ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.61
Committed: Thu Nov 29 12:21:21 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.60: +15 -14 lines
Log Message:
many fixes to event emulation

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.61 <meta name="created" content="Thu Nov 29 13:21:20 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124     <p>Libev is an event loop: you register interest in certain events (such as a
125     file descriptor being readable or a timeout occuring), and it will manage
126 root 1.4 these event sources and provide your program with events.</p>
127 root 1.1 <p>To do this, it must take more or less complete control over your process
128     (or thread) by executing the <i>event loop</i> handler, and will then
129     communicate events via a callback mechanism.</p>
130     <p>You register interest in certain events by registering so-called <i>event
131     watchers</i>, which are relatively small C structures you initialise with the
132     details of the event, and then hand it over to libev by <i>starting</i> the
133     watcher.</p>
134    
135     </div>
136 root 1.55 <h1 id="FEATURES">FEATURES</h1>
137 root 1.1 <div id="FEATURES_CONTENT">
138 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
139     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
140     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
141     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
142     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
143     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
144     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
145 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
146     file watchers (<code>ev_stat</code>) and even limited support for fork events
147     (<code>ev_fork</code>).</p>
148     <p>It also is quite fast (see this
149     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
150     for example).</p>
151 root 1.1
152     </div>
153 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
154 root 1.1 <div id="CONVENTIONS_CONTENT">
155 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
156     be described, which supports multiple event loops. For more info about
157     various configuration options please have a look at <strong>EMBED</strong> section in
158     this manual. If libev was configured without support for multiple event
159     loops, then all functions taking an initial argument of name <code>loop</code>
160     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
161 root 1.1
162     </div>
163 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
164 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
165 root 1.2 <p>Libev represents time as a single floating point number, representing the
166     (fractional) number of seconds since the (POSIX) epoch (somewhere near
167     the beginning of 1970, details are complicated, don't ask). This type is
168 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
169 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
170     it, you should treat it as such.</p>
171    
172 root 1.18 </div>
173 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
174 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
175 root 1.21 <p>These functions can be called anytime, even before initialising the
176     library in any way.</p>
177 root 1.1 <dl>
178     <dt>ev_tstamp ev_time ()</dt>
179     <dd>
180 root 1.28 <p>Returns the current time as libev would use it. Please note that the
181     <code>ev_now</code> function is usually faster and also often returns the timestamp
182     you actually want to know.</p>
183 root 1.1 </dd>
184     <dt>int ev_version_major ()</dt>
185     <dt>int ev_version_minor ()</dt>
186     <dd>
187     <p>You can find out the major and minor version numbers of the library
188     you linked against by calling the functions <code>ev_version_major</code> and
189     <code>ev_version_minor</code>. If you want, you can compare against the global
190     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
191     version of the library your program was compiled against.</p>
192 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
193 root 1.1 as this indicates an incompatible change. Minor versions are usually
194     compatible to older versions, so a larger minor version alone is usually
195     not a problem.</p>
196 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
197     version.</p>
198 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
199     ev_version_major () == EV_VERSION_MAJOR
200     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
201    
202     </pre>
203 root 1.1 </dd>
204 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
205     <dd>
206     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
207     value) compiled into this binary of libev (independent of their
208     availability on the system you are running on). See <code>ev_default_loop</code> for
209     a description of the set values.</p>
210 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
211     a must have and can we have a torrent of it please!!!11</p>
212     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
213     ev_supported_backends () &amp; EVBACKEND_EPOLL));
214    
215     </pre>
216 root 1.32 </dd>
217     <dt>unsigned int ev_recommended_backends ()</dt>
218     <dd>
219     <p>Return the set of all backends compiled into this binary of libev and also
220     recommended for this platform. This set is often smaller than the one
221     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
222     most BSDs and will not be autodetected unless you explicitly request it
223     (assuming you know what you are doing). This is the set of backends that
224 root 1.34 libev will probe for if you specify no backends explicitly.</p>
225 root 1.32 </dd>
226 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
227     <dd>
228     <p>Returns the set of backends that are embeddable in other event loops. This
229     is the theoretical, all-platform, value. To find which backends
230     might be supported on the current system, you would need to look at
231     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
232     recommended ones.</p>
233     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
234     </dd>
235 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
236 root 1.1 <dd>
237 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
238     semantics is identical - to the realloc C function). It is used to
239     allocate and free memory (no surprises here). If it returns zero when
240     memory needs to be allocated, the library might abort or take some
241     potentially destructive action. The default is your system realloc
242     function.</p>
243 root 1.1 <p>You could override this function in high-availability programs to, say,
244     free some memory if it cannot allocate memory, to use a special allocator,
245     or even to sleep a while and retry until some memory is available.</p>
246 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
247     retries).</p>
248 root 1.35 <pre> static void *
249 root 1.52 persistent_realloc (void *ptr, size_t size)
250 root 1.35 {
251     for (;;)
252     {
253     void *newptr = realloc (ptr, size);
254    
255     if (newptr)
256     return newptr;
257    
258     sleep (60);
259     }
260     }
261    
262     ...
263     ev_set_allocator (persistent_realloc);
264    
265     </pre>
266 root 1.1 </dd>
267     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
268     <dd>
269     <p>Set the callback function to call on a retryable syscall error (such
270     as failed select, poll, epoll_wait). The message is a printable string
271     indicating the system call or subsystem causing the problem. If this
272     callback is set, then libev will expect it to remedy the sitution, no
273 root 1.7 matter what, when it returns. That is, libev will generally retry the
274 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
275     (such as abort).</p>
276 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
277 root 1.35 <pre> static void
278     fatal_error (const char *msg)
279     {
280     perror (msg);
281     abort ();
282     }
283    
284     ...
285     ev_set_syserr_cb (fatal_error);
286    
287     </pre>
288 root 1.1 </dd>
289     </dl>
290    
291     </div>
292 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
293 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
294     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
295     types of such loops, the <i>default</i> loop, which supports signals and child
296     events, and dynamically created loops which do not.</p>
297     <p>If you use threads, a common model is to run the default event loop
298 root 1.18 in your main thread (or in a separate thread) and for each thread you
299 root 1.7 create, you also create another event loop. Libev itself does no locking
300     whatsoever, so if you mix calls to the same event loop in different
301     threads, make sure you lock (this is usually a bad idea, though, even if
302 root 1.9 done correctly, because it's hideous and inefficient).</p>
303 root 1.1 <dl>
304     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
305     <dd>
306     <p>This will initialise the default event loop if it hasn't been initialised
307     yet and return it. If the default loop could not be initialised, returns
308     false. If it already was initialised it simply returns it (and ignores the
309 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
310 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
311     function.</p>
312     <p>The flags argument can be used to specify special behaviour or specific
313 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
314     <p>The following flags are supported:</p>
315 root 1.1 <p>
316     <dl>
317 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
318 root 1.1 <dd>
319 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
320 root 1.1 thing, believe me).</p>
321     </dd>
322 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
323 root 1.1 <dd>
324 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
325     or setgid) then libev will <i>not</i> look at the environment variable
326     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
327     override the flags completely if it is found in the environment. This is
328     useful to try out specific backends to test their performance, or to work
329     around bugs.</p>
330 root 1.1 </dd>
331 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
332 root 1.29 <dd>
333     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
334     libev tries to roll its own fd_set with no limits on the number of fds,
335     but if that fails, expect a fairly low limit on the number of fds when
336     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
337     the fastest backend for a low number of fds.</p>
338     </dd>
339 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
340 root 1.29 <dd>
341     <p>And this is your standard poll(2) backend. It's more complicated than
342     select, but handles sparse fds better and has no artificial limit on the
343     number of fds you can use (except it will slow down considerably with a
344     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
345     </dd>
346 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
347 root 1.29 <dd>
348     <p>For few fds, this backend is a bit little slower than poll and select,
349     but it scales phenomenally better. While poll and select usually scale like
350     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
351     either O(1) or O(active_fds).</p>
352     <p>While stopping and starting an I/O watcher in the same iteration will
353     result in some caching, there is still a syscall per such incident
354     (because the fd could point to a different file description now), so its
355     best to avoid that. Also, dup()ed file descriptors might not work very
356     well if you register events for both fds.</p>
357 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
358     need to use non-blocking I/O or other means to avoid blocking when no data
359     (or space) is available.</p>
360 root 1.29 </dd>
361 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
362 root 1.29 <dd>
363     <p>Kqueue deserves special mention, as at the time of this writing, it
364     was broken on all BSDs except NetBSD (usually it doesn't work with
365     anything but sockets and pipes, except on Darwin, where of course its
366 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
367     unless you explicitly specify it explicitly in the flags (i.e. using
368     <code>EVBACKEND_KQUEUE</code>).</p>
369 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
370     kernel is more efficient (which says nothing about its actual speed, of
371     course). While starting and stopping an I/O watcher does not cause an
372     extra syscall as with epoll, it still adds up to four event changes per
373     incident, so its best to avoid that.</p>
374     </dd>
375 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
376 root 1.29 <dd>
377     <p>This is not implemented yet (and might never be).</p>
378     </dd>
379 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
380 root 1.29 <dd>
381     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
382     it's really slow, but it still scales very well (O(active_fds)).</p>
383 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
384     notifications, so you need to use non-blocking I/O or other means to avoid
385     blocking when no data (or space) is available.</p>
386 root 1.29 </dd>
387 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
388 root 1.29 <dd>
389 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
390     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
391 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
392 root 1.1 </dd>
393     </dl>
394     </p>
395 root 1.29 <p>If one or more of these are ored into the flags value, then only these
396     backends will be tried (in the reverse order as given here). If none are
397     specified, most compiled-in backend will be tried, usually in reverse
398     order of their flag values :)</p>
399 root 1.34 <p>The most typical usage is like this:</p>
400     <pre> if (!ev_default_loop (0))
401     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
402    
403     </pre>
404     <p>Restrict libev to the select and poll backends, and do not allow
405     environment settings to be taken into account:</p>
406     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
407    
408     </pre>
409     <p>Use whatever libev has to offer, but make sure that kqueue is used if
410     available (warning, breaks stuff, best use only with your own private
411     event loop and only if you know the OS supports your types of fds):</p>
412     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
413    
414     </pre>
415 root 1.1 </dd>
416     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
417     <dd>
418     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
419     always distinct from the default loop. Unlike the default loop, it cannot
420     handle signal and child watchers, and attempts to do so will be greeted by
421     undefined behaviour (or a failed assertion if assertions are enabled).</p>
422 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
423 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
424     if (!epoller)
425     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
426    
427     </pre>
428 root 1.1 </dd>
429     <dt>ev_default_destroy ()</dt>
430     <dd>
431     <p>Destroys the default loop again (frees all memory and kernel state
432 root 1.38 etc.). None of the active event watchers will be stopped in the normal
433     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
434     responsibility to either stop all watchers cleanly yoursef <i>before</i>
435     calling this function, or cope with the fact afterwards (which is usually
436     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
437     for example).</p>
438 root 1.1 </dd>
439     <dt>ev_loop_destroy (loop)</dt>
440     <dd>
441     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
442     earlier call to <code>ev_loop_new</code>.</p>
443     </dd>
444     <dt>ev_default_fork ()</dt>
445     <dd>
446     <p>This function reinitialises the kernel state for backends that have
447     one. Despite the name, you can call it anytime, but it makes most sense
448     after forking, in either the parent or child process (or both, but that
449     again makes little sense).</p>
450 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
451     only if you want to use the event library in both processes. If you just
452     fork+exec, you don't have to call it.</p>
453 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
454 root 1.1 it just in case after a fork. To make this easy, the function will fit in
455     quite nicely into a call to <code>pthread_atfork</code>:</p>
456     <pre> pthread_atfork (0, 0, ev_default_fork);
457    
458     </pre>
459 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
460     without calling this function, so if you force one of those backends you
461     do not need to care.</p>
462 root 1.1 </dd>
463     <dt>ev_loop_fork (loop)</dt>
464     <dd>
465     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
466     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
467     after fork, and how you do this is entirely your own problem.</p>
468     </dd>
469 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
470 root 1.1 <dd>
471 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
472 root 1.1 use.</p>
473     </dd>
474 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
475 root 1.1 <dd>
476     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
477 root 1.35 received events and started processing them. This timestamp does not
478     change as long as callbacks are being processed, and this is also the base
479     time used for relative timers. You can treat it as the timestamp of the
480     event occuring (or more correctly, libev finding out about it).</p>
481 root 1.1 </dd>
482     <dt>ev_loop (loop, int flags)</dt>
483     <dd>
484     <p>Finally, this is it, the event handler. This function usually is called
485     after you initialised all your watchers and you want to start handling
486     events.</p>
487 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
488     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
489 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
490     relying on all watchers to be stopped when deciding when a program has
491     finished (especially in interactive programs), but having a program that
492     automatically loops as long as it has to and no longer by virtue of
493     relying on its watchers stopping correctly is a thing of beauty.</p>
494 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
495     those events and any outstanding ones, but will not block your process in
496 root 1.9 case there are no events and will return after one iteration of the loop.</p>
497 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
498     neccessary) and will handle those and any outstanding ones. It will block
499 root 1.9 your process until at least one new event arrives, and will return after
500 root 1.34 one iteration of the loop. This is useful if you are waiting for some
501     external event in conjunction with something not expressible using other
502     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
503     usually a better approach for this kind of thing.</p>
504     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
505     <pre> * If there are no active watchers (reference count is zero), return.
506     - Queue prepare watchers and then call all outstanding watchers.
507     - If we have been forked, recreate the kernel state.
508     - Update the kernel state with all outstanding changes.
509     - Update the &quot;event loop time&quot;.
510     - Calculate for how long to block.
511     - Block the process, waiting for any events.
512     - Queue all outstanding I/O (fd) events.
513     - Update the &quot;event loop time&quot; and do time jump handling.
514     - Queue all outstanding timers.
515     - Queue all outstanding periodics.
516     - If no events are pending now, queue all idle watchers.
517     - Queue all check watchers.
518     - Call all queued watchers in reverse order (i.e. check watchers first).
519     Signals and child watchers are implemented as I/O watchers, and will
520     be handled here by queueing them when their watcher gets executed.
521     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
522     were used, return, otherwise continue with step *.
523 root 1.28
524     </pre>
525 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
526 root 1.35 anymore.</p>
527     <pre> ... queue jobs here, make sure they register event watchers as long
528     ... as they still have work to do (even an idle watcher will do..)
529     ev_loop (my_loop, 0);
530     ... jobs done. yeah!
531    
532     </pre>
533 root 1.1 </dd>
534     <dt>ev_unloop (loop, how)</dt>
535     <dd>
536 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
537     has processed all outstanding events). The <code>how</code> argument must be either
538 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
539 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
540 root 1.1 </dd>
541     <dt>ev_ref (loop)</dt>
542     <dt>ev_unref (loop)</dt>
543     <dd>
544 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
545     loop: Every watcher keeps one reference, and as long as the reference
546     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
547     a watcher you never unregister that should not keep <code>ev_loop</code> from
548     returning, ev_unref() after starting, and ev_ref() before stopping it. For
549     example, libev itself uses this for its internal signal pipe: It is not
550     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
551     no event watchers registered by it are active. It is also an excellent
552     way to do this for generic recurring timers or from within third-party
553     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
554 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
555 root 1.35 running when nothing else is active.</p>
556 root 1.54 <pre> struct ev_signal exitsig;
557 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
558 root 1.54 ev_signal_start (loop, &amp;exitsig);
559     evf_unref (loop);
560 root 1.35
561     </pre>
562 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
563     <pre> ev_ref (loop);
564     ev_signal_stop (loop, &amp;exitsig);
565 root 1.35
566     </pre>
567 root 1.1 </dd>
568     </dl>
569    
570 root 1.43
571    
572    
573    
574 root 1.1 </div>
575 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
576 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
577     <p>A watcher is a structure that you create and register to record your
578     interest in some event. For instance, if you want to wait for STDIN to
579 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
580 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
581     {
582     ev_io_stop (w);
583     ev_unloop (loop, EVUNLOOP_ALL);
584     }
585    
586     struct ev_loop *loop = ev_default_loop (0);
587     struct ev_io stdin_watcher;
588     ev_init (&amp;stdin_watcher, my_cb);
589     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
590     ev_io_start (loop, &amp;stdin_watcher);
591     ev_loop (loop, 0);
592    
593     </pre>
594     <p>As you can see, you are responsible for allocating the memory for your
595     watcher structures (and it is usually a bad idea to do this on the stack,
596     although this can sometimes be quite valid).</p>
597     <p>Each watcher structure must be initialised by a call to <code>ev_init
598     (watcher *, callback)</code>, which expects a callback to be provided. This
599     callback gets invoked each time the event occurs (or, in the case of io
600     watchers, each time the event loop detects that the file descriptor given
601     is readable and/or writable).</p>
602     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
603     with arguments specific to this watcher type. There is also a macro
604     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
605     (watcher *, callback, ...)</code>.</p>
606     <p>To make the watcher actually watch out for events, you have to start it
607     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
608     *)</code>), and you can stop watching for events at any time by calling the
609     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
610     <p>As long as your watcher is active (has been started but not stopped) you
611     must not touch the values stored in it. Most specifically you must never
612 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
613 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
614     registered watcher structure as second, and a bitset of received events as
615     third argument.</p>
616 root 1.14 <p>The received events usually include a single bit per event type received
617 root 1.1 (you can receive multiple events at the same time). The possible bit masks
618     are:</p>
619     <dl>
620 root 1.10 <dt><code>EV_READ</code></dt>
621     <dt><code>EV_WRITE</code></dt>
622 root 1.1 <dd>
623 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
624 root 1.1 writable.</p>
625     </dd>
626 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
627 root 1.1 <dd>
628 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
629 root 1.1 </dd>
630 root 1.10 <dt><code>EV_PERIODIC</code></dt>
631 root 1.1 <dd>
632 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
633 root 1.1 </dd>
634 root 1.10 <dt><code>EV_SIGNAL</code></dt>
635 root 1.1 <dd>
636 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
637 root 1.1 </dd>
638 root 1.10 <dt><code>EV_CHILD</code></dt>
639 root 1.1 <dd>
640 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
641 root 1.1 </dd>
642 root 1.48 <dt><code>EV_STAT</code></dt>
643     <dd>
644     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
645     </dd>
646 root 1.10 <dt><code>EV_IDLE</code></dt>
647 root 1.1 <dd>
648 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
649 root 1.1 </dd>
650 root 1.10 <dt><code>EV_PREPARE</code></dt>
651     <dt><code>EV_CHECK</code></dt>
652 root 1.1 <dd>
653 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
654     to gather new events, and all <code>ev_check</code> watchers are invoked just after
655 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
656     received events. Callbacks of both watcher types can start and stop as
657     many watchers as they want, and all of them will be taken into account
658 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
659 root 1.1 <code>ev_loop</code> from blocking).</p>
660     </dd>
661 root 1.50 <dt><code>EV_EMBED</code></dt>
662     <dd>
663     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
664     </dd>
665     <dt><code>EV_FORK</code></dt>
666     <dd>
667     <p>The event loop has been resumed in the child process after fork (see
668     <code>ev_fork</code>).</p>
669     </dd>
670 root 1.10 <dt><code>EV_ERROR</code></dt>
671 root 1.1 <dd>
672     <p>An unspecified error has occured, the watcher has been stopped. This might
673     happen because the watcher could not be properly started because libev
674     ran out of memory, a file descriptor was found to be closed or any other
675     problem. You best act on it by reporting the problem and somehow coping
676     with the watcher being stopped.</p>
677     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
678     for example it might indicate that a fd is readable or writable, and if
679     your callbacks is well-written it can just attempt the operation and cope
680     with the error from read() or write(). This will not work in multithreaded
681     programs, though, so beware.</p>
682     </dd>
683     </dl>
684    
685     </div>
686 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
687     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
688 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
689     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
690     <dl>
691     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
692     <dd>
693     <p>This macro initialises the generic portion of a watcher. The contents
694     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
695     the generic parts of the watcher are initialised, you <i>need</i> to call
696     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
697     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
698     which rolls both calls into one.</p>
699     <p>You can reinitialise a watcher at any time as long as it has been stopped
700     (or never started) and there are no pending events outstanding.</p>
701 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
702 root 1.37 int revents)</code>.</p>
703     </dd>
704     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
705     <dd>
706     <p>This macro initialises the type-specific parts of a watcher. You need to
707     call <code>ev_init</code> at least once before you call this macro, but you can
708     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
709     macro on a watcher that is active (it can be pending, however, which is a
710     difference to the <code>ev_init</code> macro).</p>
711     <p>Although some watcher types do not have type-specific arguments
712     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
713     </dd>
714     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
715     <dd>
716     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
717     calls into a single call. This is the most convinient method to initialise
718     a watcher. The same limitations apply, of course.</p>
719     </dd>
720     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
721     <dd>
722     <p>Starts (activates) the given watcher. Only active watchers will receive
723     events. If the watcher is already active nothing will happen.</p>
724     </dd>
725     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
726     <dd>
727     <p>Stops the given watcher again (if active) and clears the pending
728     status. It is possible that stopped watchers are pending (for example,
729     non-repeating timers are being stopped when they become pending), but
730     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
731     you want to free or reuse the memory used by the watcher it is therefore a
732     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
733     </dd>
734     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
735     <dd>
736     <p>Returns a true value iff the watcher is active (i.e. it has been started
737     and not yet been stopped). As long as a watcher is active you must not modify
738     it.</p>
739     </dd>
740     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
741     <dd>
742     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
743     events but its callback has not yet been invoked). As long as a watcher
744     is pending (but not active) you must not call an init function on it (but
745     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
746     libev (e.g. you cnanot <code>free ()</code> it).</p>
747     </dd>
748 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
749 root 1.37 <dd>
750     <p>Returns the callback currently set on the watcher.</p>
751     </dd>
752     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
753     <dd>
754     <p>Change the callback. You can change the callback at virtually any time
755     (modulo threads).</p>
756     </dd>
757     </dl>
758    
759    
760    
761    
762    
763     </div>
764 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
765     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
766     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
767 root 1.14 and read at any time, libev will completely ignore it. This can be used
768 root 1.1 to associate arbitrary data with your watcher. If you need more data and
769     don't want to allocate memory and store a pointer to it in that data
770     member, you can also &quot;subclass&quot; the watcher type and provide your own
771     data:</p>
772     <pre> struct my_io
773     {
774     struct ev_io io;
775     int otherfd;
776     void *somedata;
777     struct whatever *mostinteresting;
778     }
779    
780     </pre>
781     <p>And since your callback will be called with a pointer to the watcher, you
782     can cast it back to your own type:</p>
783     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
784     {
785     struct my_io *w = (struct my_io *)w_;
786     ...
787     }
788    
789     </pre>
790 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
791     instead have been omitted.</p>
792     <p>Another common scenario is having some data structure with multiple
793     watchers:</p>
794     <pre> struct my_biggy
795     {
796     int some_data;
797     ev_timer t1;
798     ev_timer t2;
799     }
800 root 1.1
801 root 1.56 </pre>
802     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
803     you need to use <code>offsetof</code>:</p>
804     <pre> #include &lt;stddef.h&gt;
805 root 1.1
806 root 1.56 static void
807     t1_cb (EV_P_ struct ev_timer *w, int revents)
808     {
809     struct my_biggy big = (struct my_biggy *
810     (((char *)w) - offsetof (struct my_biggy, t1));
811     }
812    
813     static void
814     t2_cb (EV_P_ struct ev_timer *w, int revents)
815     {
816     struct my_biggy big = (struct my_biggy *
817     (((char *)w) - offsetof (struct my_biggy, t2));
818     }
819 root 1.1
820    
821    
822 root 1.56
823     </pre>
824    
825 root 1.1 </div>
826 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
827 root 1.1 <div id="WATCHER_TYPES_CONTENT">
828     <p>This section describes each watcher in detail, but will not repeat
829 root 1.48 information given in the last section. Any initialisation/set macros,
830     functions and members specific to the watcher type are explained.</p>
831     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
832     while the watcher is active, you can look at the member and expect some
833     sensible content, but you must not modify it (you can modify it while the
834     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
835     means you can expect it to have some sensible content while the watcher
836     is active, but you can also modify it. Modifying it may not do something
837     sensible or take immediate effect (or do anything at all), but libev will
838     not crash or malfunction in any way.</p>
839 root 1.1
840 root 1.35
841    
842    
843    
844 root 1.1 </div>
845 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
846 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
847 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
848 root 1.43 in each iteration of the event loop, or, more precisely, when reading
849     would not block the process and writing would at least be able to write
850     some data. This behaviour is called level-triggering because you keep
851     receiving events as long as the condition persists. Remember you can stop
852     the watcher if you don't want to act on the event and neither want to
853     receive future events.</p>
854 root 1.25 <p>In general you can register as many read and/or write event watchers per
855 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
856     descriptors to non-blocking mode is also usually a good idea (but not
857     required if you know what you are doing).</p>
858     <p>You have to be careful with dup'ed file descriptors, though. Some backends
859     (the linux epoll backend is a notable example) cannot handle dup'ed file
860     descriptors correctly if you register interest in two or more fds pointing
861 root 1.43 to the same underlying file/socket/etc. description (that is, they share
862 root 1.26 the same underlying &quot;file open&quot;).</p>
863 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
864 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
865     <code>EVBACKEND_POLL</code>).</p>
866 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
867     receive &quot;spurious&quot; readyness notifications, that is your callback might
868     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
869     because there is no data. Not only are some backends known to create a
870     lot of those (for example solaris ports), it is very easy to get into
871     this situation even with a relatively standard program structure. Thus
872     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
873     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
874     <p>If you cannot run the fd in non-blocking mode (for example you should not
875     play around with an Xlib connection), then you have to seperately re-test
876     wether a file descriptor is really ready with a known-to-be good interface
877     such as poll (fortunately in our Xlib example, Xlib already does this on
878     its own, so its quite safe to use).</p>
879 root 1.1 <dl>
880     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
881     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
882     <dd>
883 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
884     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
885     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
886 root 1.1 </dd>
887 root 1.48 <dt>int fd [read-only]</dt>
888     <dd>
889     <p>The file descriptor being watched.</p>
890     </dd>
891     <dt>int events [read-only]</dt>
892     <dd>
893     <p>The events being watched.</p>
894     </dd>
895 root 1.1 </dl>
896 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
897 root 1.35 readable, but only once. Since it is likely line-buffered, you could
898 root 1.54 attempt to read a whole line in the callback.</p>
899 root 1.35 <pre> static void
900     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
901     {
902     ev_io_stop (loop, w);
903     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
904     }
905    
906     ...
907     struct ev_loop *loop = ev_default_init (0);
908     struct ev_io stdin_readable;
909     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
910     ev_io_start (loop, &amp;stdin_readable);
911     ev_loop (loop, 0);
912    
913    
914    
915    
916     </pre>
917 root 1.1
918     </div>
919 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
920 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
921 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
922     given time, and optionally repeating in regular intervals after that.</p>
923     <p>The timers are based on real time, that is, if you register an event that
924 root 1.25 times out after an hour and you reset your system clock to last years
925 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
926 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
927 root 1.1 monotonic clock option helps a lot here).</p>
928 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
929     time. This is usually the right thing as this timestamp refers to the time
930 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
931     you suspect event processing to be delayed and you <i>need</i> to base the timeout
932 root 1.25 on the current time, use something like this to adjust for this:</p>
933 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
934    
935     </pre>
936 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
937     but if multiple timers become ready during the same loop iteration then
938     order of execution is undefined.</p>
939 root 1.1 <dl>
940     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
941     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
942     <dd>
943     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
944     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
945     timer will automatically be configured to trigger again <code>repeat</code> seconds
946     later, again, and again, until stopped manually.</p>
947     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
948     configure a timer to trigger every 10 seconds, then it will trigger at
949     exactly 10 second intervals. If, however, your program cannot keep up with
950 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
951 root 1.1 timer will not fire more than once per event loop iteration.</p>
952     </dd>
953     <dt>ev_timer_again (loop)</dt>
954     <dd>
955     <p>This will act as if the timer timed out and restart it again if it is
956     repeating. The exact semantics are:</p>
957 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
958     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
959     <p>If the timer is repeating, either start it if necessary (with the
960     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
961 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
962 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
963     timeout, that is, you want to be called when there have been, say, 60
964     seconds of inactivity on the socket. The easiest way to do this is to
965     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
966 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
967     you go into an idle state where you do not expect data to travel on the
968 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
969     automatically restart it if need be.</p>
970     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
971     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
972 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
973     ev_timer_again (loop, timer);
974     ...
975     timer-&gt;again = 17.;
976     ev_timer_again (loop, timer);
977     ...
978     timer-&gt;again = 10.;
979     ev_timer_again (loop, timer);
980    
981     </pre>
982 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
983     you want to modify its timeout value.</p>
984 root 1.48 </dd>
985     <dt>ev_tstamp repeat [read-write]</dt>
986     <dd>
987     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
988     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
989     which is also when any modifications are taken into account.</p>
990 root 1.1 </dd>
991     </dl>
992 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
993 root 1.35 <pre> static void
994     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
995     {
996     .. one minute over, w is actually stopped right here
997     }
998    
999     struct ev_timer mytimer;
1000     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1001     ev_timer_start (loop, &amp;mytimer);
1002    
1003     </pre>
1004 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1005 root 1.35 inactivity.</p>
1006     <pre> static void
1007     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1008     {
1009     .. ten seconds without any activity
1010     }
1011    
1012     struct ev_timer mytimer;
1013     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1014     ev_timer_again (&amp;mytimer); /* start timer */
1015     ev_loop (loop, 0);
1016    
1017     // and in some piece of code that gets executed on any &quot;activity&quot;:
1018     // reset the timeout to start ticking again at 10 seconds
1019     ev_timer_again (&amp;mytimer);
1020    
1021    
1022    
1023    
1024     </pre>
1025 root 1.1
1026     </div>
1027 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1028 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1029 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1030     (and unfortunately a bit complex).</p>
1031 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1032 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1033     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1034 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1035     + 10.</code>) and then reset your system clock to the last year, then it will
1036 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1037 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1038     again).</p>
1039     <p>They can also be used to implement vastly more complex timers, such as
1040     triggering an event on eahc midnight, local time.</p>
1041 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1042     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1043     during the same loop iteration then order of execution is undefined.</p>
1044 root 1.1 <dl>
1045     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1046     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1047     <dd>
1048     <p>Lots of arguments, lets sort it out... There are basically three modes of
1049     operation, and we will explain them from simplest to complex:</p>
1050     <p>
1051     <dl>
1052     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1053     <dd>
1054     <p>In this configuration the watcher triggers an event at the wallclock time
1055     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1056     that is, if it is to be run at January 1st 2011 then it will run when the
1057     system time reaches or surpasses this time.</p>
1058     </dd>
1059     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1060     <dd>
1061     <p>In this mode the watcher will always be scheduled to time out at the next
1062     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1063     of any time jumps.</p>
1064     <p>This can be used to create timers that do not drift with respect to system
1065     time:</p>
1066     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1067    
1068     </pre>
1069     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1070     but only that the the callback will be called when the system time shows a
1071 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1072 root 1.1 by 3600.</p>
1073     <p>Another way to think about it (for the mathematically inclined) is that
1074 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1075 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1076     </dd>
1077     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1078     <dd>
1079     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1080     ignored. Instead, each time the periodic watcher gets scheduled, the
1081     reschedule callback will be called with the watcher as first, and the
1082     current time as second argument.</p>
1083 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1084     ever, or make any event loop modifications</i>. If you need to stop it,
1085     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1086     starting a prepare watcher).</p>
1087 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1088     ev_tstamp now)</code>, e.g.:</p>
1089 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1090     {
1091     return now + 60.;
1092     }
1093    
1094     </pre>
1095     <p>It must return the next time to trigger, based on the passed time value
1096     (that is, the lowest time value larger than to the second argument). It
1097     will usually be called just before the callback will be triggered, but
1098     might be called at other times, too.</p>
1099 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1100 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1101 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1102     triggers on each midnight, local time. To do this, you would calculate the
1103 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1104     you do this is, again, up to you (but it is not trivial, which is the main
1105     reason I omitted it as an example).</p>
1106 root 1.1 </dd>
1107     </dl>
1108     </p>
1109     </dd>
1110     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1111     <dd>
1112     <p>Simply stops and restarts the periodic watcher again. This is only useful
1113     when you changed some parameters or the reschedule callback would return
1114     a different time than the last time it was called (e.g. in a crond like
1115     program when the crontabs have changed).</p>
1116     </dd>
1117 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1118     <dd>
1119     <p>The current interval value. Can be modified any time, but changes only
1120     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1121     called.</p>
1122     </dd>
1123     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1124     <dd>
1125     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1126     switched off. Can be changed any time, but changes only take effect when
1127     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1128     </dd>
1129 root 1.1 </dl>
1130 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1131 root 1.35 system clock is divisible by 3600. The callback invocation times have
1132     potentially a lot of jittering, but good long-term stability.</p>
1133     <pre> static void
1134     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1135     {
1136     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1137     }
1138    
1139     struct ev_periodic hourly_tick;
1140     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1141     ev_periodic_start (loop, &amp;hourly_tick);
1142    
1143     </pre>
1144 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1145 root 1.35 <pre> #include &lt;math.h&gt;
1146    
1147     static ev_tstamp
1148     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1149     {
1150     return fmod (now, 3600.) + 3600.;
1151     }
1152    
1153     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1154    
1155     </pre>
1156 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1157 root 1.35 <pre> struct ev_periodic hourly_tick;
1158     ev_periodic_init (&amp;hourly_tick, clock_cb,
1159     fmod (ev_now (loop), 3600.), 3600., 0);
1160     ev_periodic_start (loop, &amp;hourly_tick);
1161    
1162    
1163    
1164    
1165     </pre>
1166 root 1.1
1167     </div>
1168 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1169 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1170 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1171     signal one or more times. Even though signals are very asynchronous, libev
1172 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1173 root 1.1 normal event processing, like any other event.</p>
1174 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1175 root 1.1 first watcher gets started will libev actually register a signal watcher
1176     with the kernel (thus it coexists with your own signal handlers as long
1177     as you don't register any with libev). Similarly, when the last signal
1178     watcher for a signal is stopped libev will reset the signal handler to
1179     SIG_DFL (regardless of what it was set to before).</p>
1180     <dl>
1181     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1182     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1183     <dd>
1184     <p>Configures the watcher to trigger on the given signal number (usually one
1185     of the <code>SIGxxx</code> constants).</p>
1186     </dd>
1187 root 1.48 <dt>int signum [read-only]</dt>
1188     <dd>
1189     <p>The signal the watcher watches out for.</p>
1190     </dd>
1191 root 1.1 </dl>
1192    
1193 root 1.36
1194    
1195    
1196    
1197 root 1.1 </div>
1198 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1199     <div id="code_ev_child_code_watch_out_for_pro-2">
1200 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1201     some child status changes (most typically when a child of yours dies).</p>
1202     <dl>
1203     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1204     <dt>ev_child_set (ev_child *, int pid)</dt>
1205     <dd>
1206     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1207     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1208     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1209 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1210     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1211     process causing the status change.</p>
1212 root 1.1 </dd>
1213 root 1.48 <dt>int pid [read-only]</dt>
1214     <dd>
1215     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1216     </dd>
1217     <dt>int rpid [read-write]</dt>
1218     <dd>
1219     <p>The process id that detected a status change.</p>
1220     </dd>
1221     <dt>int rstatus [read-write]</dt>
1222     <dd>
1223     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1224     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1225     </dd>
1226 root 1.1 </dl>
1227 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1228 root 1.35 <pre> static void
1229     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1230     {
1231     ev_unloop (loop, EVUNLOOP_ALL);
1232     }
1233    
1234     struct ev_signal signal_watcher;
1235     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1236     ev_signal_start (loop, &amp;sigint_cb);
1237    
1238    
1239    
1240    
1241     </pre>
1242 root 1.1
1243     </div>
1244 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1245     <div id="code_ev_stat_code_did_the_file_attri-2">
1246     <p>This watches a filesystem path for attribute changes. That is, it calls
1247     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1248     compared to the last time, invoking the callback if it did.</p>
1249     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1250     not exist&quot; is a status change like any other. The condition &quot;path does
1251     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1252     otherwise always forced to be at least one) and all the other fields of
1253     the stat buffer having unspecified contents.</p>
1254 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1255     relative and your working directory changes, the behaviour is undefined.</p>
1256 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1257 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1258 root 1.48 can specify a recommended polling interval for this case. If you specify
1259     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1260     unspecified default</i> value will be used (which you can expect to be around
1261     five seconds, although this might change dynamically). Libev will also
1262     impose a minimum interval which is currently around <code>0.1</code>, but thats
1263     usually overkill.</p>
1264     <p>This watcher type is not meant for massive numbers of stat watchers,
1265     as even with OS-supported change notifications, this can be
1266     resource-intensive.</p>
1267 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1268     implemented (implementing kqueue support is left as an exercise for the
1269     reader). Inotify will be used to give hints only and should not change the
1270     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1271     to fall back to regular polling again even with inotify, but changes are
1272     usually detected immediately, and if the file exists there will be no
1273     polling.</p>
1274 root 1.48 <dl>
1275     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1276     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1277     <dd>
1278     <p>Configures the watcher to wait for status changes of the given
1279     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1280     be detected and should normally be specified as <code>0</code> to let libev choose
1281     a suitable value. The memory pointed to by <code>path</code> must point to the same
1282     path for as long as the watcher is active.</p>
1283     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1284     relative to the attributes at the time the watcher was started (or the
1285     last change was detected).</p>
1286     </dd>
1287     <dt>ev_stat_stat (ev_stat *)</dt>
1288     <dd>
1289     <p>Updates the stat buffer immediately with new values. If you change the
1290     watched path in your callback, you could call this fucntion to avoid
1291     detecting this change (while introducing a race condition). Can also be
1292     useful simply to find out the new values.</p>
1293     </dd>
1294     <dt>ev_statdata attr [read-only]</dt>
1295     <dd>
1296     <p>The most-recently detected attributes of the file. Although the type is of
1297     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1298     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1299     was some error while <code>stat</code>ing the file.</p>
1300     </dd>
1301     <dt>ev_statdata prev [read-only]</dt>
1302     <dd>
1303     <p>The previous attributes of the file. The callback gets invoked whenever
1304     <code>prev</code> != <code>attr</code>.</p>
1305     </dd>
1306     <dt>ev_tstamp interval [read-only]</dt>
1307     <dd>
1308     <p>The specified interval.</p>
1309     </dd>
1310     <dt>const char *path [read-only]</dt>
1311     <dd>
1312     <p>The filesystem path that is being watched.</p>
1313     </dd>
1314     </dl>
1315     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1316     <pre> static void
1317     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1318     {
1319     /* /etc/passwd changed in some way */
1320     if (w-&gt;attr.st_nlink)
1321     {
1322     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1323     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1324     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1325     }
1326     else
1327     /* you shalt not abuse printf for puts */
1328     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1329     &quot;if this is windows, they already arrived\n&quot;);
1330     }
1331    
1332     ...
1333     ev_stat passwd;
1334    
1335     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1336     ev_stat_start (loop, &amp;passwd);
1337    
1338    
1339    
1340    
1341     </pre>
1342    
1343     </div>
1344 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1345 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1346 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1347     (prepare, check and other idle watchers do not count). That is, as long
1348     as your process is busy handling sockets or timeouts (or even signals,
1349     imagine) it will not be triggered. But when your process is idle all idle
1350     watchers are being called again and again, once per event loop iteration -
1351     until stopped, that is, or your process receives more events and becomes
1352     busy.</p>
1353 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1354     active, the process will not block when waiting for new events.</p>
1355     <p>Apart from keeping your process non-blocking (which is a useful
1356     effect on its own sometimes), idle watchers are a good place to do
1357     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1358     event loop has handled all outstanding events.</p>
1359     <dl>
1360     <dt>ev_idle_init (ev_signal *, callback)</dt>
1361     <dd>
1362     <p>Initialises and configures the idle watcher - it has no parameters of any
1363     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1364     believe me.</p>
1365     </dd>
1366     </dl>
1367 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1368     callback, free it. Also, use no error checking, as usual.</p>
1369 root 1.35 <pre> static void
1370     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1371     {
1372     free (w);
1373     // now do something you wanted to do when the program has
1374     // no longer asnything immediate to do.
1375     }
1376    
1377     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1378     ev_idle_init (idle_watcher, idle_cb);
1379     ev_idle_start (loop, idle_cb);
1380    
1381    
1382    
1383    
1384     </pre>
1385 root 1.1
1386     </div>
1387 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1388 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1389 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1390 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1391 root 1.14 afterwards.</p>
1392 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1393     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1394     watchers. Other loops than the current one are fine, however. The
1395     rationale behind this is that you do not need to check for recursion in
1396     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1397     <code>ev_check</code> so if you have one watcher of each kind they will always be
1398     called in pairs bracketing the blocking call.</p>
1399 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1400     their use is somewhat advanced. This could be used, for example, to track
1401     variable changes, implement your own watchers, integrate net-snmp or a
1402 root 1.46 coroutine library and lots more. They are also occasionally useful if
1403     you cache some data and want to flush it before blocking (for example,
1404     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1405     watcher).</p>
1406 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1407 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1408     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1409     provide just this functionality). Then, in the check watcher you check for
1410     any events that occured (by checking the pending status of all watchers
1411     and stopping them) and call back into the library. The I/O and timer
1412 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1413 root 1.14 because you never know, you know?).</p>
1414     <p>As another example, the Perl Coro module uses these hooks to integrate
1415 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1416     during each prepare and only letting the process block if no coroutines
1417 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1418     with priority higher than or equal to the event loop and one coroutine
1419     of lower priority, but only once, using idle watchers to keep the event
1420     loop from blocking if lower-priority coroutines are active, thus mapping
1421     low-priority coroutines to idle/background tasks).</p>
1422 root 1.1 <dl>
1423     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1424     <dt>ev_check_init (ev_check *, callback)</dt>
1425     <dd>
1426     <p>Initialises and configures the prepare or check watcher - they have no
1427     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1428 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1429 root 1.1 </dd>
1430     </dl>
1431 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1432     and a timeout watcher in a prepare handler, as required by libadns, and
1433     in a check watcher, destroy them and call into libadns. What follows is
1434     pseudo-code only of course:</p>
1435     <pre> static ev_io iow [nfd];
1436     static ev_timer tw;
1437    
1438     static void
1439     io_cb (ev_loop *loop, ev_io *w, int revents)
1440     {
1441     // set the relevant poll flags
1442 root 1.47 // could also call adns_processreadable etc. here
1443 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1444     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1445     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1446     }
1447    
1448     // create io watchers for each fd and a timer before blocking
1449     static void
1450     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1451     {
1452     int timeout = 3600000;truct pollfd fds [nfd];
1453     // actual code will need to loop here and realloc etc.
1454     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1455    
1456     /* the callback is illegal, but won't be called as we stop during check */
1457     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1458     ev_timer_start (loop, &amp;tw);
1459    
1460     // create on ev_io per pollfd
1461     for (int i = 0; i &lt; nfd; ++i)
1462     {
1463     ev_io_init (iow + i, io_cb, fds [i].fd,
1464     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1465     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1466    
1467     fds [i].revents = 0;
1468     iow [i].data = fds + i;
1469     ev_io_start (loop, iow + i);
1470     }
1471     }
1472    
1473     // stop all watchers after blocking
1474     static void
1475     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1476     {
1477     ev_timer_stop (loop, &amp;tw);
1478    
1479     for (int i = 0; i &lt; nfd; ++i)
1480     ev_io_stop (loop, iow + i);
1481    
1482     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1483     }
1484 root 1.35
1485    
1486    
1487    
1488 root 1.46 </pre>
1489 root 1.1
1490     </div>
1491 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1492 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1493     <p>This is a rather advanced watcher type that lets you embed one event loop
1494 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1495     loop, other types of watchers might be handled in a delayed or incorrect
1496     fashion and must not be used).</p>
1497 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1498     prioritise I/O.</p>
1499     <p>As an example for a bug workaround, the kqueue backend might only support
1500     sockets on some platform, so it is unusable as generic backend, but you
1501     still want to make use of it because you have many sockets and it scales
1502     so nicely. In this case, you would create a kqueue-based loop and embed it
1503     into your default loop (which might use e.g. poll). Overall operation will
1504     be a bit slower because first libev has to poll and then call kevent, but
1505     at least you can use both at what they are best.</p>
1506     <p>As for prioritising I/O: rarely you have the case where some fds have
1507     to be watched and handled very quickly (with low latency), and even
1508     priorities and idle watchers might have too much overhead. In this case
1509     you would put all the high priority stuff in one loop and all the rest in
1510     a second one, and embed the second one in the first.</p>
1511 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1512     there might be events pending in the embedded loop. The callback must then
1513     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1514     their callbacks (you could also start an idle watcher to give the embedded
1515     loop strictly lower priority for example). You can also set the callback
1516     to <code>0</code>, in which case the embed watcher will automatically execute the
1517     embedded loop sweep.</p>
1518 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1519     callback will be invoked whenever some events have been handled. You can
1520     set the callback to <code>0</code> to avoid having to specify one if you are not
1521     interested in that.</p>
1522     <p>Also, there have not currently been made special provisions for forking:
1523     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1524     but you will also have to stop and restart any <code>ev_embed</code> watchers
1525     yourself.</p>
1526     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1527     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1528     portable one.</p>
1529     <p>So when you want to use this feature you will always have to be prepared
1530     that you cannot get an embeddable loop. The recommended way to get around
1531     this is to have a separate variables for your embeddable loop, try to
1532     create it, and if that fails, use the normal loop for everything:</p>
1533     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1534     struct ev_loop *loop_lo = 0;
1535     struct ev_embed embed;
1536    
1537     // see if there is a chance of getting one that works
1538     // (remember that a flags value of 0 means autodetection)
1539     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1540     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1541     : 0;
1542    
1543     // if we got one, then embed it, otherwise default to loop_hi
1544     if (loop_lo)
1545     {
1546     ev_embed_init (&amp;embed, 0, loop_lo);
1547     ev_embed_start (loop_hi, &amp;embed);
1548     }
1549     else
1550     loop_lo = loop_hi;
1551    
1552     </pre>
1553     <dl>
1554 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1555     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1556 root 1.36 <dd>
1557 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1558     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1559     invoked automatically, otherwise it is the responsibility of the callback
1560     to invoke it (it will continue to be called until the sweep has been done,
1561     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1562     </dd>
1563     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1564     <dd>
1565     <p>Make a single, non-blocking sweep over the embedded loop. This works
1566     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1567     apropriate way for embedded loops.</p>
1568 root 1.36 </dd>
1569 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1570     <dd>
1571     <p>The embedded event loop.</p>
1572     </dd>
1573 root 1.36 </dl>
1574    
1575    
1576    
1577    
1578    
1579     </div>
1580 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1581     <div id="code_ev_fork_code_the_audacity_to_re-2">
1582     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1583     whoever is a good citizen cared to tell libev about it by calling
1584     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1585     event loop blocks next and before <code>ev_check</code> watchers are being called,
1586     and only in the child after the fork. If whoever good citizen calling
1587     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1588     handlers will be invoked, too, of course.</p>
1589     <dl>
1590     <dt>ev_fork_init (ev_signal *, callback)</dt>
1591     <dd>
1592     <p>Initialises and configures the fork watcher - it has no parameters of any
1593     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1594     believe me.</p>
1595     </dd>
1596     </dl>
1597    
1598    
1599    
1600    
1601    
1602     </div>
1603 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1604 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1605 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1606 root 1.1 <dl>
1607     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1608     <dd>
1609     <p>This function combines a simple timer and an I/O watcher, calls your
1610     callback on whichever event happens first and automatically stop both
1611     watchers. This is useful if you want to wait for a single event on an fd
1612 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1613 root 1.1 more watchers yourself.</p>
1614 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1615     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1616     <code>events</code> set will be craeted and started.</p>
1617 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1618 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1619     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1620     dubious value.</p>
1621     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1622 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1623 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1624     value passed to <code>ev_once</code>:</p>
1625 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1626     {
1627     if (revents &amp; EV_TIMEOUT)
1628 root 1.14 /* doh, nothing entered */;
1629 root 1.1 else if (revents &amp; EV_READ)
1630 root 1.14 /* stdin might have data for us, joy! */;
1631 root 1.1 }
1632    
1633 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1634 root 1.1
1635     </pre>
1636     </dd>
1637 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1638 root 1.1 <dd>
1639     <p>Feeds the given event set into the event loop, as if the specified event
1640 root 1.14 had happened for the specified watcher (which must be a pointer to an
1641     initialised but not necessarily started event watcher).</p>
1642 root 1.1 </dd>
1643 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1644 root 1.1 <dd>
1645 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1646     the given events it.</p>
1647 root 1.1 </dd>
1648 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1649 root 1.1 <dd>
1650 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1651     loop!).</p>
1652 root 1.1 </dd>
1653     </dl>
1654    
1655 root 1.35
1656    
1657    
1658    
1659 root 1.1 </div>
1660 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1661 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1662 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1663     emulate the internals of libevent, so here are some usage hints:</p>
1664     <dl>
1665     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1666     <dt>* The following members are fully supported: ev_base, ev_callback,
1667     ev_arg, ev_fd, ev_res, ev_events.</dt>
1668     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1669     maintained by libev, it does not work exactly the same way as in libevent (consider
1670     it a private API).</dt>
1671     <dt>* Priorities are not currently supported. Initialising priorities
1672     will fail and all watchers will have the same priority, even though there
1673     is an ev_pri field.</dt>
1674     <dt>* Other members are not supported.</dt>
1675     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1676     to use the libev header file and library.</dt>
1677     </dl>
1678 root 1.23
1679     </div>
1680 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1681 root 1.23 <div id="C_SUPPORT_CONTENT">
1682 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1683     you to use some convinience methods to start/stop watchers and also change
1684     the callback model to a model using method callbacks on objects.</p>
1685     <p>To use it,</p>
1686     <pre> #include &lt;ev++.h&gt;
1687    
1688     </pre>
1689     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1690     and puts all of its definitions (many of them macros) into the global
1691     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1692     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1693     <code>EV_MULTIPLICITY</code>.</p>
1694     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1695     <dl>
1696     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1697     <dd>
1698     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1699     macros from <cite>ev.h</cite>.</p>
1700     </dd>
1701     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1702     <dd>
1703     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1704     </dd>
1705     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1706     <dd>
1707     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1708     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1709     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1710     defines by many implementations.</p>
1711     <p>All of those classes have these methods:</p>
1712     <p>
1713     <dl>
1714     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1715     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1716     <dt>ev::TYPE::~TYPE</dt>
1717     <dd>
1718     <p>The constructor takes a pointer to an object and a method pointer to
1719     the event handler callback to call in this class. The constructor calls
1720     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1721     before starting it. If you do not specify a loop then the constructor
1722     automatically associates the default loop with this watcher.</p>
1723     <p>The destructor automatically stops the watcher if it is active.</p>
1724     </dd>
1725     <dt>w-&gt;set (struct ev_loop *)</dt>
1726     <dd>
1727     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1728     do this when the watcher is inactive (and not pending either).</p>
1729     </dd>
1730     <dt>w-&gt;set ([args])</dt>
1731     <dd>
1732     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1733     called at least once. Unlike the C counterpart, an active watcher gets
1734     automatically stopped and restarted.</p>
1735     </dd>
1736     <dt>w-&gt;start ()</dt>
1737     <dd>
1738     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1739     constructor already takes the loop.</p>
1740     </dd>
1741     <dt>w-&gt;stop ()</dt>
1742     <dd>
1743     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1744     </dd>
1745     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1746     <dd>
1747     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1748     <code>ev_TYPE_again</code> function.</p>
1749     </dd>
1750     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1751     <dd>
1752     <p>Invokes <code>ev_embed_sweep</code>.</p>
1753     </dd>
1754 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1755     <dd>
1756     <p>Invokes <code>ev_stat_stat</code>.</p>
1757     </dd>
1758 root 1.39 </dl>
1759     </p>
1760     </dd>
1761     </dl>
1762     <p>Example: Define a class with an IO and idle watcher, start one of them in
1763     the constructor.</p>
1764     <pre> class myclass
1765     {
1766     ev_io io; void io_cb (ev::io &amp;w, int revents);
1767     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1768    
1769     myclass ();
1770     }
1771    
1772     myclass::myclass (int fd)
1773     : io (this, &amp;myclass::io_cb),
1774     idle (this, &amp;myclass::idle_cb)
1775     {
1776     io.start (fd, ev::READ);
1777     }
1778    
1779 root 1.50
1780    
1781    
1782     </pre>
1783    
1784     </div>
1785 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1786 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1787     <p>Libev can be compiled with a variety of options, the most fundemantal is
1788     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1789     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1790     <p>To make it easier to write programs that cope with either variant, the
1791     following macros are defined:</p>
1792     <dl>
1793     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1794     <dd>
1795     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1796     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1797     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1798     <pre> ev_unref (EV_A);
1799     ev_timer_add (EV_A_ watcher);
1800     ev_loop (EV_A_ 0);
1801    
1802     </pre>
1803     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1804     which is often provided by the following macro.</p>
1805     </dd>
1806     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1807     <dd>
1808     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1809     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1810     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1811     <pre> // this is how ev_unref is being declared
1812     static void ev_unref (EV_P);
1813    
1814     // this is how you can declare your typical callback
1815     static void cb (EV_P_ ev_timer *w, int revents)
1816    
1817     </pre>
1818     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1819     suitable for use with <code>EV_A</code>.</p>
1820     </dd>
1821     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1822     <dd>
1823     <p>Similar to the other two macros, this gives you the value of the default
1824     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1825     </dd>
1826     </dl>
1827     <p>Example: Declare and initialise a check watcher, working regardless of
1828     wether multiple loops are supported or not.</p>
1829     <pre> static void
1830     check_cb (EV_P_ ev_timer *w, int revents)
1831     {
1832     ev_check_stop (EV_A_ w);
1833     }
1834    
1835     ev_check check;
1836     ev_check_init (&amp;check, check_cb);
1837     ev_check_start (EV_DEFAULT_ &amp;check);
1838     ev_loop (EV_DEFAULT_ 0);
1839    
1840    
1841    
1842    
1843 root 1.39 </pre>
1844 root 1.23
1845     </div>
1846 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1847 root 1.40 <div id="EMBEDDING_CONTENT">
1848     <p>Libev can (and often is) directly embedded into host
1849     applications. Examples of applications that embed it include the Deliantra
1850     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1851     and rxvt-unicode.</p>
1852     <p>The goal is to enable you to just copy the neecssary files into your
1853     source directory without having to change even a single line in them, so
1854     you can easily upgrade by simply copying (or having a checked-out copy of
1855     libev somewhere in your source tree).</p>
1856    
1857     </div>
1858     <h2 id="FILESETS">FILESETS</h2>
1859     <div id="FILESETS_CONTENT">
1860     <p>Depending on what features you need you need to include one or more sets of files
1861     in your app.</p>
1862    
1863     </div>
1864     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1865     <div id="CORE_EVENT_LOOP_CONTENT">
1866     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1867     configuration (no autoconf):</p>
1868     <pre> #define EV_STANDALONE 1
1869     #include &quot;ev.c&quot;
1870    
1871     </pre>
1872     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1873     single C source file only to provide the function implementations. To use
1874     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1875     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1876     where you can put other configuration options):</p>
1877     <pre> #define EV_STANDALONE 1
1878     #include &quot;ev.h&quot;
1879    
1880     </pre>
1881     <p>Both header files and implementation files can be compiled with a C++
1882     compiler (at least, thats a stated goal, and breakage will be treated
1883     as a bug).</p>
1884     <p>You need the following files in your source tree, or in a directory
1885     in your include path (e.g. in libev/ when using -Ilibev):</p>
1886     <pre> ev.h
1887     ev.c
1888     ev_vars.h
1889     ev_wrap.h
1890    
1891     ev_win32.c required on win32 platforms only
1892    
1893 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1894 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1895     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1896     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1897     ev_port.c only when the solaris port backend is enabled (disabled by default)
1898    
1899     </pre>
1900     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1901 root 1.44 to compile this single file.</p>
1902 root 1.40
1903     </div>
1904     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1905     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1906     <p>To include the libevent compatibility API, also include:</p>
1907     <pre> #include &quot;event.c&quot;
1908    
1909     </pre>
1910     <p>in the file including <cite>ev.c</cite>, and:</p>
1911     <pre> #include &quot;event.h&quot;
1912    
1913     </pre>
1914     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1915     <p>You need the following additional files for this:</p>
1916     <pre> event.h
1917     event.c
1918    
1919     </pre>
1920    
1921     </div>
1922     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1923     <div id="AUTOCONF_SUPPORT_CONTENT">
1924     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1925     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1926 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1927     include <cite>config.h</cite> and configure itself accordingly.</p>
1928 root 1.40 <p>For this of course you need the m4 file:</p>
1929     <pre> libev.m4
1930    
1931     </pre>
1932    
1933     </div>
1934     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1935     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1936     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1937     before including any of its files. The default is not to build for multiplicity
1938     and only include the select backend.</p>
1939     <dl>
1940     <dt>EV_STANDALONE</dt>
1941     <dd>
1942     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1943     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1944     implementations for some libevent functions (such as logging, which is not
1945     supported). It will also not define any of the structs usually found in
1946     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1947     </dd>
1948     <dt>EV_USE_MONOTONIC</dt>
1949     <dd>
1950     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1951     monotonic clock option at both compiletime and runtime. Otherwise no use
1952     of the monotonic clock option will be attempted. If you enable this, you
1953     usually have to link against librt or something similar. Enabling it when
1954     the functionality isn't available is safe, though, althoguh you have
1955     to make sure you link against any libraries where the <code>clock_gettime</code>
1956     function is hiding in (often <cite>-lrt</cite>).</p>
1957     </dd>
1958     <dt>EV_USE_REALTIME</dt>
1959     <dd>
1960     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1961     realtime clock option at compiletime (and assume its availability at
1962     runtime if successful). Otherwise no use of the realtime clock option will
1963     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1964     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1965     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1966     </dd>
1967     <dt>EV_USE_SELECT</dt>
1968     <dd>
1969     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1970     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1971     other method takes over, select will be it. Otherwise the select backend
1972     will not be compiled in.</p>
1973     </dd>
1974     <dt>EV_SELECT_USE_FD_SET</dt>
1975     <dd>
1976     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1977     structure. This is useful if libev doesn't compile due to a missing
1978     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1979     exotic systems. This usually limits the range of file descriptors to some
1980     low limit such as 1024 or might have other limitations (winsocket only
1981     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1982     influence the size of the <code>fd_set</code> used.</p>
1983     </dd>
1984     <dt>EV_SELECT_IS_WINSOCKET</dt>
1985     <dd>
1986     <p>When defined to <code>1</code>, the select backend will assume that
1987     select/socket/connect etc. don't understand file descriptors but
1988     wants osf handles on win32 (this is the case when the select to
1989     be used is the winsock select). This means that it will call
1990     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
1991     it is assumed that all these functions actually work on fds, even
1992     on win32. Should not be defined on non-win32 platforms.</p>
1993     </dd>
1994     <dt>EV_USE_POLL</dt>
1995     <dd>
1996     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
1997     backend. Otherwise it will be enabled on non-win32 platforms. It
1998     takes precedence over select.</p>
1999     </dd>
2000     <dt>EV_USE_EPOLL</dt>
2001     <dd>
2002     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2003     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2004     otherwise another method will be used as fallback. This is the
2005     preferred backend for GNU/Linux systems.</p>
2006     </dd>
2007     <dt>EV_USE_KQUEUE</dt>
2008     <dd>
2009     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2010     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2011     otherwise another method will be used as fallback. This is the preferred
2012     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2013     supports some types of fds correctly (the only platform we found that
2014     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2015     not be used unless explicitly requested. The best way to use it is to find
2016 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2017 root 1.40 kqueue loop.</p>
2018     </dd>
2019     <dt>EV_USE_PORT</dt>
2020     <dd>
2021     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2022     10 port style backend. Its availability will be detected at runtime,
2023     otherwise another method will be used as fallback. This is the preferred
2024     backend for Solaris 10 systems.</p>
2025     </dd>
2026     <dt>EV_USE_DEVPOLL</dt>
2027     <dd>
2028     <p>reserved for future expansion, works like the USE symbols above.</p>
2029     </dd>
2030 root 1.57 <dt>EV_USE_INOTIFY</dt>
2031     <dd>
2032     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2033     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2034     be detected at runtime.</p>
2035     </dd>
2036 root 1.40 <dt>EV_H</dt>
2037     <dd>
2038     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2039     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2040     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2041     </dd>
2042     <dt>EV_CONFIG_H</dt>
2043     <dd>
2044     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2045     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2046     <code>EV_H</code>, above.</p>
2047     </dd>
2048     <dt>EV_EVENT_H</dt>
2049     <dd>
2050     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2051     of how the <cite>event.h</cite> header can be found.</p>
2052     </dd>
2053     <dt>EV_PROTOTYPES</dt>
2054     <dd>
2055     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2056     prototypes, but still define all the structs and other symbols. This is
2057     occasionally useful if you want to provide your own wrapper functions
2058     around libev functions.</p>
2059     </dd>
2060     <dt>EV_MULTIPLICITY</dt>
2061     <dd>
2062     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2063     will have the <code>struct ev_loop *</code> as first argument, and you can create
2064     additional independent event loops. Otherwise there will be no support
2065     for multiple event loops and there is no first event loop pointer
2066     argument. Instead, all functions act on the single default loop.</p>
2067     </dd>
2068 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2069     <dd>
2070     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2071     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2072     code.</p>
2073     </dd>
2074     <dt>EV_EMBED_ENABLE</dt>
2075     <dd>
2076     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2077     defined to be <code>0</code>, then they are not.</p>
2078     </dd>
2079     <dt>EV_STAT_ENABLE</dt>
2080     <dd>
2081     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2082     defined to be <code>0</code>, then they are not.</p>
2083     </dd>
2084 root 1.50 <dt>EV_FORK_ENABLE</dt>
2085     <dd>
2086     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2087     defined to be <code>0</code>, then they are not.</p>
2088     </dd>
2089 root 1.48 <dt>EV_MINIMAL</dt>
2090 root 1.40 <dd>
2091 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2092     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2093     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2094 root 1.40 </dd>
2095 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2096     <dd>
2097     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2098     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2099     than enough. If you need to manage thousands of children you might want to
2100 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2101     </dd>
2102     <dt>EV_INOTIFY_HASHSIZE</dt>
2103     <dd>
2104     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2105     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2106     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2107     watchers you might want to increase this value (<i>must</i> be a power of
2108     two).</p>
2109 root 1.51 </dd>
2110 root 1.40 <dt>EV_COMMON</dt>
2111     <dd>
2112     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2113     this macro to a something else you can include more and other types of
2114     members. You have to define it each time you include one of the files,
2115     though, and it must be identical each time.</p>
2116     <p>For example, the perl EV module uses something like this:</p>
2117     <pre> #define EV_COMMON \
2118     SV *self; /* contains this struct */ \
2119     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2120    
2121     </pre>
2122     </dd>
2123 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2124     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2125     <dt>ev_set_cb (ev, cb)</dt>
2126 root 1.40 <dd>
2127     <p>Can be used to change the callback member declaration in each watcher,
2128     and the way callbacks are invoked and set. Must expand to a struct member
2129     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2130     their default definitions. One possible use for overriding these is to
2131 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2132     method calls instead of plain function calls in C++.</p>
2133 root 1.40
2134     </div>
2135     <h2 id="EXAMPLES">EXAMPLES</h2>
2136     <div id="EXAMPLES_CONTENT">
2137     <p>For a real-world example of a program the includes libev
2138     verbatim, you can have a look at the EV perl module
2139     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2140     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2141     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2142     will be compiled. It is pretty complex because it provides its own header
2143     file.</p>
2144     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2145     that everybody includes and which overrides some autoconf choices:</p>
2146 root 1.41 <pre> #define EV_USE_POLL 0
2147     #define EV_MULTIPLICITY 0
2148     #define EV_PERIODICS 0
2149     #define EV_CONFIG_H &lt;config.h&gt;
2150 root 1.40
2151 root 1.41 #include &quot;ev++.h&quot;
2152 root 1.40
2153     </pre>
2154     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2155 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2156     #include &quot;ev.c&quot;
2157 root 1.40
2158 root 1.47
2159    
2160    
2161 root 1.40 </pre>
2162    
2163     </div>
2164 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2165 root 1.47 <div id="COMPLEXITIES_CONTENT">
2166     <p>In this section the complexities of (many of) the algorithms used inside
2167     libev will be explained. For complexity discussions about backends see the
2168     documentation for <code>ev_default_init</code>.</p>
2169     <p>
2170     <dl>
2171     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2172     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2173     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2174     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2175 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2176 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2177     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2178     <dt>Activating one watcher: O(1)</dt>
2179     </dl>
2180     </p>
2181    
2182    
2183    
2184    
2185    
2186     </div>
2187 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2188 root 1.1 <div id="AUTHOR_CONTENT">
2189 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2190 root 1.1
2191     </div>
2192     </div></body>
2193     </html>