ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.62
Committed: Thu Nov 29 17:28:13 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.61: +18 -1 lines
Log Message:
implement EVFLAG_FORKCHECK

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.62 <meta name="created" content="Thu Nov 29 18:28:02 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124     <p>Libev is an event loop: you register interest in certain events (such as a
125     file descriptor being readable or a timeout occuring), and it will manage
126 root 1.4 these event sources and provide your program with events.</p>
127 root 1.1 <p>To do this, it must take more or less complete control over your process
128     (or thread) by executing the <i>event loop</i> handler, and will then
129     communicate events via a callback mechanism.</p>
130     <p>You register interest in certain events by registering so-called <i>event
131     watchers</i>, which are relatively small C structures you initialise with the
132     details of the event, and then hand it over to libev by <i>starting</i> the
133     watcher.</p>
134    
135     </div>
136 root 1.55 <h1 id="FEATURES">FEATURES</h1>
137 root 1.1 <div id="FEATURES_CONTENT">
138 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
139     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
140     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
141     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
142     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
143     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
144     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
145 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
146     file watchers (<code>ev_stat</code>) and even limited support for fork events
147     (<code>ev_fork</code>).</p>
148     <p>It also is quite fast (see this
149     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
150     for example).</p>
151 root 1.1
152     </div>
153 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
154 root 1.1 <div id="CONVENTIONS_CONTENT">
155 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
156     be described, which supports multiple event loops. For more info about
157     various configuration options please have a look at <strong>EMBED</strong> section in
158     this manual. If libev was configured without support for multiple event
159     loops, then all functions taking an initial argument of name <code>loop</code>
160     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
161 root 1.1
162     </div>
163 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
164 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
165 root 1.2 <p>Libev represents time as a single floating point number, representing the
166     (fractional) number of seconds since the (POSIX) epoch (somewhere near
167     the beginning of 1970, details are complicated, don't ask). This type is
168 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
169 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
170     it, you should treat it as such.</p>
171    
172 root 1.18 </div>
173 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
174 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
175 root 1.21 <p>These functions can be called anytime, even before initialising the
176     library in any way.</p>
177 root 1.1 <dl>
178     <dt>ev_tstamp ev_time ()</dt>
179     <dd>
180 root 1.28 <p>Returns the current time as libev would use it. Please note that the
181     <code>ev_now</code> function is usually faster and also often returns the timestamp
182     you actually want to know.</p>
183 root 1.1 </dd>
184     <dt>int ev_version_major ()</dt>
185     <dt>int ev_version_minor ()</dt>
186     <dd>
187     <p>You can find out the major and minor version numbers of the library
188     you linked against by calling the functions <code>ev_version_major</code> and
189     <code>ev_version_minor</code>. If you want, you can compare against the global
190     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
191     version of the library your program was compiled against.</p>
192 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
193 root 1.1 as this indicates an incompatible change. Minor versions are usually
194     compatible to older versions, so a larger minor version alone is usually
195     not a problem.</p>
196 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
197     version.</p>
198 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
199     ev_version_major () == EV_VERSION_MAJOR
200     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
201    
202     </pre>
203 root 1.1 </dd>
204 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
205     <dd>
206     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
207     value) compiled into this binary of libev (independent of their
208     availability on the system you are running on). See <code>ev_default_loop</code> for
209     a description of the set values.</p>
210 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
211     a must have and can we have a torrent of it please!!!11</p>
212     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
213     ev_supported_backends () &amp; EVBACKEND_EPOLL));
214    
215     </pre>
216 root 1.32 </dd>
217     <dt>unsigned int ev_recommended_backends ()</dt>
218     <dd>
219     <p>Return the set of all backends compiled into this binary of libev and also
220     recommended for this platform. This set is often smaller than the one
221     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
222     most BSDs and will not be autodetected unless you explicitly request it
223     (assuming you know what you are doing). This is the set of backends that
224 root 1.34 libev will probe for if you specify no backends explicitly.</p>
225 root 1.32 </dd>
226 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
227     <dd>
228     <p>Returns the set of backends that are embeddable in other event loops. This
229     is the theoretical, all-platform, value. To find which backends
230     might be supported on the current system, you would need to look at
231     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
232     recommended ones.</p>
233     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
234     </dd>
235 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
236 root 1.1 <dd>
237 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
238     semantics is identical - to the realloc C function). It is used to
239     allocate and free memory (no surprises here). If it returns zero when
240     memory needs to be allocated, the library might abort or take some
241     potentially destructive action. The default is your system realloc
242     function.</p>
243 root 1.1 <p>You could override this function in high-availability programs to, say,
244     free some memory if it cannot allocate memory, to use a special allocator,
245     or even to sleep a while and retry until some memory is available.</p>
246 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
247     retries).</p>
248 root 1.35 <pre> static void *
249 root 1.52 persistent_realloc (void *ptr, size_t size)
250 root 1.35 {
251     for (;;)
252     {
253     void *newptr = realloc (ptr, size);
254    
255     if (newptr)
256     return newptr;
257    
258     sleep (60);
259     }
260     }
261    
262     ...
263     ev_set_allocator (persistent_realloc);
264    
265     </pre>
266 root 1.1 </dd>
267     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
268     <dd>
269     <p>Set the callback function to call on a retryable syscall error (such
270     as failed select, poll, epoll_wait). The message is a printable string
271     indicating the system call or subsystem causing the problem. If this
272     callback is set, then libev will expect it to remedy the sitution, no
273 root 1.7 matter what, when it returns. That is, libev will generally retry the
274 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
275     (such as abort).</p>
276 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
277 root 1.35 <pre> static void
278     fatal_error (const char *msg)
279     {
280     perror (msg);
281     abort ();
282     }
283    
284     ...
285     ev_set_syserr_cb (fatal_error);
286    
287     </pre>
288 root 1.1 </dd>
289     </dl>
290    
291     </div>
292 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
293 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
294     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
295     types of such loops, the <i>default</i> loop, which supports signals and child
296     events, and dynamically created loops which do not.</p>
297     <p>If you use threads, a common model is to run the default event loop
298 root 1.18 in your main thread (or in a separate thread) and for each thread you
299 root 1.7 create, you also create another event loop. Libev itself does no locking
300     whatsoever, so if you mix calls to the same event loop in different
301     threads, make sure you lock (this is usually a bad idea, though, even if
302 root 1.9 done correctly, because it's hideous and inefficient).</p>
303 root 1.1 <dl>
304     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
305     <dd>
306     <p>This will initialise the default event loop if it hasn't been initialised
307     yet and return it. If the default loop could not be initialised, returns
308     false. If it already was initialised it simply returns it (and ignores the
309 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
310 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
311     function.</p>
312     <p>The flags argument can be used to specify special behaviour or specific
313 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
314     <p>The following flags are supported:</p>
315 root 1.1 <p>
316     <dl>
317 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
318 root 1.1 <dd>
319 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
320 root 1.1 thing, believe me).</p>
321     </dd>
322 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
323 root 1.1 <dd>
324 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
325     or setgid) then libev will <i>not</i> look at the environment variable
326     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
327     override the flags completely if it is found in the environment. This is
328     useful to try out specific backends to test their performance, or to work
329     around bugs.</p>
330 root 1.1 </dd>
331 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
332     <dd>
333     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
334     a fork, you can also make libev check for a fork in each iteration by
335     enabling this flag.</p>
336     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
337     and thus this might slow down your event loop if you do a lot of loop
338     iterations and little real work, but is usually not noticable (on my
339     Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
340     without a syscall and thus <i>very</i> fast, but my Linux system also has
341     <code>pthread_atfork</code> which is even faster).</p>
342     <p>The big advantage of this flag is that you can forget about fork (and
343     forget about forgetting to tell libev about forking) when you use this
344     flag.</p>
345     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
346     environment variable.</p>
347     </dd>
348 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
349 root 1.29 <dd>
350     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
351     libev tries to roll its own fd_set with no limits on the number of fds,
352     but if that fails, expect a fairly low limit on the number of fds when
353     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
354     the fastest backend for a low number of fds.</p>
355     </dd>
356 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
357 root 1.29 <dd>
358     <p>And this is your standard poll(2) backend. It's more complicated than
359     select, but handles sparse fds better and has no artificial limit on the
360     number of fds you can use (except it will slow down considerably with a
361     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
362     </dd>
363 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
364 root 1.29 <dd>
365     <p>For few fds, this backend is a bit little slower than poll and select,
366     but it scales phenomenally better. While poll and select usually scale like
367     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
368     either O(1) or O(active_fds).</p>
369     <p>While stopping and starting an I/O watcher in the same iteration will
370     result in some caching, there is still a syscall per such incident
371     (because the fd could point to a different file description now), so its
372     best to avoid that. Also, dup()ed file descriptors might not work very
373     well if you register events for both fds.</p>
374 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
375     need to use non-blocking I/O or other means to avoid blocking when no data
376     (or space) is available.</p>
377 root 1.29 </dd>
378 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
379 root 1.29 <dd>
380     <p>Kqueue deserves special mention, as at the time of this writing, it
381     was broken on all BSDs except NetBSD (usually it doesn't work with
382     anything but sockets and pipes, except on Darwin, where of course its
383 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
384     unless you explicitly specify it explicitly in the flags (i.e. using
385     <code>EVBACKEND_KQUEUE</code>).</p>
386 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
387     kernel is more efficient (which says nothing about its actual speed, of
388     course). While starting and stopping an I/O watcher does not cause an
389     extra syscall as with epoll, it still adds up to four event changes per
390     incident, so its best to avoid that.</p>
391     </dd>
392 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
393 root 1.29 <dd>
394     <p>This is not implemented yet (and might never be).</p>
395     </dd>
396 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
397 root 1.29 <dd>
398     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
399     it's really slow, but it still scales very well (O(active_fds)).</p>
400 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
401     notifications, so you need to use non-blocking I/O or other means to avoid
402     blocking when no data (or space) is available.</p>
403 root 1.29 </dd>
404 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
405 root 1.29 <dd>
406 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
407     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
408 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
409 root 1.1 </dd>
410     </dl>
411     </p>
412 root 1.29 <p>If one or more of these are ored into the flags value, then only these
413     backends will be tried (in the reverse order as given here). If none are
414     specified, most compiled-in backend will be tried, usually in reverse
415     order of their flag values :)</p>
416 root 1.34 <p>The most typical usage is like this:</p>
417     <pre> if (!ev_default_loop (0))
418     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
419    
420     </pre>
421     <p>Restrict libev to the select and poll backends, and do not allow
422     environment settings to be taken into account:</p>
423     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
424    
425     </pre>
426     <p>Use whatever libev has to offer, but make sure that kqueue is used if
427     available (warning, breaks stuff, best use only with your own private
428     event loop and only if you know the OS supports your types of fds):</p>
429     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
430    
431     </pre>
432 root 1.1 </dd>
433     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
434     <dd>
435     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
436     always distinct from the default loop. Unlike the default loop, it cannot
437     handle signal and child watchers, and attempts to do so will be greeted by
438     undefined behaviour (or a failed assertion if assertions are enabled).</p>
439 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
440 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
441     if (!epoller)
442     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
443    
444     </pre>
445 root 1.1 </dd>
446     <dt>ev_default_destroy ()</dt>
447     <dd>
448     <p>Destroys the default loop again (frees all memory and kernel state
449 root 1.38 etc.). None of the active event watchers will be stopped in the normal
450     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
451     responsibility to either stop all watchers cleanly yoursef <i>before</i>
452     calling this function, or cope with the fact afterwards (which is usually
453     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
454     for example).</p>
455 root 1.1 </dd>
456     <dt>ev_loop_destroy (loop)</dt>
457     <dd>
458     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
459     earlier call to <code>ev_loop_new</code>.</p>
460     </dd>
461     <dt>ev_default_fork ()</dt>
462     <dd>
463     <p>This function reinitialises the kernel state for backends that have
464     one. Despite the name, you can call it anytime, but it makes most sense
465     after forking, in either the parent or child process (or both, but that
466     again makes little sense).</p>
467 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
468     only if you want to use the event library in both processes. If you just
469     fork+exec, you don't have to call it.</p>
470 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
471 root 1.1 it just in case after a fork. To make this easy, the function will fit in
472     quite nicely into a call to <code>pthread_atfork</code>:</p>
473     <pre> pthread_atfork (0, 0, ev_default_fork);
474    
475     </pre>
476 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
477     without calling this function, so if you force one of those backends you
478     do not need to care.</p>
479 root 1.1 </dd>
480     <dt>ev_loop_fork (loop)</dt>
481     <dd>
482     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
483     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
484     after fork, and how you do this is entirely your own problem.</p>
485     </dd>
486 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
487 root 1.1 <dd>
488 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
489 root 1.1 use.</p>
490     </dd>
491 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
492 root 1.1 <dd>
493     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
494 root 1.35 received events and started processing them. This timestamp does not
495     change as long as callbacks are being processed, and this is also the base
496     time used for relative timers. You can treat it as the timestamp of the
497     event occuring (or more correctly, libev finding out about it).</p>
498 root 1.1 </dd>
499     <dt>ev_loop (loop, int flags)</dt>
500     <dd>
501     <p>Finally, this is it, the event handler. This function usually is called
502     after you initialised all your watchers and you want to start handling
503     events.</p>
504 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
505     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
506 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
507     relying on all watchers to be stopped when deciding when a program has
508     finished (especially in interactive programs), but having a program that
509     automatically loops as long as it has to and no longer by virtue of
510     relying on its watchers stopping correctly is a thing of beauty.</p>
511 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
512     those events and any outstanding ones, but will not block your process in
513 root 1.9 case there are no events and will return after one iteration of the loop.</p>
514 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
515     neccessary) and will handle those and any outstanding ones. It will block
516 root 1.9 your process until at least one new event arrives, and will return after
517 root 1.34 one iteration of the loop. This is useful if you are waiting for some
518     external event in conjunction with something not expressible using other
519     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
520     usually a better approach for this kind of thing.</p>
521     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
522     <pre> * If there are no active watchers (reference count is zero), return.
523     - Queue prepare watchers and then call all outstanding watchers.
524     - If we have been forked, recreate the kernel state.
525     - Update the kernel state with all outstanding changes.
526     - Update the &quot;event loop time&quot;.
527     - Calculate for how long to block.
528     - Block the process, waiting for any events.
529     - Queue all outstanding I/O (fd) events.
530     - Update the &quot;event loop time&quot; and do time jump handling.
531     - Queue all outstanding timers.
532     - Queue all outstanding periodics.
533     - If no events are pending now, queue all idle watchers.
534     - Queue all check watchers.
535     - Call all queued watchers in reverse order (i.e. check watchers first).
536     Signals and child watchers are implemented as I/O watchers, and will
537     be handled here by queueing them when their watcher gets executed.
538     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
539     were used, return, otherwise continue with step *.
540 root 1.28
541     </pre>
542 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
543 root 1.35 anymore.</p>
544     <pre> ... queue jobs here, make sure they register event watchers as long
545     ... as they still have work to do (even an idle watcher will do..)
546     ev_loop (my_loop, 0);
547     ... jobs done. yeah!
548    
549     </pre>
550 root 1.1 </dd>
551     <dt>ev_unloop (loop, how)</dt>
552     <dd>
553 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
554     has processed all outstanding events). The <code>how</code> argument must be either
555 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
556 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
557 root 1.1 </dd>
558     <dt>ev_ref (loop)</dt>
559     <dt>ev_unref (loop)</dt>
560     <dd>
561 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
562     loop: Every watcher keeps one reference, and as long as the reference
563     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
564     a watcher you never unregister that should not keep <code>ev_loop</code> from
565     returning, ev_unref() after starting, and ev_ref() before stopping it. For
566     example, libev itself uses this for its internal signal pipe: It is not
567     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
568     no event watchers registered by it are active. It is also an excellent
569     way to do this for generic recurring timers or from within third-party
570     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
571 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
572 root 1.35 running when nothing else is active.</p>
573 root 1.54 <pre> struct ev_signal exitsig;
574 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
575 root 1.54 ev_signal_start (loop, &amp;exitsig);
576     evf_unref (loop);
577 root 1.35
578     </pre>
579 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
580     <pre> ev_ref (loop);
581     ev_signal_stop (loop, &amp;exitsig);
582 root 1.35
583     </pre>
584 root 1.1 </dd>
585     </dl>
586    
587 root 1.43
588    
589    
590    
591 root 1.1 </div>
592 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
593 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
594     <p>A watcher is a structure that you create and register to record your
595     interest in some event. For instance, if you want to wait for STDIN to
596 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
597 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
598     {
599     ev_io_stop (w);
600     ev_unloop (loop, EVUNLOOP_ALL);
601     }
602    
603     struct ev_loop *loop = ev_default_loop (0);
604     struct ev_io stdin_watcher;
605     ev_init (&amp;stdin_watcher, my_cb);
606     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
607     ev_io_start (loop, &amp;stdin_watcher);
608     ev_loop (loop, 0);
609    
610     </pre>
611     <p>As you can see, you are responsible for allocating the memory for your
612     watcher structures (and it is usually a bad idea to do this on the stack,
613     although this can sometimes be quite valid).</p>
614     <p>Each watcher structure must be initialised by a call to <code>ev_init
615     (watcher *, callback)</code>, which expects a callback to be provided. This
616     callback gets invoked each time the event occurs (or, in the case of io
617     watchers, each time the event loop detects that the file descriptor given
618     is readable and/or writable).</p>
619     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
620     with arguments specific to this watcher type. There is also a macro
621     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
622     (watcher *, callback, ...)</code>.</p>
623     <p>To make the watcher actually watch out for events, you have to start it
624     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
625     *)</code>), and you can stop watching for events at any time by calling the
626     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
627     <p>As long as your watcher is active (has been started but not stopped) you
628     must not touch the values stored in it. Most specifically you must never
629 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
630 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
631     registered watcher structure as second, and a bitset of received events as
632     third argument.</p>
633 root 1.14 <p>The received events usually include a single bit per event type received
634 root 1.1 (you can receive multiple events at the same time). The possible bit masks
635     are:</p>
636     <dl>
637 root 1.10 <dt><code>EV_READ</code></dt>
638     <dt><code>EV_WRITE</code></dt>
639 root 1.1 <dd>
640 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
641 root 1.1 writable.</p>
642     </dd>
643 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
644 root 1.1 <dd>
645 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
646 root 1.1 </dd>
647 root 1.10 <dt><code>EV_PERIODIC</code></dt>
648 root 1.1 <dd>
649 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
650 root 1.1 </dd>
651 root 1.10 <dt><code>EV_SIGNAL</code></dt>
652 root 1.1 <dd>
653 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
654 root 1.1 </dd>
655 root 1.10 <dt><code>EV_CHILD</code></dt>
656 root 1.1 <dd>
657 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
658 root 1.1 </dd>
659 root 1.48 <dt><code>EV_STAT</code></dt>
660     <dd>
661     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
662     </dd>
663 root 1.10 <dt><code>EV_IDLE</code></dt>
664 root 1.1 <dd>
665 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
666 root 1.1 </dd>
667 root 1.10 <dt><code>EV_PREPARE</code></dt>
668     <dt><code>EV_CHECK</code></dt>
669 root 1.1 <dd>
670 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
671     to gather new events, and all <code>ev_check</code> watchers are invoked just after
672 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
673     received events. Callbacks of both watcher types can start and stop as
674     many watchers as they want, and all of them will be taken into account
675 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
676 root 1.1 <code>ev_loop</code> from blocking).</p>
677     </dd>
678 root 1.50 <dt><code>EV_EMBED</code></dt>
679     <dd>
680     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
681     </dd>
682     <dt><code>EV_FORK</code></dt>
683     <dd>
684     <p>The event loop has been resumed in the child process after fork (see
685     <code>ev_fork</code>).</p>
686     </dd>
687 root 1.10 <dt><code>EV_ERROR</code></dt>
688 root 1.1 <dd>
689     <p>An unspecified error has occured, the watcher has been stopped. This might
690     happen because the watcher could not be properly started because libev
691     ran out of memory, a file descriptor was found to be closed or any other
692     problem. You best act on it by reporting the problem and somehow coping
693     with the watcher being stopped.</p>
694     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
695     for example it might indicate that a fd is readable or writable, and if
696     your callbacks is well-written it can just attempt the operation and cope
697     with the error from read() or write(). This will not work in multithreaded
698     programs, though, so beware.</p>
699     </dd>
700     </dl>
701    
702     </div>
703 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
704     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
705 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
706     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
707     <dl>
708     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
709     <dd>
710     <p>This macro initialises the generic portion of a watcher. The contents
711     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
712     the generic parts of the watcher are initialised, you <i>need</i> to call
713     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
714     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
715     which rolls both calls into one.</p>
716     <p>You can reinitialise a watcher at any time as long as it has been stopped
717     (or never started) and there are no pending events outstanding.</p>
718 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
719 root 1.37 int revents)</code>.</p>
720     </dd>
721     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
722     <dd>
723     <p>This macro initialises the type-specific parts of a watcher. You need to
724     call <code>ev_init</code> at least once before you call this macro, but you can
725     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
726     macro on a watcher that is active (it can be pending, however, which is a
727     difference to the <code>ev_init</code> macro).</p>
728     <p>Although some watcher types do not have type-specific arguments
729     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
730     </dd>
731     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
732     <dd>
733     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
734     calls into a single call. This is the most convinient method to initialise
735     a watcher. The same limitations apply, of course.</p>
736     </dd>
737     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
738     <dd>
739     <p>Starts (activates) the given watcher. Only active watchers will receive
740     events. If the watcher is already active nothing will happen.</p>
741     </dd>
742     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
743     <dd>
744     <p>Stops the given watcher again (if active) and clears the pending
745     status. It is possible that stopped watchers are pending (for example,
746     non-repeating timers are being stopped when they become pending), but
747     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
748     you want to free or reuse the memory used by the watcher it is therefore a
749     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
750     </dd>
751     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
752     <dd>
753     <p>Returns a true value iff the watcher is active (i.e. it has been started
754     and not yet been stopped). As long as a watcher is active you must not modify
755     it.</p>
756     </dd>
757     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
758     <dd>
759     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
760     events but its callback has not yet been invoked). As long as a watcher
761     is pending (but not active) you must not call an init function on it (but
762     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
763     libev (e.g. you cnanot <code>free ()</code> it).</p>
764     </dd>
765 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
766 root 1.37 <dd>
767     <p>Returns the callback currently set on the watcher.</p>
768     </dd>
769     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
770     <dd>
771     <p>Change the callback. You can change the callback at virtually any time
772     (modulo threads).</p>
773     </dd>
774     </dl>
775    
776    
777    
778    
779    
780     </div>
781 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
782     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
783     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
784 root 1.14 and read at any time, libev will completely ignore it. This can be used
785 root 1.1 to associate arbitrary data with your watcher. If you need more data and
786     don't want to allocate memory and store a pointer to it in that data
787     member, you can also &quot;subclass&quot; the watcher type and provide your own
788     data:</p>
789     <pre> struct my_io
790     {
791     struct ev_io io;
792     int otherfd;
793     void *somedata;
794     struct whatever *mostinteresting;
795     }
796    
797     </pre>
798     <p>And since your callback will be called with a pointer to the watcher, you
799     can cast it back to your own type:</p>
800     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
801     {
802     struct my_io *w = (struct my_io *)w_;
803     ...
804     }
805    
806     </pre>
807 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
808     instead have been omitted.</p>
809     <p>Another common scenario is having some data structure with multiple
810     watchers:</p>
811     <pre> struct my_biggy
812     {
813     int some_data;
814     ev_timer t1;
815     ev_timer t2;
816     }
817 root 1.1
818 root 1.56 </pre>
819     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
820     you need to use <code>offsetof</code>:</p>
821     <pre> #include &lt;stddef.h&gt;
822 root 1.1
823 root 1.56 static void
824     t1_cb (EV_P_ struct ev_timer *w, int revents)
825     {
826     struct my_biggy big = (struct my_biggy *
827     (((char *)w) - offsetof (struct my_biggy, t1));
828     }
829    
830     static void
831     t2_cb (EV_P_ struct ev_timer *w, int revents)
832     {
833     struct my_biggy big = (struct my_biggy *
834     (((char *)w) - offsetof (struct my_biggy, t2));
835     }
836 root 1.1
837    
838    
839 root 1.56
840     </pre>
841    
842 root 1.1 </div>
843 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
844 root 1.1 <div id="WATCHER_TYPES_CONTENT">
845     <p>This section describes each watcher in detail, but will not repeat
846 root 1.48 information given in the last section. Any initialisation/set macros,
847     functions and members specific to the watcher type are explained.</p>
848     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
849     while the watcher is active, you can look at the member and expect some
850     sensible content, but you must not modify it (you can modify it while the
851     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
852     means you can expect it to have some sensible content while the watcher
853     is active, but you can also modify it. Modifying it may not do something
854     sensible or take immediate effect (or do anything at all), but libev will
855     not crash or malfunction in any way.</p>
856 root 1.1
857 root 1.35
858    
859    
860    
861 root 1.1 </div>
862 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
863 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
864 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
865 root 1.43 in each iteration of the event loop, or, more precisely, when reading
866     would not block the process and writing would at least be able to write
867     some data. This behaviour is called level-triggering because you keep
868     receiving events as long as the condition persists. Remember you can stop
869     the watcher if you don't want to act on the event and neither want to
870     receive future events.</p>
871 root 1.25 <p>In general you can register as many read and/or write event watchers per
872 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
873     descriptors to non-blocking mode is also usually a good idea (but not
874     required if you know what you are doing).</p>
875     <p>You have to be careful with dup'ed file descriptors, though. Some backends
876     (the linux epoll backend is a notable example) cannot handle dup'ed file
877     descriptors correctly if you register interest in two or more fds pointing
878 root 1.43 to the same underlying file/socket/etc. description (that is, they share
879 root 1.26 the same underlying &quot;file open&quot;).</p>
880 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
881 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
882     <code>EVBACKEND_POLL</code>).</p>
883 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
884     receive &quot;spurious&quot; readyness notifications, that is your callback might
885     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
886     because there is no data. Not only are some backends known to create a
887     lot of those (for example solaris ports), it is very easy to get into
888     this situation even with a relatively standard program structure. Thus
889     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
890     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
891     <p>If you cannot run the fd in non-blocking mode (for example you should not
892     play around with an Xlib connection), then you have to seperately re-test
893     wether a file descriptor is really ready with a known-to-be good interface
894     such as poll (fortunately in our Xlib example, Xlib already does this on
895     its own, so its quite safe to use).</p>
896 root 1.1 <dl>
897     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
898     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
899     <dd>
900 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
901     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
902     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
903 root 1.1 </dd>
904 root 1.48 <dt>int fd [read-only]</dt>
905     <dd>
906     <p>The file descriptor being watched.</p>
907     </dd>
908     <dt>int events [read-only]</dt>
909     <dd>
910     <p>The events being watched.</p>
911     </dd>
912 root 1.1 </dl>
913 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
914 root 1.35 readable, but only once. Since it is likely line-buffered, you could
915 root 1.54 attempt to read a whole line in the callback.</p>
916 root 1.35 <pre> static void
917     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
918     {
919     ev_io_stop (loop, w);
920     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
921     }
922    
923     ...
924     struct ev_loop *loop = ev_default_init (0);
925     struct ev_io stdin_readable;
926     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
927     ev_io_start (loop, &amp;stdin_readable);
928     ev_loop (loop, 0);
929    
930    
931    
932    
933     </pre>
934 root 1.1
935     </div>
936 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
937 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
938 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
939     given time, and optionally repeating in regular intervals after that.</p>
940     <p>The timers are based on real time, that is, if you register an event that
941 root 1.25 times out after an hour and you reset your system clock to last years
942 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
943 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
944 root 1.1 monotonic clock option helps a lot here).</p>
945 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
946     time. This is usually the right thing as this timestamp refers to the time
947 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
948     you suspect event processing to be delayed and you <i>need</i> to base the timeout
949 root 1.25 on the current time, use something like this to adjust for this:</p>
950 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
951    
952     </pre>
953 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
954     but if multiple timers become ready during the same loop iteration then
955     order of execution is undefined.</p>
956 root 1.1 <dl>
957     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
958     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
959     <dd>
960     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
961     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
962     timer will automatically be configured to trigger again <code>repeat</code> seconds
963     later, again, and again, until stopped manually.</p>
964     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
965     configure a timer to trigger every 10 seconds, then it will trigger at
966     exactly 10 second intervals. If, however, your program cannot keep up with
967 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
968 root 1.1 timer will not fire more than once per event loop iteration.</p>
969     </dd>
970     <dt>ev_timer_again (loop)</dt>
971     <dd>
972     <p>This will act as if the timer timed out and restart it again if it is
973     repeating. The exact semantics are:</p>
974 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
975     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
976     <p>If the timer is repeating, either start it if necessary (with the
977     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
978 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
979 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
980     timeout, that is, you want to be called when there have been, say, 60
981     seconds of inactivity on the socket. The easiest way to do this is to
982     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
983 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
984     you go into an idle state where you do not expect data to travel on the
985 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
986     automatically restart it if need be.</p>
987     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
988     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
989 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
990     ev_timer_again (loop, timer);
991     ...
992     timer-&gt;again = 17.;
993     ev_timer_again (loop, timer);
994     ...
995     timer-&gt;again = 10.;
996     ev_timer_again (loop, timer);
997    
998     </pre>
999 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1000     you want to modify its timeout value.</p>
1001 root 1.48 </dd>
1002     <dt>ev_tstamp repeat [read-write]</dt>
1003     <dd>
1004     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1005     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1006     which is also when any modifications are taken into account.</p>
1007 root 1.1 </dd>
1008     </dl>
1009 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1010 root 1.35 <pre> static void
1011     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1012     {
1013     .. one minute over, w is actually stopped right here
1014     }
1015    
1016     struct ev_timer mytimer;
1017     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1018     ev_timer_start (loop, &amp;mytimer);
1019    
1020     </pre>
1021 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1022 root 1.35 inactivity.</p>
1023     <pre> static void
1024     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1025     {
1026     .. ten seconds without any activity
1027     }
1028    
1029     struct ev_timer mytimer;
1030     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1031     ev_timer_again (&amp;mytimer); /* start timer */
1032     ev_loop (loop, 0);
1033    
1034     // and in some piece of code that gets executed on any &quot;activity&quot;:
1035     // reset the timeout to start ticking again at 10 seconds
1036     ev_timer_again (&amp;mytimer);
1037    
1038    
1039    
1040    
1041     </pre>
1042 root 1.1
1043     </div>
1044 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1045 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1046 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1047     (and unfortunately a bit complex).</p>
1048 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1049 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1050     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1051 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1052     + 10.</code>) and then reset your system clock to the last year, then it will
1053 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1054 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1055     again).</p>
1056     <p>They can also be used to implement vastly more complex timers, such as
1057     triggering an event on eahc midnight, local time.</p>
1058 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1059     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1060     during the same loop iteration then order of execution is undefined.</p>
1061 root 1.1 <dl>
1062     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1063     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1064     <dd>
1065     <p>Lots of arguments, lets sort it out... There are basically three modes of
1066     operation, and we will explain them from simplest to complex:</p>
1067     <p>
1068     <dl>
1069     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1070     <dd>
1071     <p>In this configuration the watcher triggers an event at the wallclock time
1072     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1073     that is, if it is to be run at January 1st 2011 then it will run when the
1074     system time reaches or surpasses this time.</p>
1075     </dd>
1076     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1077     <dd>
1078     <p>In this mode the watcher will always be scheduled to time out at the next
1079     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1080     of any time jumps.</p>
1081     <p>This can be used to create timers that do not drift with respect to system
1082     time:</p>
1083     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1084    
1085     </pre>
1086     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1087     but only that the the callback will be called when the system time shows a
1088 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1089 root 1.1 by 3600.</p>
1090     <p>Another way to think about it (for the mathematically inclined) is that
1091 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1092 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1093     </dd>
1094     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1095     <dd>
1096     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1097     ignored. Instead, each time the periodic watcher gets scheduled, the
1098     reschedule callback will be called with the watcher as first, and the
1099     current time as second argument.</p>
1100 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1101     ever, or make any event loop modifications</i>. If you need to stop it,
1102     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1103     starting a prepare watcher).</p>
1104 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1105     ev_tstamp now)</code>, e.g.:</p>
1106 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1107     {
1108     return now + 60.;
1109     }
1110    
1111     </pre>
1112     <p>It must return the next time to trigger, based on the passed time value
1113     (that is, the lowest time value larger than to the second argument). It
1114     will usually be called just before the callback will be triggered, but
1115     might be called at other times, too.</p>
1116 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1117 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1118 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1119     triggers on each midnight, local time. To do this, you would calculate the
1120 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1121     you do this is, again, up to you (but it is not trivial, which is the main
1122     reason I omitted it as an example).</p>
1123 root 1.1 </dd>
1124     </dl>
1125     </p>
1126     </dd>
1127     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1128     <dd>
1129     <p>Simply stops and restarts the periodic watcher again. This is only useful
1130     when you changed some parameters or the reschedule callback would return
1131     a different time than the last time it was called (e.g. in a crond like
1132     program when the crontabs have changed).</p>
1133     </dd>
1134 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1135     <dd>
1136     <p>The current interval value. Can be modified any time, but changes only
1137     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1138     called.</p>
1139     </dd>
1140     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1141     <dd>
1142     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1143     switched off. Can be changed any time, but changes only take effect when
1144     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1145     </dd>
1146 root 1.1 </dl>
1147 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1148 root 1.35 system clock is divisible by 3600. The callback invocation times have
1149     potentially a lot of jittering, but good long-term stability.</p>
1150     <pre> static void
1151     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1152     {
1153     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1154     }
1155    
1156     struct ev_periodic hourly_tick;
1157     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1158     ev_periodic_start (loop, &amp;hourly_tick);
1159    
1160     </pre>
1161 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1162 root 1.35 <pre> #include &lt;math.h&gt;
1163    
1164     static ev_tstamp
1165     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1166     {
1167     return fmod (now, 3600.) + 3600.;
1168     }
1169    
1170     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1171    
1172     </pre>
1173 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1174 root 1.35 <pre> struct ev_periodic hourly_tick;
1175     ev_periodic_init (&amp;hourly_tick, clock_cb,
1176     fmod (ev_now (loop), 3600.), 3600., 0);
1177     ev_periodic_start (loop, &amp;hourly_tick);
1178    
1179    
1180    
1181    
1182     </pre>
1183 root 1.1
1184     </div>
1185 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1186 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1187 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1188     signal one or more times. Even though signals are very asynchronous, libev
1189 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1190 root 1.1 normal event processing, like any other event.</p>
1191 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1192 root 1.1 first watcher gets started will libev actually register a signal watcher
1193     with the kernel (thus it coexists with your own signal handlers as long
1194     as you don't register any with libev). Similarly, when the last signal
1195     watcher for a signal is stopped libev will reset the signal handler to
1196     SIG_DFL (regardless of what it was set to before).</p>
1197     <dl>
1198     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1199     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1200     <dd>
1201     <p>Configures the watcher to trigger on the given signal number (usually one
1202     of the <code>SIGxxx</code> constants).</p>
1203     </dd>
1204 root 1.48 <dt>int signum [read-only]</dt>
1205     <dd>
1206     <p>The signal the watcher watches out for.</p>
1207     </dd>
1208 root 1.1 </dl>
1209    
1210 root 1.36
1211    
1212    
1213    
1214 root 1.1 </div>
1215 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1216     <div id="code_ev_child_code_watch_out_for_pro-2">
1217 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1218     some child status changes (most typically when a child of yours dies).</p>
1219     <dl>
1220     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1221     <dt>ev_child_set (ev_child *, int pid)</dt>
1222     <dd>
1223     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1224     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1225     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1226 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1227     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1228     process causing the status change.</p>
1229 root 1.1 </dd>
1230 root 1.48 <dt>int pid [read-only]</dt>
1231     <dd>
1232     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1233     </dd>
1234     <dt>int rpid [read-write]</dt>
1235     <dd>
1236     <p>The process id that detected a status change.</p>
1237     </dd>
1238     <dt>int rstatus [read-write]</dt>
1239     <dd>
1240     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1241     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1242     </dd>
1243 root 1.1 </dl>
1244 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1245 root 1.35 <pre> static void
1246     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1247     {
1248     ev_unloop (loop, EVUNLOOP_ALL);
1249     }
1250    
1251     struct ev_signal signal_watcher;
1252     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1253     ev_signal_start (loop, &amp;sigint_cb);
1254    
1255    
1256    
1257    
1258     </pre>
1259 root 1.1
1260     </div>
1261 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1262     <div id="code_ev_stat_code_did_the_file_attri-2">
1263     <p>This watches a filesystem path for attribute changes. That is, it calls
1264     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1265     compared to the last time, invoking the callback if it did.</p>
1266     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1267     not exist&quot; is a status change like any other. The condition &quot;path does
1268     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1269     otherwise always forced to be at least one) and all the other fields of
1270     the stat buffer having unspecified contents.</p>
1271 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1272     relative and your working directory changes, the behaviour is undefined.</p>
1273 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1274 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1275 root 1.48 can specify a recommended polling interval for this case. If you specify
1276     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1277     unspecified default</i> value will be used (which you can expect to be around
1278     five seconds, although this might change dynamically). Libev will also
1279     impose a minimum interval which is currently around <code>0.1</code>, but thats
1280     usually overkill.</p>
1281     <p>This watcher type is not meant for massive numbers of stat watchers,
1282     as even with OS-supported change notifications, this can be
1283     resource-intensive.</p>
1284 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1285     implemented (implementing kqueue support is left as an exercise for the
1286     reader). Inotify will be used to give hints only and should not change the
1287     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1288     to fall back to regular polling again even with inotify, but changes are
1289     usually detected immediately, and if the file exists there will be no
1290     polling.</p>
1291 root 1.48 <dl>
1292     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1293     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1294     <dd>
1295     <p>Configures the watcher to wait for status changes of the given
1296     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1297     be detected and should normally be specified as <code>0</code> to let libev choose
1298     a suitable value. The memory pointed to by <code>path</code> must point to the same
1299     path for as long as the watcher is active.</p>
1300     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1301     relative to the attributes at the time the watcher was started (or the
1302     last change was detected).</p>
1303     </dd>
1304     <dt>ev_stat_stat (ev_stat *)</dt>
1305     <dd>
1306     <p>Updates the stat buffer immediately with new values. If you change the
1307     watched path in your callback, you could call this fucntion to avoid
1308     detecting this change (while introducing a race condition). Can also be
1309     useful simply to find out the new values.</p>
1310     </dd>
1311     <dt>ev_statdata attr [read-only]</dt>
1312     <dd>
1313     <p>The most-recently detected attributes of the file. Although the type is of
1314     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1315     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1316     was some error while <code>stat</code>ing the file.</p>
1317     </dd>
1318     <dt>ev_statdata prev [read-only]</dt>
1319     <dd>
1320     <p>The previous attributes of the file. The callback gets invoked whenever
1321     <code>prev</code> != <code>attr</code>.</p>
1322     </dd>
1323     <dt>ev_tstamp interval [read-only]</dt>
1324     <dd>
1325     <p>The specified interval.</p>
1326     </dd>
1327     <dt>const char *path [read-only]</dt>
1328     <dd>
1329     <p>The filesystem path that is being watched.</p>
1330     </dd>
1331     </dl>
1332     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1333     <pre> static void
1334     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1335     {
1336     /* /etc/passwd changed in some way */
1337     if (w-&gt;attr.st_nlink)
1338     {
1339     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1340     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1341     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1342     }
1343     else
1344     /* you shalt not abuse printf for puts */
1345     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1346     &quot;if this is windows, they already arrived\n&quot;);
1347     }
1348    
1349     ...
1350     ev_stat passwd;
1351    
1352     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1353     ev_stat_start (loop, &amp;passwd);
1354    
1355    
1356    
1357    
1358     </pre>
1359    
1360     </div>
1361 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1362 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1363 root 1.14 <p>Idle watchers trigger events when there are no other events are pending
1364     (prepare, check and other idle watchers do not count). That is, as long
1365     as your process is busy handling sockets or timeouts (or even signals,
1366     imagine) it will not be triggered. But when your process is idle all idle
1367     watchers are being called again and again, once per event loop iteration -
1368     until stopped, that is, or your process receives more events and becomes
1369     busy.</p>
1370 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1371     active, the process will not block when waiting for new events.</p>
1372     <p>Apart from keeping your process non-blocking (which is a useful
1373     effect on its own sometimes), idle watchers are a good place to do
1374     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1375     event loop has handled all outstanding events.</p>
1376     <dl>
1377     <dt>ev_idle_init (ev_signal *, callback)</dt>
1378     <dd>
1379     <p>Initialises and configures the idle watcher - it has no parameters of any
1380     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1381     believe me.</p>
1382     </dd>
1383     </dl>
1384 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1385     callback, free it. Also, use no error checking, as usual.</p>
1386 root 1.35 <pre> static void
1387     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1388     {
1389     free (w);
1390     // now do something you wanted to do when the program has
1391     // no longer asnything immediate to do.
1392     }
1393    
1394     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1395     ev_idle_init (idle_watcher, idle_cb);
1396     ev_idle_start (loop, idle_cb);
1397    
1398    
1399    
1400    
1401     </pre>
1402 root 1.1
1403     </div>
1404 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1405 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1406 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1407 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1408 root 1.14 afterwards.</p>
1409 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1410     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1411     watchers. Other loops than the current one are fine, however. The
1412     rationale behind this is that you do not need to check for recursion in
1413     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1414     <code>ev_check</code> so if you have one watcher of each kind they will always be
1415     called in pairs bracketing the blocking call.</p>
1416 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1417     their use is somewhat advanced. This could be used, for example, to track
1418     variable changes, implement your own watchers, integrate net-snmp or a
1419 root 1.46 coroutine library and lots more. They are also occasionally useful if
1420     you cache some data and want to flush it before blocking (for example,
1421     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1422     watcher).</p>
1423 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1424 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1425     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1426     provide just this functionality). Then, in the check watcher you check for
1427     any events that occured (by checking the pending status of all watchers
1428     and stopping them) and call back into the library. The I/O and timer
1429 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1430 root 1.14 because you never know, you know?).</p>
1431     <p>As another example, the Perl Coro module uses these hooks to integrate
1432 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1433     during each prepare and only letting the process block if no coroutines
1434 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1435     with priority higher than or equal to the event loop and one coroutine
1436     of lower priority, but only once, using idle watchers to keep the event
1437     loop from blocking if lower-priority coroutines are active, thus mapping
1438     low-priority coroutines to idle/background tasks).</p>
1439 root 1.1 <dl>
1440     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1441     <dt>ev_check_init (ev_check *, callback)</dt>
1442     <dd>
1443     <p>Initialises and configures the prepare or check watcher - they have no
1444     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1445 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1446 root 1.1 </dd>
1447     </dl>
1448 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1449     and a timeout watcher in a prepare handler, as required by libadns, and
1450     in a check watcher, destroy them and call into libadns. What follows is
1451     pseudo-code only of course:</p>
1452     <pre> static ev_io iow [nfd];
1453     static ev_timer tw;
1454    
1455     static void
1456     io_cb (ev_loop *loop, ev_io *w, int revents)
1457     {
1458     // set the relevant poll flags
1459 root 1.47 // could also call adns_processreadable etc. here
1460 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1461     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1462     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1463     }
1464    
1465     // create io watchers for each fd and a timer before blocking
1466     static void
1467     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1468     {
1469     int timeout = 3600000;truct pollfd fds [nfd];
1470     // actual code will need to loop here and realloc etc.
1471     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1472    
1473     /* the callback is illegal, but won't be called as we stop during check */
1474     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1475     ev_timer_start (loop, &amp;tw);
1476    
1477     // create on ev_io per pollfd
1478     for (int i = 0; i &lt; nfd; ++i)
1479     {
1480     ev_io_init (iow + i, io_cb, fds [i].fd,
1481     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1482     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1483    
1484     fds [i].revents = 0;
1485     iow [i].data = fds + i;
1486     ev_io_start (loop, iow + i);
1487     }
1488     }
1489    
1490     // stop all watchers after blocking
1491     static void
1492     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1493     {
1494     ev_timer_stop (loop, &amp;tw);
1495    
1496     for (int i = 0; i &lt; nfd; ++i)
1497     ev_io_stop (loop, iow + i);
1498    
1499     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1500     }
1501 root 1.35
1502    
1503    
1504    
1505 root 1.46 </pre>
1506 root 1.1
1507     </div>
1508 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1509 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1510     <p>This is a rather advanced watcher type that lets you embed one event loop
1511 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1512     loop, other types of watchers might be handled in a delayed or incorrect
1513     fashion and must not be used).</p>
1514 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1515     prioritise I/O.</p>
1516     <p>As an example for a bug workaround, the kqueue backend might only support
1517     sockets on some platform, so it is unusable as generic backend, but you
1518     still want to make use of it because you have many sockets and it scales
1519     so nicely. In this case, you would create a kqueue-based loop and embed it
1520     into your default loop (which might use e.g. poll). Overall operation will
1521     be a bit slower because first libev has to poll and then call kevent, but
1522     at least you can use both at what they are best.</p>
1523     <p>As for prioritising I/O: rarely you have the case where some fds have
1524     to be watched and handled very quickly (with low latency), and even
1525     priorities and idle watchers might have too much overhead. In this case
1526     you would put all the high priority stuff in one loop and all the rest in
1527     a second one, and embed the second one in the first.</p>
1528 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1529     there might be events pending in the embedded loop. The callback must then
1530     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1531     their callbacks (you could also start an idle watcher to give the embedded
1532     loop strictly lower priority for example). You can also set the callback
1533     to <code>0</code>, in which case the embed watcher will automatically execute the
1534     embedded loop sweep.</p>
1535 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1536     callback will be invoked whenever some events have been handled. You can
1537     set the callback to <code>0</code> to avoid having to specify one if you are not
1538     interested in that.</p>
1539     <p>Also, there have not currently been made special provisions for forking:
1540     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1541     but you will also have to stop and restart any <code>ev_embed</code> watchers
1542     yourself.</p>
1543     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1544     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1545     portable one.</p>
1546     <p>So when you want to use this feature you will always have to be prepared
1547     that you cannot get an embeddable loop. The recommended way to get around
1548     this is to have a separate variables for your embeddable loop, try to
1549     create it, and if that fails, use the normal loop for everything:</p>
1550     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1551     struct ev_loop *loop_lo = 0;
1552     struct ev_embed embed;
1553    
1554     // see if there is a chance of getting one that works
1555     // (remember that a flags value of 0 means autodetection)
1556     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1557     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1558     : 0;
1559    
1560     // if we got one, then embed it, otherwise default to loop_hi
1561     if (loop_lo)
1562     {
1563     ev_embed_init (&amp;embed, 0, loop_lo);
1564     ev_embed_start (loop_hi, &amp;embed);
1565     }
1566     else
1567     loop_lo = loop_hi;
1568    
1569     </pre>
1570     <dl>
1571 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1572     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1573 root 1.36 <dd>
1574 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1575     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1576     invoked automatically, otherwise it is the responsibility of the callback
1577     to invoke it (it will continue to be called until the sweep has been done,
1578     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1579     </dd>
1580     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1581     <dd>
1582     <p>Make a single, non-blocking sweep over the embedded loop. This works
1583     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1584     apropriate way for embedded loops.</p>
1585 root 1.36 </dd>
1586 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1587     <dd>
1588     <p>The embedded event loop.</p>
1589     </dd>
1590 root 1.36 </dl>
1591    
1592    
1593    
1594    
1595    
1596     </div>
1597 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1598     <div id="code_ev_fork_code_the_audacity_to_re-2">
1599     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1600     whoever is a good citizen cared to tell libev about it by calling
1601     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1602     event loop blocks next and before <code>ev_check</code> watchers are being called,
1603     and only in the child after the fork. If whoever good citizen calling
1604     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1605     handlers will be invoked, too, of course.</p>
1606     <dl>
1607     <dt>ev_fork_init (ev_signal *, callback)</dt>
1608     <dd>
1609     <p>Initialises and configures the fork watcher - it has no parameters of any
1610     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1611     believe me.</p>
1612     </dd>
1613     </dl>
1614    
1615    
1616    
1617    
1618    
1619     </div>
1620 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1621 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1622 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1623 root 1.1 <dl>
1624     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1625     <dd>
1626     <p>This function combines a simple timer and an I/O watcher, calls your
1627     callback on whichever event happens first and automatically stop both
1628     watchers. This is useful if you want to wait for a single event on an fd
1629 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1630 root 1.1 more watchers yourself.</p>
1631 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1632     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1633     <code>events</code> set will be craeted and started.</p>
1634 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1635 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1636     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1637     dubious value.</p>
1638     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1639 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1640 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1641     value passed to <code>ev_once</code>:</p>
1642 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1643     {
1644     if (revents &amp; EV_TIMEOUT)
1645 root 1.14 /* doh, nothing entered */;
1646 root 1.1 else if (revents &amp; EV_READ)
1647 root 1.14 /* stdin might have data for us, joy! */;
1648 root 1.1 }
1649    
1650 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1651 root 1.1
1652     </pre>
1653     </dd>
1654 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1655 root 1.1 <dd>
1656     <p>Feeds the given event set into the event loop, as if the specified event
1657 root 1.14 had happened for the specified watcher (which must be a pointer to an
1658     initialised but not necessarily started event watcher).</p>
1659 root 1.1 </dd>
1660 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1661 root 1.1 <dd>
1662 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1663     the given events it.</p>
1664 root 1.1 </dd>
1665 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1666 root 1.1 <dd>
1667 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1668     loop!).</p>
1669 root 1.1 </dd>
1670     </dl>
1671    
1672 root 1.35
1673    
1674    
1675    
1676 root 1.1 </div>
1677 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1678 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1679 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1680     emulate the internals of libevent, so here are some usage hints:</p>
1681     <dl>
1682     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1683     <dt>* The following members are fully supported: ev_base, ev_callback,
1684     ev_arg, ev_fd, ev_res, ev_events.</dt>
1685     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1686     maintained by libev, it does not work exactly the same way as in libevent (consider
1687     it a private API).</dt>
1688     <dt>* Priorities are not currently supported. Initialising priorities
1689     will fail and all watchers will have the same priority, even though there
1690     is an ev_pri field.</dt>
1691     <dt>* Other members are not supported.</dt>
1692     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1693     to use the libev header file and library.</dt>
1694     </dl>
1695 root 1.23
1696     </div>
1697 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1698 root 1.23 <div id="C_SUPPORT_CONTENT">
1699 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1700     you to use some convinience methods to start/stop watchers and also change
1701     the callback model to a model using method callbacks on objects.</p>
1702     <p>To use it,</p>
1703     <pre> #include &lt;ev++.h&gt;
1704    
1705     </pre>
1706     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1707     and puts all of its definitions (many of them macros) into the global
1708     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1709     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1710     <code>EV_MULTIPLICITY</code>.</p>
1711     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1712     <dl>
1713     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1714     <dd>
1715     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1716     macros from <cite>ev.h</cite>.</p>
1717     </dd>
1718     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1719     <dd>
1720     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1721     </dd>
1722     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1723     <dd>
1724     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1725     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1726     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1727     defines by many implementations.</p>
1728     <p>All of those classes have these methods:</p>
1729     <p>
1730     <dl>
1731     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1732     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1733     <dt>ev::TYPE::~TYPE</dt>
1734     <dd>
1735     <p>The constructor takes a pointer to an object and a method pointer to
1736     the event handler callback to call in this class. The constructor calls
1737     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1738     before starting it. If you do not specify a loop then the constructor
1739     automatically associates the default loop with this watcher.</p>
1740     <p>The destructor automatically stops the watcher if it is active.</p>
1741     </dd>
1742     <dt>w-&gt;set (struct ev_loop *)</dt>
1743     <dd>
1744     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1745     do this when the watcher is inactive (and not pending either).</p>
1746     </dd>
1747     <dt>w-&gt;set ([args])</dt>
1748     <dd>
1749     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1750     called at least once. Unlike the C counterpart, an active watcher gets
1751     automatically stopped and restarted.</p>
1752     </dd>
1753     <dt>w-&gt;start ()</dt>
1754     <dd>
1755     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1756     constructor already takes the loop.</p>
1757     </dd>
1758     <dt>w-&gt;stop ()</dt>
1759     <dd>
1760     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1761     </dd>
1762     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1763     <dd>
1764     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1765     <code>ev_TYPE_again</code> function.</p>
1766     </dd>
1767     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1768     <dd>
1769     <p>Invokes <code>ev_embed_sweep</code>.</p>
1770     </dd>
1771 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1772     <dd>
1773     <p>Invokes <code>ev_stat_stat</code>.</p>
1774     </dd>
1775 root 1.39 </dl>
1776     </p>
1777     </dd>
1778     </dl>
1779     <p>Example: Define a class with an IO and idle watcher, start one of them in
1780     the constructor.</p>
1781     <pre> class myclass
1782     {
1783     ev_io io; void io_cb (ev::io &amp;w, int revents);
1784     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1785    
1786     myclass ();
1787     }
1788    
1789     myclass::myclass (int fd)
1790     : io (this, &amp;myclass::io_cb),
1791     idle (this, &amp;myclass::idle_cb)
1792     {
1793     io.start (fd, ev::READ);
1794     }
1795    
1796 root 1.50
1797    
1798    
1799     </pre>
1800    
1801     </div>
1802 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1803 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1804     <p>Libev can be compiled with a variety of options, the most fundemantal is
1805     <code>EV_MULTIPLICITY</code>. This option determines wether (most) functions and
1806     callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1807     <p>To make it easier to write programs that cope with either variant, the
1808     following macros are defined:</p>
1809     <dl>
1810     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1811     <dd>
1812     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1813     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1814     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1815     <pre> ev_unref (EV_A);
1816     ev_timer_add (EV_A_ watcher);
1817     ev_loop (EV_A_ 0);
1818    
1819     </pre>
1820     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1821     which is often provided by the following macro.</p>
1822     </dd>
1823     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1824     <dd>
1825     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1826     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1827     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1828     <pre> // this is how ev_unref is being declared
1829     static void ev_unref (EV_P);
1830    
1831     // this is how you can declare your typical callback
1832     static void cb (EV_P_ ev_timer *w, int revents)
1833    
1834     </pre>
1835     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1836     suitable for use with <code>EV_A</code>.</p>
1837     </dd>
1838     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1839     <dd>
1840     <p>Similar to the other two macros, this gives you the value of the default
1841     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1842     </dd>
1843     </dl>
1844     <p>Example: Declare and initialise a check watcher, working regardless of
1845     wether multiple loops are supported or not.</p>
1846     <pre> static void
1847     check_cb (EV_P_ ev_timer *w, int revents)
1848     {
1849     ev_check_stop (EV_A_ w);
1850     }
1851    
1852     ev_check check;
1853     ev_check_init (&amp;check, check_cb);
1854     ev_check_start (EV_DEFAULT_ &amp;check);
1855     ev_loop (EV_DEFAULT_ 0);
1856    
1857    
1858    
1859    
1860 root 1.39 </pre>
1861 root 1.23
1862     </div>
1863 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1864 root 1.40 <div id="EMBEDDING_CONTENT">
1865     <p>Libev can (and often is) directly embedded into host
1866     applications. Examples of applications that embed it include the Deliantra
1867     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1868     and rxvt-unicode.</p>
1869     <p>The goal is to enable you to just copy the neecssary files into your
1870     source directory without having to change even a single line in them, so
1871     you can easily upgrade by simply copying (or having a checked-out copy of
1872     libev somewhere in your source tree).</p>
1873    
1874     </div>
1875     <h2 id="FILESETS">FILESETS</h2>
1876     <div id="FILESETS_CONTENT">
1877     <p>Depending on what features you need you need to include one or more sets of files
1878     in your app.</p>
1879    
1880     </div>
1881     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1882     <div id="CORE_EVENT_LOOP_CONTENT">
1883     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1884     configuration (no autoconf):</p>
1885     <pre> #define EV_STANDALONE 1
1886     #include &quot;ev.c&quot;
1887    
1888     </pre>
1889     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1890     single C source file only to provide the function implementations. To use
1891     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1892     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1893     where you can put other configuration options):</p>
1894     <pre> #define EV_STANDALONE 1
1895     #include &quot;ev.h&quot;
1896    
1897     </pre>
1898     <p>Both header files and implementation files can be compiled with a C++
1899     compiler (at least, thats a stated goal, and breakage will be treated
1900     as a bug).</p>
1901     <p>You need the following files in your source tree, or in a directory
1902     in your include path (e.g. in libev/ when using -Ilibev):</p>
1903     <pre> ev.h
1904     ev.c
1905     ev_vars.h
1906     ev_wrap.h
1907    
1908     ev_win32.c required on win32 platforms only
1909    
1910 root 1.44 ev_select.c only when select backend is enabled (which is by default)
1911 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1912     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1913     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1914     ev_port.c only when the solaris port backend is enabled (disabled by default)
1915    
1916     </pre>
1917     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1918 root 1.44 to compile this single file.</p>
1919 root 1.40
1920     </div>
1921     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1922     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1923     <p>To include the libevent compatibility API, also include:</p>
1924     <pre> #include &quot;event.c&quot;
1925    
1926     </pre>
1927     <p>in the file including <cite>ev.c</cite>, and:</p>
1928     <pre> #include &quot;event.h&quot;
1929    
1930     </pre>
1931     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1932     <p>You need the following additional files for this:</p>
1933     <pre> event.h
1934     event.c
1935    
1936     </pre>
1937    
1938     </div>
1939     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1940     <div id="AUTOCONF_SUPPORT_CONTENT">
1941     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1942     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1943 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1944     include <cite>config.h</cite> and configure itself accordingly.</p>
1945 root 1.40 <p>For this of course you need the m4 file:</p>
1946     <pre> libev.m4
1947    
1948     </pre>
1949    
1950     </div>
1951     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1952     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1953     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1954     before including any of its files. The default is not to build for multiplicity
1955     and only include the select backend.</p>
1956     <dl>
1957     <dt>EV_STANDALONE</dt>
1958     <dd>
1959     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1960     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1961     implementations for some libevent functions (such as logging, which is not
1962     supported). It will also not define any of the structs usually found in
1963     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1964     </dd>
1965     <dt>EV_USE_MONOTONIC</dt>
1966     <dd>
1967     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1968     monotonic clock option at both compiletime and runtime. Otherwise no use
1969     of the monotonic clock option will be attempted. If you enable this, you
1970     usually have to link against librt or something similar. Enabling it when
1971     the functionality isn't available is safe, though, althoguh you have
1972     to make sure you link against any libraries where the <code>clock_gettime</code>
1973     function is hiding in (often <cite>-lrt</cite>).</p>
1974     </dd>
1975     <dt>EV_USE_REALTIME</dt>
1976     <dd>
1977     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1978     realtime clock option at compiletime (and assume its availability at
1979     runtime if successful). Otherwise no use of the realtime clock option will
1980     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
1981     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
1982     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
1983     </dd>
1984     <dt>EV_USE_SELECT</dt>
1985     <dd>
1986     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
1987     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
1988     other method takes over, select will be it. Otherwise the select backend
1989     will not be compiled in.</p>
1990     </dd>
1991     <dt>EV_SELECT_USE_FD_SET</dt>
1992     <dd>
1993     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
1994     structure. This is useful if libev doesn't compile due to a missing
1995     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
1996     exotic systems. This usually limits the range of file descriptors to some
1997     low limit such as 1024 or might have other limitations (winsocket only
1998     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
1999     influence the size of the <code>fd_set</code> used.</p>
2000     </dd>
2001     <dt>EV_SELECT_IS_WINSOCKET</dt>
2002     <dd>
2003     <p>When defined to <code>1</code>, the select backend will assume that
2004     select/socket/connect etc. don't understand file descriptors but
2005     wants osf handles on win32 (this is the case when the select to
2006     be used is the winsock select). This means that it will call
2007     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2008     it is assumed that all these functions actually work on fds, even
2009     on win32. Should not be defined on non-win32 platforms.</p>
2010     </dd>
2011     <dt>EV_USE_POLL</dt>
2012     <dd>
2013     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2014     backend. Otherwise it will be enabled on non-win32 platforms. It
2015     takes precedence over select.</p>
2016     </dd>
2017     <dt>EV_USE_EPOLL</dt>
2018     <dd>
2019     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2020     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2021     otherwise another method will be used as fallback. This is the
2022     preferred backend for GNU/Linux systems.</p>
2023     </dd>
2024     <dt>EV_USE_KQUEUE</dt>
2025     <dd>
2026     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2027     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2028     otherwise another method will be used as fallback. This is the preferred
2029     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2030     supports some types of fds correctly (the only platform we found that
2031     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2032     not be used unless explicitly requested. The best way to use it is to find
2033 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2034 root 1.40 kqueue loop.</p>
2035     </dd>
2036     <dt>EV_USE_PORT</dt>
2037     <dd>
2038     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2039     10 port style backend. Its availability will be detected at runtime,
2040     otherwise another method will be used as fallback. This is the preferred
2041     backend for Solaris 10 systems.</p>
2042     </dd>
2043     <dt>EV_USE_DEVPOLL</dt>
2044     <dd>
2045     <p>reserved for future expansion, works like the USE symbols above.</p>
2046     </dd>
2047 root 1.57 <dt>EV_USE_INOTIFY</dt>
2048     <dd>
2049     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2050     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2051     be detected at runtime.</p>
2052     </dd>
2053 root 1.40 <dt>EV_H</dt>
2054     <dd>
2055     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2056     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2057     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2058     </dd>
2059     <dt>EV_CONFIG_H</dt>
2060     <dd>
2061     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2062     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2063     <code>EV_H</code>, above.</p>
2064     </dd>
2065     <dt>EV_EVENT_H</dt>
2066     <dd>
2067     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2068     of how the <cite>event.h</cite> header can be found.</p>
2069     </dd>
2070     <dt>EV_PROTOTYPES</dt>
2071     <dd>
2072     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2073     prototypes, but still define all the structs and other symbols. This is
2074     occasionally useful if you want to provide your own wrapper functions
2075     around libev functions.</p>
2076     </dd>
2077     <dt>EV_MULTIPLICITY</dt>
2078     <dd>
2079     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2080     will have the <code>struct ev_loop *</code> as first argument, and you can create
2081     additional independent event loops. Otherwise there will be no support
2082     for multiple event loops and there is no first event loop pointer
2083     argument. Instead, all functions act on the single default loop.</p>
2084     </dd>
2085 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2086     <dd>
2087     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2088     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2089     code.</p>
2090     </dd>
2091     <dt>EV_EMBED_ENABLE</dt>
2092     <dd>
2093     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2094     defined to be <code>0</code>, then they are not.</p>
2095     </dd>
2096     <dt>EV_STAT_ENABLE</dt>
2097     <dd>
2098     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2099     defined to be <code>0</code>, then they are not.</p>
2100     </dd>
2101 root 1.50 <dt>EV_FORK_ENABLE</dt>
2102     <dd>
2103     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2104     defined to be <code>0</code>, then they are not.</p>
2105     </dd>
2106 root 1.48 <dt>EV_MINIMAL</dt>
2107 root 1.40 <dd>
2108 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2109     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2110     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2111 root 1.40 </dd>
2112 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2113     <dd>
2114     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2115     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2116     than enough. If you need to manage thousands of children you might want to
2117 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2118     </dd>
2119     <dt>EV_INOTIFY_HASHSIZE</dt>
2120     <dd>
2121     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2122     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2123     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2124     watchers you might want to increase this value (<i>must</i> be a power of
2125     two).</p>
2126 root 1.51 </dd>
2127 root 1.40 <dt>EV_COMMON</dt>
2128     <dd>
2129     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2130     this macro to a something else you can include more and other types of
2131     members. You have to define it each time you include one of the files,
2132     though, and it must be identical each time.</p>
2133     <p>For example, the perl EV module uses something like this:</p>
2134     <pre> #define EV_COMMON \
2135     SV *self; /* contains this struct */ \
2136     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2137    
2138     </pre>
2139     </dd>
2140 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2141     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2142     <dt>ev_set_cb (ev, cb)</dt>
2143 root 1.40 <dd>
2144     <p>Can be used to change the callback member declaration in each watcher,
2145     and the way callbacks are invoked and set. Must expand to a struct member
2146     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2147     their default definitions. One possible use for overriding these is to
2148 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2149     method calls instead of plain function calls in C++.</p>
2150 root 1.40
2151     </div>
2152     <h2 id="EXAMPLES">EXAMPLES</h2>
2153     <div id="EXAMPLES_CONTENT">
2154     <p>For a real-world example of a program the includes libev
2155     verbatim, you can have a look at the EV perl module
2156     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2157     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2158     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2159     will be compiled. It is pretty complex because it provides its own header
2160     file.</p>
2161     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2162     that everybody includes and which overrides some autoconf choices:</p>
2163 root 1.41 <pre> #define EV_USE_POLL 0
2164     #define EV_MULTIPLICITY 0
2165     #define EV_PERIODICS 0
2166     #define EV_CONFIG_H &lt;config.h&gt;
2167 root 1.40
2168 root 1.41 #include &quot;ev++.h&quot;
2169 root 1.40
2170     </pre>
2171     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2172 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2173     #include &quot;ev.c&quot;
2174 root 1.40
2175 root 1.47
2176    
2177    
2178 root 1.40 </pre>
2179    
2180     </div>
2181 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2182 root 1.47 <div id="COMPLEXITIES_CONTENT">
2183     <p>In this section the complexities of (many of) the algorithms used inside
2184     libev will be explained. For complexity discussions about backends see the
2185     documentation for <code>ev_default_init</code>.</p>
2186     <p>
2187     <dl>
2188     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2189     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2190     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2191     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2192 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2193 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2194     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2195     <dt>Activating one watcher: O(1)</dt>
2196     </dl>
2197     </p>
2198    
2199    
2200    
2201    
2202    
2203     </div>
2204 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2205 root 1.1 <div id="AUTHOR_CONTENT">
2206 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2207 root 1.1
2208     </div>
2209     </div></body>
2210     </html>