1592     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1593     believe me.</p>
1594     </dd>
1595     </dl>
1596    
1597    
1598    
1599    
1600    
1601     </div>
1602 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1603 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1604 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1605 root 1.1 <dl>
1606     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1607     <dd>
1608     <p>This function combines a simple timer and an I/O watcher, calls your
1609     callback on whichever event happens first and automatically stop both
1610     watchers. This is useful if you want to wait for a single event on an fd
1611 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1612 root 1.1 more watchers yourself.</p>
1613 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1614     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1615     <code>events</code> set will be craeted and started.</p>
1616 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1617 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1618     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1619     dubious value.</p>
1620     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1621 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1622 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1623     value passed to <code>ev_once</code>:</p>
1624 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1625     {
1626     if (revents &amp; EV_TIMEOUT)
1627 root 1.14 /* doh, nothing entered */;
1628 root 1.1 else if (revents &amp; EV_READ)
1629 root 1.14 /* stdin might have data for us, joy! */;
1630 root 1.1 }
1631    
1632 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1633 root 1.1
1634     </pre>
1635     </dd>
1636 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1637 root 1.1 <dd>
1638     <p>Feeds the given event set into the event loop, as if the specified event
1639 root 1.14 had happened for the specified watcher (which must be a pointer to an
1640     initialised but not necessarily started event watcher).</p>
1641 root 1.1 </dd>
1642 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1643 root 1.1 <dd>
1644 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1645     the given events it.</p>
1646 root 1.1 </dd>
1647 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1648 root 1.1 <dd>
1649 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1650     loop!).</p>
1651 root 1.1 </dd>
1652     </dl>
1653    
1654 root 1.35
1655    
1656    
1657    
1658 root 1.1 </div>
1659 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1660 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1661 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1662     emulate the internals of libevent, so here are some usage hints:</p>
1663     <dl>
1664     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1665     <dt>* The following members are fully supported: ev_base, ev_callback,
1666     ev_arg, ev_fd, ev_res, ev_events.</dt>
1667     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1668     maintained by libev, it does not work exactly the same way as in libevent (consider
1669     it a private API).</dt>
1670     <dt>* Priorities are not currently supported. Initialising priorities
1671     will fail and all watchers will have the same priority, even though there
1672     is an ev_pri field.</dt>
1673     <dt>* Other members are not supported.</dt>
1674     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1675     to use the libev header file and library.</dt>
1676     </dl>
1677 root 1.23
1678     </div>
1679 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1680 root 1.23 <div id="C_SUPPORT_CONTENT">
1681 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1682     you to use some convinience methods to start/stop watchers and also change
1683     the callback model to a model using method callbacks on objects.</p>
1684     <p>To use it,</p>
1685     <pre> #include &lt;ev++.h&gt;
1686    
1687     </pre>
1688     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1689     and puts all of its definitions (many of them macros) into the global
1690     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1691     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1692     <code>EV_MULTIPLICITY</code>.</p>
1693     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1694     <dl>
1695     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1696     <dd>
1697     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1698     macros from <cite>ev.h</cite>.</p>
1699     </dd>
1700     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1701     <dd>
1702     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1703     </dd>
1704     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1705     <dd>
1706     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1707     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1708     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1709     defines by many implementations.</p>
1710     <p>All of those classes have these methods:</p>
1711     <p>
1712     <dl>
1713     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1714     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1715     <dt>ev::TYPE::~TYPE</dt>
1716     <dd>
1717     <p>The constructor takes a pointer to an object and a method pointer to
1718     the event handler callback to call in this class. The constructor calls
1719     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1720     before starting it. If you do not specify a loop then the constructor
1721     automatically associates the default loop with this watcher.</p>
1722     <p>The destructor automatically stops the watcher if it is active.</p>
1723     </dd>
1724     <dt>w-&gt;set (struct ev_loop *)</dt>
1725     <dd>
1726     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1727     do this when the watcher is inactive (and not pending either).</p>
1728     </dd>
1729     <dt>w-&gt;set ([args])</dt>
1730     <dd>
1731     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1732     called at least once. Unlike the C counterpart, an active watcher gets
1733     automatically stopped and restarted.</p>
1734     </dd>
1735     <dt>w-&gt;start ()</dt>
1736     <dd>
1737     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1738     constructor already takes the loop.</p>
1739     </dd>
1740     <dt>w-&gt;stop ()</dt>
1741     <dd>
1742     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1743     </dd>
1744     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1745     <dd>
1746     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1747     <code>ev_TYPE_again</code> function.</p>
1748     </dd>
1749     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1750     <dd>
1751     <p>Invokes <code>ev_embed_sweep</code>.</p>
1752     </dd>
1753 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1754     <dd>
1755     <p>Invokes <code>ev_stat_stat</code>.</p>
1756     </dd>
1757 root 1.39 </dl>
1758     </p>
1759     </dd>
1760     </dl>
1761     <p>Example: Define a class with an IO and idle watcher, start one of them in
1762     the constructor.</p>
1763     <pre> class myclass
1764     {
1765     ev_io io; void io_cb (ev::io &amp;w, int revents);
1766     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1767    
1768     myclass ();
1769     }
1770    
1771     myclass::myclass (int fd)
1772     : io (this, &amp;myclass::io_cb),
1773     idle (this, &amp;myclass::idle_cb)
1774     {
1775     io.start (fd, ev::READ);
1776     }
1777    
1778 root 1.50
1779    
1780    
1781     </pre>
1782    
1783     </div>
1784 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1785 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1786     <p>Libev can be compiled with a variety of options, the most fundemantal is
1787     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1788     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1789     <p>To make it easier to write programs that cope with either variant, the
1790     following macros are defined:</p>
1791     <dl>
1792     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1793     <dd>
1794     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1795     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1796     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1797     <pre> ev_unref (EV_A);
1798     ev_timer_add (EV_A_ watcher);
1799     ev_loop (EV_A_ 0);
1800    
1801     </pre>
1802     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1803     which is often provided by the following macro.</p>
1804     </dd>
1805     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1806     <dd>
1807     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1808     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1809     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1810     <pre> // this is how ev_unref is being declared
1811     static void ev_unref (EV_P);
1812    
1813     // this is how you can declare your typical callback
1814     static void cb (EV_P_ ev_timer *w, int revents)
1815    
1816     </pre>
1817     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1818     suitable for use with <code>EV_A</code>.</p>
1819     </dd>
1820     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1821     <dd>
1822     <p>Similar to the other two macros, this gives you the value of the default
1823     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1824     </dd>
1825     </dl>
1826     <p>Example: Declare and initialise a check watcher, working regardless of
1827     wether multiple loops are supported or not.</p>
1828     <pre> static void
1829     check_cb (EV_P_ ev_timer *w, int revents)
1830     {
1831     ev_check_stop (EV_A_ w);
1832     }
1833    
1834     ev_check check;
1835     ev_check_init (&amp;check, check_cb);
1836     ev_check_start (EV_DEFAULT_ &amp;check);
1837     ev_loop (EV_DEFAULT_ 0);
1838    
1839    
1840    
1841    
1842 root 1.39 </pre>
1843 root 1.23
1844     </div>
1845 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1846 root 1.40 <div id="EMBEDDING_CONTENT">
1847     <p>Libev can (and often is) directly embedded into host
1848     applications. Examples of applications that embed it include the Deliantra
1849     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1850     and rxvt-unicode.</p>
1851     <p>The goal is to enable you to just copy the neecssary files into your
1852     source directory without having to change even a single line in them, so
1853     you can easily upgrade by simply copying (or having a checked-out copy of
1854     libev somewhere in your source tree).</p>
1855    
1856     </div>
1857     <h2 id="FILESETS">FILESETS</h2>
1858     <div id="FILESETS_CONTENT">
1859     <p>Depending on what features you need you need to include one or more sets of files
1860     in your app.</p>
1861    
1862     </div>
1863     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1864     <div id="CORE_EVENT_LOOP_CONTENT">
1865     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1866     configuration (no autoconf):</p>
1867     <pre> #define EV_STANDALONE 1
1868     #include &quot;ev.c&quot;
1869    
1870     </pre>
1871     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1872     single C source file only to provide the function implementations. To use
1873     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1874     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1875     where you can put other configuration options):</p>
1876     <pre> #define EV_STANDALONE 1
1877     #include &quot;ev.h&quot;
1878    
1879     </pre>
1880     <p>Both header files and implementation files can be compiled with a C++
1881     compiler (at least, thats a stated goal, and breakage will be treated
1882     as a bug).</p>
1883     <p>You need the following files in your source tree, or in a directory
1884     in your include path (e.g. in libev/ when using -Ilibev):</p>
1885     <pre> ev.h
1886     ev.c
1887     ev_vars.h
1888     ev_wrap.h
1889    
1890     ev_win32.c required on win32 platforms only
1891    
1892 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1893 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1894     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1895     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1896     ev_port.c only when the solaris port backend is enabled (disabled by default)
1897    
1898     </pre>
1899     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1900 root 1.44 to compile this single file.</p>
1901 root 1.40
1902     </div>
1903     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1904     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1905     <p>To include the libevent compatibility API, also include:</p>
1906     <pre> #include &quot;event.c&quot;
1907    
1908     </pre>
1909     <p>in the file including <cite>ev.c</cite>, and:</p>
1910     <pre> #include &quot;event.h&quot;
1911    
1912     </pre>
1913     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1914     <p>You need the following additional files for this:</p>
1915     <pre> event.h
1916     event.c
1917    
1918     </pre>
1919    
1920     </div>
1921     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1922     <div id="AUTOCONF_SUPPORT_CONTENT">
1923     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1924     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1925 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1926     include <cite>config.h</cite> and configure itself accordingly.</p>
1927 root 1.40 <p>For this of course you need the m4 file:</p>
1928     <pre> libev.m4
1929    
1930     </pre>
1931    
1932     </div>
1933     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1934     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1935     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1936     before including any of its files. The default is not to build for multiplicity
1937     and only include the select backend.</p>
1938     <dl>
1939     <dt>EV_STANDALONE</dt>
1940     <dd>
1941     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1942     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1943     implementations for some libevent functions (such as logging, which is not
1944     supported). It will also not define any of the structs usually found in
1945     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1946     </dd>
1947     <dt>EV_USE_MONOTONIC</dt>
1948     <dd>
1949     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1950     monotonic clock option at both compiletime and runtime. Otherwise no use
1951     of the monotonic clock option will be attempted. If you enable this, you
1952     usually have to link against librt or something similar. Enabling it when
1953     the functionality isn't available is safe, though, althoguh you have
1954     to make sure you link against any libraries where the <code>clock_gettime</code>
1955     function is hiding in (often <cite>-lrt</cite>).</p>
1956     </dd>
1957     <dt>EV_USE_REALTIME</dt>
1958     <dd>
1959     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1960     realtime clock option at compiletime (and assume its availability at
1961     runtime if successful). Otherwise no use of the realtime clock option will
1962     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1963     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1964     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1965     </dd>
1966     <dt>EV_USE_SELECT</dt>
1967     <dd>
1968     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1969     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1970     other method takes over, select will be it. Otherwise the select backend
1971     will not be compiled in.</p>
1972     </dd>
1973     <dt>EV_SELECT_USE_FD_SET</dt>
1974     <dd>
1975     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1976     structure. This is useful if libev doesn't compile due to a missing
1977     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1978     exotic systems. This usually limits the range of file descriptors to some
1979     low limit such as 1024 or might have other limitations (winsocket only
1980     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1981     influence the size of the <code>fd_set</code> used.</p>
1982     </dd>
1983     <dt>EV_SELECT_IS_WINSOCKET</dt>
1984     <dd>
1985     <p>When defined to <code>1</code>, the select backend will assume that
1986     select/socket/connect etc. don't understand file descriptors but
1987     wants osf handles on win32 (this is the case when the select to
1988     be used is the winsock select). This means that it will call
1989     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1990     it is assumed that all these functions actually work on fds, even
1991     on win32. Should not be defined on non-win32 platforms.</p>
1992     </dd>
1993     <dt>EV_USE_POLL</dt>
1994     <dd>
1995     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1996     backend. Otherwise it will be enabled on non-win32 platforms. It
1997     takes precedence over select.</p>
1998     </dd>
1999     <dt>EV_USE_EPOLL</dt>
2000     <dd>
2001     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2002     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2003     otherwise another method will be used as fallback. This is the
2004     preferred backend for GNU/Linux systems.</p>
2005     </dd>
2006     <dt>EV_USE_KQUEUE</dt>
2007     <dd>
2008     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2009     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2010     otherwise another method will be used as fallback. This is the preferred
2011     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2012     supports some types of fds correctly (the only platform we found that
2013     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2014     not be used unless explicitly requested. The best way to use it is to find
2015 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2016 root 1.40 kqueue loop.</p>
2017     </dd>
2018     <dt>EV_USE_PORT</dt>
2019     <dd>
2020     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2021     10 port style backend. Its availability will be detected at runtime,
2022     otherwise another method will be used as fallback. This is the preferred
2023     backend for Solaris 10 systems.</p>
2024     </dd>
2025     <dt>EV_USE_DEVPOLL</dt>
2026     <dd>
2027     <p>reserved for future expansion, works like the USE symbols above.</p>
2028     </dd>
2029 root 1.57 <dt>EV_USE_INOTIFY</dt>
2030     <dd>
2031     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2032     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2033     be detected at runtime.</p>
2034     </dd>
2035 root 1.40 <dt>EV_H</dt>
2036     <dd>
2037     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2038     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2039     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2040     </dd>
2041     <dt>EV_CONFIG_H</dt>
2042     <dd>
2043     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2044     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2045     <code>EV_H</code>, above.</p>
2046     </dd>
2047     <dt>EV_EVENT_H</dt>
2048     <dd>
2049     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2050     of how the <cite>event.h</cite> header can be found.</p>
2051     </dd>
2052     <dt>EV_PROTOTYPES</dt>
2053     <dd>
2054     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2055     prototypes, but still define all the structs and other symbols. This is
2056     occasionally useful if you want to provide your own wrapper functions
2057     around libev functions.</p>
2058     </dd>
2059     <dt>EV_MULTIPLICITY</dt>
2060     <dd>
2061     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2062     will have the <code>struct ev_loop *</code> as first argument, and you can create
2063     additional independent event loops. Otherwise there will be no support
2064     for multiple event loops and there is no first event loop pointer
2065     argument. Instead, all functions act on the single default loop.</p>
2066     </dd>
2067 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2068     <dd>
2069     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2070     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2071     code.</p>
2072     </dd>
2073     <dt>EV_EMBED_ENABLE</dt>
2074     <dd>
2075     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2076     defined to be <code>0</code>, then they are not.</p>
2077     </dd>
2078     <dt>EV_STAT_ENABLE</dt>
2079     <dd>
2080     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2081     defined to be <code>0</code>, then they are not.</p>
2082     </dd>
2083 root 1.50 <dt>EV_FORK_ENABLE</dt>
2084     <dd>
2085     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2086     defined to be <code>0</code>, then they are not.</p>
2087     </dd>
2088 root 1.48 <dt>EV_MINIMAL</dt>
2089 root 1.40 <dd>
2090 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2091     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2092     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2093 root 1.40 </dd>
2094 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2095     <dd>
2096     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2097     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2098     than enough. If you need to manage thousands of children you might want to
2099 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2100     </dd>
2101     <dt>EV_INOTIFY_HASHSIZE</dt>
2102     <dd>
2103     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2104     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2105     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2106     watchers you might want to increase this value (<i>must</i> be a power of
2107     two).</p>
2108 root 1.51 </dd>
2109 root 1.40 <dt>EV_COMMON</dt>
2110     <dd>
2111     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2112     this macro to a something else you can include more and other types of
2113     members. You have to define it each time you include one of the files,
2114     though, and it must be identical each time.</p>
2115     <p>For example, the perl EV module uses something like this:</p>
2116     <pre> #define EV_COMMON \
2117     SV *self; /* contains this struct */ \
2118     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2119    
2120     </pre>
2121     </dd>
2122 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2123     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2124     <dt>ev_set_cb (ev, cb)</dt>
2125 root 1.40 <dd>
2126     <p>Can be used to change the callback member declaration in each watcher,
2127     and the way callbacks are invoked and set. Must expand to a struct member
2128     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2129     their default definitions. One possible use for overriding these is to
2130 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2131     method calls instead of plain function calls in C++.</p>
2132 root 1.40
2133     </div>
2134     <h2 id="EXAMPLES">EXAMPLES</h2>
2135     <div id="EXAMPLES_CONTENT">
2136     <p>For a real-world example of a program the includes libev
2137     verbatim, you can have a look at the EV perl module
2138     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2139     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2140     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2141     will be compiled. It is pretty complex because it provides its own header
2142     file.</p>
2143     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2144     that everybody includes and which overrides some autoconf choices:</p>
2145 root 1.41 <pre> #define EV_USE_POLL 0
2146     #define EV_MULTIPLICITY 0
2147     #define EV_PERIODICS 0
2148     #define EV_CONFIG_H &lt;config.h&gt;
2149 root 1.40
2150 root 1.41 #include &quot;ev++.h&quot;
2151 root 1.40
2152     </pre>
2153     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2154 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2155     #include &quot;ev.c&quot;
2156 root 1.40
2157 root 1.47
2158    
2159    
2160 root 1.40 </pre>
2161    
2162     </div>
2163 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2164 root 1.47 <div id="COMPLEXITIES_CONTENT">
2165     <p>In this section the complexities of (many of) the algorithms used inside
2166     libev will be explained. For complexity discussions about backends see the
2167     documentation for <code>ev_default_init</code>.</p>
2168     <p>
2169     <dl>
2170     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2171     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2172     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2173     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2174 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2175 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2176     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2177     <dt>Activating one watcher: O(1)</dt>
2178     </dl>
2179     </p>
2180    
2181    
2182    
2183    
2184    
2185     </div>
2186 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2187 root 1.1 <div id="AUTHOR_CONTENT">
2188 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2189 root 1.1
2190     </div>
2191     </div></body>
2192     </html>