ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.65
Committed: Fri Dec 7 18:09:40 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
CVS Tags: rel-1_71
Changes since 1.64: +4 -4 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.65 <meta name="created" content="Fri Dec 7 19:03:06 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124     <p>Libev is an event loop: you register interest in certain events (such as a
125     file descriptor being readable or a timeout occuring), and it will manage
126 root 1.4 these event sources and provide your program with events.</p>
127 root 1.1 <p>To do this, it must take more or less complete control over your process
128     (or thread) by executing the <i>event loop</i> handler, and will then
129     communicate events via a callback mechanism.</p>
130     <p>You register interest in certain events by registering so-called <i>event
131     watchers</i>, which are relatively small C structures you initialise with the
132     details of the event, and then hand it over to libev by <i>starting</i> the
133     watcher.</p>
134    
135     </div>
136 root 1.55 <h1 id="FEATURES">FEATURES</h1>
137 root 1.1 <div id="FEATURES_CONTENT">
138 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
139     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
140     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
141     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
142     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
143     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
144     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
145 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
146     file watchers (<code>ev_stat</code>) and even limited support for fork events
147     (<code>ev_fork</code>).</p>
148     <p>It also is quite fast (see this
149     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
150     for example).</p>
151 root 1.1
152     </div>
153 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
154 root 1.1 <div id="CONVENTIONS_CONTENT">
155 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
156     be described, which supports multiple event loops. For more info about
157     various configuration options please have a look at <strong>EMBED</strong> section in
158     this manual. If libev was configured without support for multiple event
159     loops, then all functions taking an initial argument of name <code>loop</code>
160     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
161 root 1.1
162     </div>
163 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
164 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
165 root 1.2 <p>Libev represents time as a single floating point number, representing the
166     (fractional) number of seconds since the (POSIX) epoch (somewhere near
167     the beginning of 1970, details are complicated, don't ask). This type is
168 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
169 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
170     it, you should treat it as such.</p>
171    
172 root 1.18 </div>
173 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
174 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
175 root 1.21 <p>These functions can be called anytime, even before initialising the
176     library in any way.</p>
177 root 1.1 <dl>
178     <dt>ev_tstamp ev_time ()</dt>
179     <dd>
180 root 1.28 <p>Returns the current time as libev would use it. Please note that the
181     <code>ev_now</code> function is usually faster and also often returns the timestamp
182     you actually want to know.</p>
183 root 1.1 </dd>
184     <dt>int ev_version_major ()</dt>
185     <dt>int ev_version_minor ()</dt>
186     <dd>
187     <p>You can find out the major and minor version numbers of the library
188     you linked against by calling the functions <code>ev_version_major</code> and
189     <code>ev_version_minor</code>. If you want, you can compare against the global
190     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
191     version of the library your program was compiled against.</p>
192 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
193 root 1.1 as this indicates an incompatible change. Minor versions are usually
194     compatible to older versions, so a larger minor version alone is usually
195     not a problem.</p>
196 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
197     version.</p>
198 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
199     ev_version_major () == EV_VERSION_MAJOR
200     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
201    
202     </pre>
203 root 1.1 </dd>
204 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
205     <dd>
206     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
207     value) compiled into this binary of libev (independent of their
208     availability on the system you are running on). See <code>ev_default_loop</code> for
209     a description of the set values.</p>
210 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
211     a must have and can we have a torrent of it please!!!11</p>
212     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
213     ev_supported_backends () &amp; EVBACKEND_EPOLL));
214    
215     </pre>
216 root 1.32 </dd>
217     <dt>unsigned int ev_recommended_backends ()</dt>
218     <dd>
219     <p>Return the set of all backends compiled into this binary of libev and also
220     recommended for this platform. This set is often smaller than the one
221     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
222     most BSDs and will not be autodetected unless you explicitly request it
223     (assuming you know what you are doing). This is the set of backends that
224 root 1.34 libev will probe for if you specify no backends explicitly.</p>
225 root 1.32 </dd>
226 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
227     <dd>
228     <p>Returns the set of backends that are embeddable in other event loops. This
229     is the theoretical, all-platform, value. To find which backends
230     might be supported on the current system, you would need to look at
231     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
232     recommended ones.</p>
233     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
234     </dd>
235 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
236 root 1.1 <dd>
237 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
238     semantics is identical - to the realloc C function). It is used to
239     allocate and free memory (no surprises here). If it returns zero when
240     memory needs to be allocated, the library might abort or take some
241     potentially destructive action. The default is your system realloc
242     function.</p>
243 root 1.1 <p>You could override this function in high-availability programs to, say,
244     free some memory if it cannot allocate memory, to use a special allocator,
245     or even to sleep a while and retry until some memory is available.</p>
246 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
247     retries).</p>
248 root 1.35 <pre> static void *
249 root 1.52 persistent_realloc (void *ptr, size_t size)
250 root 1.35 {
251     for (;;)
252     {
253     void *newptr = realloc (ptr, size);
254    
255     if (newptr)
256     return newptr;
257    
258     sleep (60);
259     }
260     }
261    
262     ...
263     ev_set_allocator (persistent_realloc);
264    
265     </pre>
266 root 1.1 </dd>
267     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
268     <dd>
269     <p>Set the callback function to call on a retryable syscall error (such
270     as failed select, poll, epoll_wait). The message is a printable string
271     indicating the system call or subsystem causing the problem. If this
272     callback is set, then libev will expect it to remedy the sitution, no
273 root 1.7 matter what, when it returns. That is, libev will generally retry the
274 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
275     (such as abort).</p>
276 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
277 root 1.35 <pre> static void
278     fatal_error (const char *msg)
279     {
280     perror (msg);
281     abort ();
282     }
283    
284     ...
285     ev_set_syserr_cb (fatal_error);
286    
287     </pre>
288 root 1.1 </dd>
289     </dl>
290    
291     </div>
292 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
293 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
294     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
295     types of such loops, the <i>default</i> loop, which supports signals and child
296     events, and dynamically created loops which do not.</p>
297     <p>If you use threads, a common model is to run the default event loop
298 root 1.18 in your main thread (or in a separate thread) and for each thread you
299 root 1.7 create, you also create another event loop. Libev itself does no locking
300     whatsoever, so if you mix calls to the same event loop in different
301     threads, make sure you lock (this is usually a bad idea, though, even if
302 root 1.9 done correctly, because it's hideous and inefficient).</p>
303 root 1.1 <dl>
304     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
305     <dd>
306     <p>This will initialise the default event loop if it hasn't been initialised
307     yet and return it. If the default loop could not be initialised, returns
308     false. If it already was initialised it simply returns it (and ignores the
309 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
310 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
311     function.</p>
312     <p>The flags argument can be used to specify special behaviour or specific
313 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
314     <p>The following flags are supported:</p>
315 root 1.1 <p>
316     <dl>
317 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
318 root 1.1 <dd>
319 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
320 root 1.1 thing, believe me).</p>
321     </dd>
322 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
323 root 1.1 <dd>
324 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
325     or setgid) then libev will <i>not</i> look at the environment variable
326     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
327     override the flags completely if it is found in the environment. This is
328     useful to try out specific backends to test their performance, or to work
329     around bugs.</p>
330 root 1.1 </dd>
331 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
332     <dd>
333     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
334     a fork, you can also make libev check for a fork in each iteration by
335     enabling this flag.</p>
336     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
337     and thus this might slow down your event loop if you do a lot of loop
338 root 1.64 iterations and little real work, but is usually not noticeable (on my
339 root 1.62 Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
340     without a syscall and thus <i>very</i> fast, but my Linux system also has
341     <code>pthread_atfork</code> which is even faster).</p>
342     <p>The big advantage of this flag is that you can forget about fork (and
343     forget about forgetting to tell libev about forking) when you use this
344     flag.</p>
345     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
346     environment variable.</p>
347     </dd>
348 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
349 root 1.29 <dd>
350     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
351     libev tries to roll its own fd_set with no limits on the number of fds,
352     but if that fails, expect a fairly low limit on the number of fds when
353     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
354     the fastest backend for a low number of fds.</p>
355     </dd>
356 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
357 root 1.29 <dd>
358     <p>And this is your standard poll(2) backend. It's more complicated than
359     select, but handles sparse fds better and has no artificial limit on the
360     number of fds you can use (except it will slow down considerably with a
361     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
362     </dd>
363 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
364 root 1.29 <dd>
365     <p>For few fds, this backend is a bit little slower than poll and select,
366     but it scales phenomenally better. While poll and select usually scale like
367     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
368     either O(1) or O(active_fds).</p>
369     <p>While stopping and starting an I/O watcher in the same iteration will
370     result in some caching, there is still a syscall per such incident
371     (because the fd could point to a different file description now), so its
372     best to avoid that. Also, dup()ed file descriptors might not work very
373     well if you register events for both fds.</p>
374 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
375     need to use non-blocking I/O or other means to avoid blocking when no data
376     (or space) is available.</p>
377 root 1.29 </dd>
378 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
379 root 1.29 <dd>
380     <p>Kqueue deserves special mention, as at the time of this writing, it
381     was broken on all BSDs except NetBSD (usually it doesn't work with
382     anything but sockets and pipes, except on Darwin, where of course its
383 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
384     unless you explicitly specify it explicitly in the flags (i.e. using
385     <code>EVBACKEND_KQUEUE</code>).</p>
386 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
387     kernel is more efficient (which says nothing about its actual speed, of
388     course). While starting and stopping an I/O watcher does not cause an
389     extra syscall as with epoll, it still adds up to four event changes per
390     incident, so its best to avoid that.</p>
391     </dd>
392 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
393 root 1.29 <dd>
394     <p>This is not implemented yet (and might never be).</p>
395     </dd>
396 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
397 root 1.29 <dd>
398     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
399     it's really slow, but it still scales very well (O(active_fds)).</p>
400 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
401     notifications, so you need to use non-blocking I/O or other means to avoid
402     blocking when no data (or space) is available.</p>
403 root 1.29 </dd>
404 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
405 root 1.29 <dd>
406 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
407     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
408 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
409 root 1.1 </dd>
410     </dl>
411     </p>
412 root 1.29 <p>If one or more of these are ored into the flags value, then only these
413     backends will be tried (in the reverse order as given here). If none are
414     specified, most compiled-in backend will be tried, usually in reverse
415     order of their flag values :)</p>
416 root 1.34 <p>The most typical usage is like this:</p>
417     <pre> if (!ev_default_loop (0))
418     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
419    
420     </pre>
421     <p>Restrict libev to the select and poll backends, and do not allow
422     environment settings to be taken into account:</p>
423     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
424    
425     </pre>
426     <p>Use whatever libev has to offer, but make sure that kqueue is used if
427     available (warning, breaks stuff, best use only with your own private
428     event loop and only if you know the OS supports your types of fds):</p>
429     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
430    
431     </pre>
432 root 1.1 </dd>
433     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
434     <dd>
435     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
436     always distinct from the default loop. Unlike the default loop, it cannot
437     handle signal and child watchers, and attempts to do so will be greeted by
438     undefined behaviour (or a failed assertion if assertions are enabled).</p>
439 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
440 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
441     if (!epoller)
442     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
443    
444     </pre>
445 root 1.1 </dd>
446     <dt>ev_default_destroy ()</dt>
447     <dd>
448     <p>Destroys the default loop again (frees all memory and kernel state
449 root 1.38 etc.). None of the active event watchers will be stopped in the normal
450     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
451     responsibility to either stop all watchers cleanly yoursef <i>before</i>
452     calling this function, or cope with the fact afterwards (which is usually
453     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
454     for example).</p>
455 root 1.1 </dd>
456     <dt>ev_loop_destroy (loop)</dt>
457     <dd>
458     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
459     earlier call to <code>ev_loop_new</code>.</p>
460     </dd>
461     <dt>ev_default_fork ()</dt>
462     <dd>
463     <p>This function reinitialises the kernel state for backends that have
464     one. Despite the name, you can call it anytime, but it makes most sense
465     after forking, in either the parent or child process (or both, but that
466     again makes little sense).</p>
467 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
468     only if you want to use the event library in both processes. If you just
469     fork+exec, you don't have to call it.</p>
470 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
471 root 1.1 it just in case after a fork. To make this easy, the function will fit in
472     quite nicely into a call to <code>pthread_atfork</code>:</p>
473     <pre> pthread_atfork (0, 0, ev_default_fork);
474    
475     </pre>
476 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
477     without calling this function, so if you force one of those backends you
478     do not need to care.</p>
479 root 1.1 </dd>
480     <dt>ev_loop_fork (loop)</dt>
481     <dd>
482     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
483     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
484     after fork, and how you do this is entirely your own problem.</p>
485     </dd>
486 root 1.64 <dt>unsigned int ev_loop_count (loop)</dt>
487     <dd>
488     <p>Returns the count of loop iterations for the loop, which is identical to
489     the number of times libev did poll for new events. It starts at <code>0</code> and
490     happily wraps around with enough iterations.</p>
491     <p>This value can sometimes be useful as a generation counter of sorts (it
492     &quot;ticks&quot; the number of loop iterations), as it roughly corresponds with
493     <code>ev_prepare</code> and <code>ev_check</code> calls.</p>
494     </dd>
495 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
496 root 1.1 <dd>
497 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
498 root 1.1 use.</p>
499     </dd>
500 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
501 root 1.1 <dd>
502     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
503 root 1.35 received events and started processing them. This timestamp does not
504     change as long as callbacks are being processed, and this is also the base
505     time used for relative timers. You can treat it as the timestamp of the
506     event occuring (or more correctly, libev finding out about it).</p>
507 root 1.1 </dd>
508     <dt>ev_loop (loop, int flags)</dt>
509     <dd>
510     <p>Finally, this is it, the event handler. This function usually is called
511     after you initialised all your watchers and you want to start handling
512     events.</p>
513 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
514     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
515 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
516     relying on all watchers to be stopped when deciding when a program has
517     finished (especially in interactive programs), but having a program that
518     automatically loops as long as it has to and no longer by virtue of
519     relying on its watchers stopping correctly is a thing of beauty.</p>
520 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
521     those events and any outstanding ones, but will not block your process in
522 root 1.9 case there are no events and will return after one iteration of the loop.</p>
523 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
524     neccessary) and will handle those and any outstanding ones. It will block
525 root 1.9 your process until at least one new event arrives, and will return after
526 root 1.34 one iteration of the loop. This is useful if you are waiting for some
527     external event in conjunction with something not expressible using other
528     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
529     usually a better approach for this kind of thing.</p>
530     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
531     <pre> * If there are no active watchers (reference count is zero), return.
532     - Queue prepare watchers and then call all outstanding watchers.
533     - If we have been forked, recreate the kernel state.
534     - Update the kernel state with all outstanding changes.
535     - Update the &quot;event loop time&quot;.
536     - Calculate for how long to block.
537     - Block the process, waiting for any events.
538     - Queue all outstanding I/O (fd) events.
539     - Update the &quot;event loop time&quot; and do time jump handling.
540     - Queue all outstanding timers.
541     - Queue all outstanding periodics.
542     - If no events are pending now, queue all idle watchers.
543     - Queue all check watchers.
544     - Call all queued watchers in reverse order (i.e. check watchers first).
545     Signals and child watchers are implemented as I/O watchers, and will
546     be handled here by queueing them when their watcher gets executed.
547     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
548     were used, return, otherwise continue with step *.
549 root 1.28
550     </pre>
551 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
552 root 1.35 anymore.</p>
553     <pre> ... queue jobs here, make sure they register event watchers as long
554     ... as they still have work to do (even an idle watcher will do..)
555     ev_loop (my_loop, 0);
556     ... jobs done. yeah!
557    
558     </pre>
559 root 1.1 </dd>
560     <dt>ev_unloop (loop, how)</dt>
561     <dd>
562 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
563     has processed all outstanding events). The <code>how</code> argument must be either
564 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
565 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
566 root 1.1 </dd>
567     <dt>ev_ref (loop)</dt>
568     <dt>ev_unref (loop)</dt>
569     <dd>
570 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
571     loop: Every watcher keeps one reference, and as long as the reference
572     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
573     a watcher you never unregister that should not keep <code>ev_loop</code> from
574     returning, ev_unref() after starting, and ev_ref() before stopping it. For
575     example, libev itself uses this for its internal signal pipe: It is not
576     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
577     no event watchers registered by it are active. It is also an excellent
578     way to do this for generic recurring timers or from within third-party
579     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
580 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
581 root 1.35 running when nothing else is active.</p>
582 root 1.54 <pre> struct ev_signal exitsig;
583 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
584 root 1.54 ev_signal_start (loop, &amp;exitsig);
585     evf_unref (loop);
586 root 1.35
587     </pre>
588 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
589     <pre> ev_ref (loop);
590     ev_signal_stop (loop, &amp;exitsig);
591 root 1.35
592     </pre>
593 root 1.1 </dd>
594     </dl>
595    
596 root 1.43
597    
598    
599    
600 root 1.1 </div>
601 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
602 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
603     <p>A watcher is a structure that you create and register to record your
604     interest in some event. For instance, if you want to wait for STDIN to
605 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
606 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
607     {
608     ev_io_stop (w);
609     ev_unloop (loop, EVUNLOOP_ALL);
610     }
611    
612     struct ev_loop *loop = ev_default_loop (0);
613     struct ev_io stdin_watcher;
614     ev_init (&amp;stdin_watcher, my_cb);
615     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
616     ev_io_start (loop, &amp;stdin_watcher);
617     ev_loop (loop, 0);
618    
619     </pre>
620     <p>As you can see, you are responsible for allocating the memory for your
621     watcher structures (and it is usually a bad idea to do this on the stack,
622     although this can sometimes be quite valid).</p>
623     <p>Each watcher structure must be initialised by a call to <code>ev_init
624     (watcher *, callback)</code>, which expects a callback to be provided. This
625     callback gets invoked each time the event occurs (or, in the case of io
626     watchers, each time the event loop detects that the file descriptor given
627     is readable and/or writable).</p>
628     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
629     with arguments specific to this watcher type. There is also a macro
630     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
631     (watcher *, callback, ...)</code>.</p>
632     <p>To make the watcher actually watch out for events, you have to start it
633     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
634     *)</code>), and you can stop watching for events at any time by calling the
635     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
636     <p>As long as your watcher is active (has been started but not stopped) you
637     must not touch the values stored in it. Most specifically you must never
638 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
639 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
640     registered watcher structure as second, and a bitset of received events as
641     third argument.</p>
642 root 1.14 <p>The received events usually include a single bit per event type received
643 root 1.1 (you can receive multiple events at the same time). The possible bit masks
644     are:</p>
645     <dl>
646 root 1.10 <dt><code>EV_READ</code></dt>
647     <dt><code>EV_WRITE</code></dt>
648 root 1.1 <dd>
649 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
650 root 1.1 writable.</p>
651     </dd>
652 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
653 root 1.1 <dd>
654 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
655 root 1.1 </dd>
656 root 1.10 <dt><code>EV_PERIODIC</code></dt>
657 root 1.1 <dd>
658 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
659 root 1.1 </dd>
660 root 1.10 <dt><code>EV_SIGNAL</code></dt>
661 root 1.1 <dd>
662 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
663 root 1.1 </dd>
664 root 1.10 <dt><code>EV_CHILD</code></dt>
665 root 1.1 <dd>
666 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
667 root 1.1 </dd>
668 root 1.48 <dt><code>EV_STAT</code></dt>
669     <dd>
670     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
671     </dd>
672 root 1.10 <dt><code>EV_IDLE</code></dt>
673 root 1.1 <dd>
674 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
675 root 1.1 </dd>
676 root 1.10 <dt><code>EV_PREPARE</code></dt>
677     <dt><code>EV_CHECK</code></dt>
678 root 1.1 <dd>
679 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
680     to gather new events, and all <code>ev_check</code> watchers are invoked just after
681 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
682     received events. Callbacks of both watcher types can start and stop as
683     many watchers as they want, and all of them will be taken into account
684 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
685 root 1.1 <code>ev_loop</code> from blocking).</p>
686     </dd>
687 root 1.50 <dt><code>EV_EMBED</code></dt>
688     <dd>
689     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
690     </dd>
691     <dt><code>EV_FORK</code></dt>
692     <dd>
693     <p>The event loop has been resumed in the child process after fork (see
694     <code>ev_fork</code>).</p>
695     </dd>
696 root 1.10 <dt><code>EV_ERROR</code></dt>
697 root 1.1 <dd>
698     <p>An unspecified error has occured, the watcher has been stopped. This might
699     happen because the watcher could not be properly started because libev
700     ran out of memory, a file descriptor was found to be closed or any other
701     problem. You best act on it by reporting the problem and somehow coping
702     with the watcher being stopped.</p>
703     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
704     for example it might indicate that a fd is readable or writable, and if
705     your callbacks is well-written it can just attempt the operation and cope
706     with the error from read() or write(). This will not work in multithreaded
707     programs, though, so beware.</p>
708     </dd>
709     </dl>
710    
711     </div>
712 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
713     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
714 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
715     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
716     <dl>
717     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
718     <dd>
719     <p>This macro initialises the generic portion of a watcher. The contents
720     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
721     the generic parts of the watcher are initialised, you <i>need</i> to call
722     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
723     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
724     which rolls both calls into one.</p>
725     <p>You can reinitialise a watcher at any time as long as it has been stopped
726     (or never started) and there are no pending events outstanding.</p>
727 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
728 root 1.37 int revents)</code>.</p>
729     </dd>
730     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
731     <dd>
732     <p>This macro initialises the type-specific parts of a watcher. You need to
733     call <code>ev_init</code> at least once before you call this macro, but you can
734     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
735     macro on a watcher that is active (it can be pending, however, which is a
736     difference to the <code>ev_init</code> macro).</p>
737     <p>Although some watcher types do not have type-specific arguments
738     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
739     </dd>
740     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
741     <dd>
742     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
743     calls into a single call. This is the most convinient method to initialise
744     a watcher. The same limitations apply, of course.</p>
745     </dd>
746     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
747     <dd>
748     <p>Starts (activates) the given watcher. Only active watchers will receive
749     events. If the watcher is already active nothing will happen.</p>
750     </dd>
751     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
752     <dd>
753     <p>Stops the given watcher again (if active) and clears the pending
754     status. It is possible that stopped watchers are pending (for example,
755     non-repeating timers are being stopped when they become pending), but
756     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
757     you want to free or reuse the memory used by the watcher it is therefore a
758     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
759     </dd>
760     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
761     <dd>
762     <p>Returns a true value iff the watcher is active (i.e. it has been started
763     and not yet been stopped). As long as a watcher is active you must not modify
764     it.</p>
765     </dd>
766     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
767     <dd>
768     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
769     events but its callback has not yet been invoked). As long as a watcher
770     is pending (but not active) you must not call an init function on it (but
771     <code>ev_TYPE_set</code> is safe) and you must make sure the watcher is available to
772     libev (e.g. you cnanot <code>free ()</code> it).</p>
773     </dd>
774 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
775 root 1.37 <dd>
776     <p>Returns the callback currently set on the watcher.</p>
777     </dd>
778     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
779     <dd>
780     <p>Change the callback. You can change the callback at virtually any time
781     (modulo threads).</p>
782     </dd>
783 root 1.64 <dt>ev_set_priority (ev_TYPE *watcher, priority)</dt>
784     <dt>int ev_priority (ev_TYPE *watcher)</dt>
785     <dd>
786     <p>Set and query the priority of the watcher. The priority is a small
787     integer between <code>EV_MAXPRI</code> (default: <code>2</code>) and <code>EV_MINPRI</code>
788     (default: <code>-2</code>). Pending watchers with higher priority will be invoked
789     before watchers with lower priority, but priority will not keep watchers
790     from being executed (except for <code>ev_idle</code> watchers).</p>
791     <p>This means that priorities are <i>only</i> used for ordering callback
792     invocation after new events have been received. This is useful, for
793     example, to reduce latency after idling, or more often, to bind two
794     watchers on the same event and make sure one is called first.</p>
795     <p>If you need to suppress invocation when higher priority events are pending
796     you need to look at <code>ev_idle</code> watchers, which provide this functionality.</p>
797     <p>The default priority used by watchers when no priority has been set is
798     always <code>0</code>, which is supposed to not be too high and not be too low :).</p>
799     <p>Setting a priority outside the range of <code>EV_MINPRI</code> to <code>EV_MAXPRI</code> is
800     fine, as long as you do not mind that the priority value you query might
801     or might not have been adjusted to be within valid range.</p>
802     </dd>
803 root 1.37 </dl>
804    
805    
806    
807    
808    
809     </div>
810 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
811     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
812     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
813 root 1.14 and read at any time, libev will completely ignore it. This can be used
814 root 1.1 to associate arbitrary data with your watcher. If you need more data and
815     don't want to allocate memory and store a pointer to it in that data
816     member, you can also &quot;subclass&quot; the watcher type and provide your own
817     data:</p>
818     <pre> struct my_io
819     {
820     struct ev_io io;
821     int otherfd;
822     void *somedata;
823     struct whatever *mostinteresting;
824     }
825    
826     </pre>
827     <p>And since your callback will be called with a pointer to the watcher, you
828     can cast it back to your own type:</p>
829     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
830     {
831     struct my_io *w = (struct my_io *)w_;
832     ...
833     }
834    
835     </pre>
836 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
837     instead have been omitted.</p>
838     <p>Another common scenario is having some data structure with multiple
839     watchers:</p>
840     <pre> struct my_biggy
841     {
842     int some_data;
843     ev_timer t1;
844     ev_timer t2;
845     }
846 root 1.1
847 root 1.56 </pre>
848     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
849     you need to use <code>offsetof</code>:</p>
850     <pre> #include &lt;stddef.h&gt;
851 root 1.1
852 root 1.56 static void
853     t1_cb (EV_P_ struct ev_timer *w, int revents)
854     {
855     struct my_biggy big = (struct my_biggy *
856     (((char *)w) - offsetof (struct my_biggy, t1));
857     }
858    
859     static void
860     t2_cb (EV_P_ struct ev_timer *w, int revents)
861     {
862     struct my_biggy big = (struct my_biggy *
863     (((char *)w) - offsetof (struct my_biggy, t2));
864     }
865 root 1.1
866    
867    
868 root 1.56
869     </pre>
870    
871 root 1.1 </div>
872 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
873 root 1.1 <div id="WATCHER_TYPES_CONTENT">
874     <p>This section describes each watcher in detail, but will not repeat
875 root 1.48 information given in the last section. Any initialisation/set macros,
876     functions and members specific to the watcher type are explained.</p>
877     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
878     while the watcher is active, you can look at the member and expect some
879     sensible content, but you must not modify it (you can modify it while the
880     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
881     means you can expect it to have some sensible content while the watcher
882     is active, but you can also modify it. Modifying it may not do something
883     sensible or take immediate effect (or do anything at all), but libev will
884     not crash or malfunction in any way.</p>
885 root 1.1
886 root 1.35
887    
888    
889    
890 root 1.1 </div>
891 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
892 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
893 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
894 root 1.43 in each iteration of the event loop, or, more precisely, when reading
895     would not block the process and writing would at least be able to write
896     some data. This behaviour is called level-triggering because you keep
897     receiving events as long as the condition persists. Remember you can stop
898     the watcher if you don't want to act on the event and neither want to
899     receive future events.</p>
900 root 1.25 <p>In general you can register as many read and/or write event watchers per
901 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
902     descriptors to non-blocking mode is also usually a good idea (but not
903     required if you know what you are doing).</p>
904     <p>You have to be careful with dup'ed file descriptors, though. Some backends
905     (the linux epoll backend is a notable example) cannot handle dup'ed file
906     descriptors correctly if you register interest in two or more fds pointing
907 root 1.43 to the same underlying file/socket/etc. description (that is, they share
908 root 1.26 the same underlying &quot;file open&quot;).</p>
909 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
910 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
911     <code>EVBACKEND_POLL</code>).</p>
912 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
913     receive &quot;spurious&quot; readyness notifications, that is your callback might
914     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
915     because there is no data. Not only are some backends known to create a
916     lot of those (for example solaris ports), it is very easy to get into
917     this situation even with a relatively standard program structure. Thus
918     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
919     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
920     <p>If you cannot run the fd in non-blocking mode (for example you should not
921     play around with an Xlib connection), then you have to seperately re-test
922 root 1.65 whether a file descriptor is really ready with a known-to-be good interface
923 root 1.43 such as poll (fortunately in our Xlib example, Xlib already does this on
924     its own, so its quite safe to use).</p>
925 root 1.1 <dl>
926     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
927     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
928     <dd>
929 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
930     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
931     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
932 root 1.1 </dd>
933 root 1.48 <dt>int fd [read-only]</dt>
934     <dd>
935     <p>The file descriptor being watched.</p>
936     </dd>
937     <dt>int events [read-only]</dt>
938     <dd>
939     <p>The events being watched.</p>
940     </dd>
941 root 1.1 </dl>
942 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
943 root 1.35 readable, but only once. Since it is likely line-buffered, you could
944 root 1.54 attempt to read a whole line in the callback.</p>
945 root 1.35 <pre> static void
946     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
947     {
948     ev_io_stop (loop, w);
949     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
950     }
951    
952     ...
953     struct ev_loop *loop = ev_default_init (0);
954     struct ev_io stdin_readable;
955     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
956     ev_io_start (loop, &amp;stdin_readable);
957     ev_loop (loop, 0);
958    
959    
960    
961    
962     </pre>
963 root 1.1
964     </div>
965 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
966 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
967 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
968     given time, and optionally repeating in regular intervals after that.</p>
969     <p>The timers are based on real time, that is, if you register an event that
970 root 1.25 times out after an hour and you reset your system clock to last years
971 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
972 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
973 root 1.1 monotonic clock option helps a lot here).</p>
974 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
975     time. This is usually the right thing as this timestamp refers to the time
976 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
977     you suspect event processing to be delayed and you <i>need</i> to base the timeout
978 root 1.25 on the current time, use something like this to adjust for this:</p>
979 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
980    
981     </pre>
982 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
983     but if multiple timers become ready during the same loop iteration then
984     order of execution is undefined.</p>
985 root 1.1 <dl>
986     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
987     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
988     <dd>
989     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
990     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
991     timer will automatically be configured to trigger again <code>repeat</code> seconds
992     later, again, and again, until stopped manually.</p>
993     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
994     configure a timer to trigger every 10 seconds, then it will trigger at
995     exactly 10 second intervals. If, however, your program cannot keep up with
996 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
997 root 1.1 timer will not fire more than once per event loop iteration.</p>
998     </dd>
999     <dt>ev_timer_again (loop)</dt>
1000     <dd>
1001     <p>This will act as if the timer timed out and restart it again if it is
1002     repeating. The exact semantics are:</p>
1003 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
1004     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
1005     <p>If the timer is repeating, either start it if necessary (with the
1006     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
1007 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
1008 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
1009     timeout, that is, you want to be called when there have been, say, 60
1010     seconds of inactivity on the socket. The easiest way to do this is to
1011     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
1012 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
1013     you go into an idle state where you do not expect data to travel on the
1014 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
1015     automatically restart it if need be.</p>
1016     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
1017     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
1018 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
1019     ev_timer_again (loop, timer);
1020     ...
1021     timer-&gt;again = 17.;
1022     ev_timer_again (loop, timer);
1023     ...
1024     timer-&gt;again = 10.;
1025     ev_timer_again (loop, timer);
1026    
1027     </pre>
1028 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1029     you want to modify its timeout value.</p>
1030 root 1.48 </dd>
1031     <dt>ev_tstamp repeat [read-write]</dt>
1032     <dd>
1033     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1034     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1035     which is also when any modifications are taken into account.</p>
1036 root 1.1 </dd>
1037     </dl>
1038 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1039 root 1.35 <pre> static void
1040     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1041     {
1042     .. one minute over, w is actually stopped right here
1043     }
1044    
1045     struct ev_timer mytimer;
1046     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1047     ev_timer_start (loop, &amp;mytimer);
1048    
1049     </pre>
1050 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1051 root 1.35 inactivity.</p>
1052     <pre> static void
1053     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1054     {
1055     .. ten seconds without any activity
1056     }
1057    
1058     struct ev_timer mytimer;
1059     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1060     ev_timer_again (&amp;mytimer); /* start timer */
1061     ev_loop (loop, 0);
1062    
1063     // and in some piece of code that gets executed on any &quot;activity&quot;:
1064     // reset the timeout to start ticking again at 10 seconds
1065     ev_timer_again (&amp;mytimer);
1066    
1067    
1068    
1069    
1070     </pre>
1071 root 1.1
1072     </div>
1073 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1074 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1075 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1076     (and unfortunately a bit complex).</p>
1077 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1078 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1079     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1080 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1081     + 10.</code>) and then reset your system clock to the last year, then it will
1082 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1083 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1084     again).</p>
1085     <p>They can also be used to implement vastly more complex timers, such as
1086     triggering an event on eahc midnight, local time.</p>
1087 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1088     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1089     during the same loop iteration then order of execution is undefined.</p>
1090 root 1.1 <dl>
1091     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1092     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1093     <dd>
1094     <p>Lots of arguments, lets sort it out... There are basically three modes of
1095     operation, and we will explain them from simplest to complex:</p>
1096     <p>
1097     <dl>
1098     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1099     <dd>
1100     <p>In this configuration the watcher triggers an event at the wallclock time
1101     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1102     that is, if it is to be run at January 1st 2011 then it will run when the
1103     system time reaches or surpasses this time.</p>
1104     </dd>
1105     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1106     <dd>
1107     <p>In this mode the watcher will always be scheduled to time out at the next
1108     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1109     of any time jumps.</p>
1110     <p>This can be used to create timers that do not drift with respect to system
1111     time:</p>
1112     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1113    
1114     </pre>
1115     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1116     but only that the the callback will be called when the system time shows a
1117 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1118 root 1.1 by 3600.</p>
1119     <p>Another way to think about it (for the mathematically inclined) is that
1120 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1121 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1122     </dd>
1123     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1124     <dd>
1125     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1126     ignored. Instead, each time the periodic watcher gets scheduled, the
1127     reschedule callback will be called with the watcher as first, and the
1128     current time as second argument.</p>
1129 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1130     ever, or make any event loop modifications</i>. If you need to stop it,
1131     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1132     starting a prepare watcher).</p>
1133 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1134     ev_tstamp now)</code>, e.g.:</p>
1135 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1136     {
1137     return now + 60.;
1138     }
1139    
1140     </pre>
1141     <p>It must return the next time to trigger, based on the passed time value
1142     (that is, the lowest time value larger than to the second argument). It
1143     will usually be called just before the callback will be triggered, but
1144     might be called at other times, too.</p>
1145 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1146 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1147 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1148     triggers on each midnight, local time. To do this, you would calculate the
1149 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1150     you do this is, again, up to you (but it is not trivial, which is the main
1151     reason I omitted it as an example).</p>
1152 root 1.1 </dd>
1153     </dl>
1154     </p>
1155     </dd>
1156     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1157     <dd>
1158     <p>Simply stops and restarts the periodic watcher again. This is only useful
1159     when you changed some parameters or the reschedule callback would return
1160     a different time than the last time it was called (e.g. in a crond like
1161     program when the crontabs have changed).</p>
1162     </dd>
1163 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1164     <dd>
1165     <p>The current interval value. Can be modified any time, but changes only
1166     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1167     called.</p>
1168     </dd>
1169     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1170     <dd>
1171     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1172     switched off. Can be changed any time, but changes only take effect when
1173     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1174     </dd>
1175 root 1.1 </dl>
1176 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1177 root 1.35 system clock is divisible by 3600. The callback invocation times have
1178     potentially a lot of jittering, but good long-term stability.</p>
1179     <pre> static void
1180     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1181     {
1182     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1183     }
1184    
1185     struct ev_periodic hourly_tick;
1186     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1187     ev_periodic_start (loop, &amp;hourly_tick);
1188    
1189     </pre>
1190 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1191 root 1.35 <pre> #include &lt;math.h&gt;
1192    
1193     static ev_tstamp
1194     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1195     {
1196     return fmod (now, 3600.) + 3600.;
1197     }
1198    
1199     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1200    
1201     </pre>
1202 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1203 root 1.35 <pre> struct ev_periodic hourly_tick;
1204     ev_periodic_init (&amp;hourly_tick, clock_cb,
1205     fmod (ev_now (loop), 3600.), 3600., 0);
1206     ev_periodic_start (loop, &amp;hourly_tick);
1207    
1208    
1209    
1210    
1211     </pre>
1212 root 1.1
1213     </div>
1214 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1215 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1216 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1217     signal one or more times. Even though signals are very asynchronous, libev
1218 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1219 root 1.1 normal event processing, like any other event.</p>
1220 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1221 root 1.1 first watcher gets started will libev actually register a signal watcher
1222     with the kernel (thus it coexists with your own signal handlers as long
1223     as you don't register any with libev). Similarly, when the last signal
1224     watcher for a signal is stopped libev will reset the signal handler to
1225     SIG_DFL (regardless of what it was set to before).</p>
1226     <dl>
1227     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1228     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1229     <dd>
1230     <p>Configures the watcher to trigger on the given signal number (usually one
1231     of the <code>SIGxxx</code> constants).</p>
1232     </dd>
1233 root 1.48 <dt>int signum [read-only]</dt>
1234     <dd>
1235     <p>The signal the watcher watches out for.</p>
1236     </dd>
1237 root 1.1 </dl>
1238    
1239 root 1.36
1240    
1241    
1242    
1243 root 1.1 </div>
1244 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1245     <div id="code_ev_child_code_watch_out_for_pro-2">
1246 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1247     some child status changes (most typically when a child of yours dies).</p>
1248     <dl>
1249     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1250     <dt>ev_child_set (ev_child *, int pid)</dt>
1251     <dd>
1252     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1253     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1254     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1255 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1256     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1257     process causing the status change.</p>
1258 root 1.1 </dd>
1259 root 1.48 <dt>int pid [read-only]</dt>
1260     <dd>
1261     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1262     </dd>
1263     <dt>int rpid [read-write]</dt>
1264     <dd>
1265     <p>The process id that detected a status change.</p>
1266     </dd>
1267     <dt>int rstatus [read-write]</dt>
1268     <dd>
1269     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1270     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1271     </dd>
1272 root 1.1 </dl>
1273 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1274 root 1.35 <pre> static void
1275     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1276     {
1277     ev_unloop (loop, EVUNLOOP_ALL);
1278     }
1279    
1280     struct ev_signal signal_watcher;
1281     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1282     ev_signal_start (loop, &amp;sigint_cb);
1283    
1284    
1285    
1286    
1287     </pre>
1288 root 1.1
1289     </div>
1290 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1291     <div id="code_ev_stat_code_did_the_file_attri-2">
1292     <p>This watches a filesystem path for attribute changes. That is, it calls
1293     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1294     compared to the last time, invoking the callback if it did.</p>
1295     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1296     not exist&quot; is a status change like any other. The condition &quot;path does
1297     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1298     otherwise always forced to be at least one) and all the other fields of
1299     the stat buffer having unspecified contents.</p>
1300 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1301     relative and your working directory changes, the behaviour is undefined.</p>
1302 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1303 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1304 root 1.48 can specify a recommended polling interval for this case. If you specify
1305     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1306     unspecified default</i> value will be used (which you can expect to be around
1307     five seconds, although this might change dynamically). Libev will also
1308     impose a minimum interval which is currently around <code>0.1</code>, but thats
1309     usually overkill.</p>
1310     <p>This watcher type is not meant for massive numbers of stat watchers,
1311     as even with OS-supported change notifications, this can be
1312     resource-intensive.</p>
1313 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1314     implemented (implementing kqueue support is left as an exercise for the
1315     reader). Inotify will be used to give hints only and should not change the
1316     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1317     to fall back to regular polling again even with inotify, but changes are
1318     usually detected immediately, and if the file exists there will be no
1319     polling.</p>
1320 root 1.48 <dl>
1321     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1322     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1323     <dd>
1324     <p>Configures the watcher to wait for status changes of the given
1325     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1326     be detected and should normally be specified as <code>0</code> to let libev choose
1327     a suitable value. The memory pointed to by <code>path</code> must point to the same
1328     path for as long as the watcher is active.</p>
1329     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1330     relative to the attributes at the time the watcher was started (or the
1331     last change was detected).</p>
1332     </dd>
1333     <dt>ev_stat_stat (ev_stat *)</dt>
1334     <dd>
1335     <p>Updates the stat buffer immediately with new values. If you change the
1336     watched path in your callback, you could call this fucntion to avoid
1337     detecting this change (while introducing a race condition). Can also be
1338     useful simply to find out the new values.</p>
1339     </dd>
1340     <dt>ev_statdata attr [read-only]</dt>
1341     <dd>
1342     <p>The most-recently detected attributes of the file. Although the type is of
1343     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1344     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1345     was some error while <code>stat</code>ing the file.</p>
1346     </dd>
1347     <dt>ev_statdata prev [read-only]</dt>
1348     <dd>
1349     <p>The previous attributes of the file. The callback gets invoked whenever
1350     <code>prev</code> != <code>attr</code>.</p>
1351     </dd>
1352     <dt>ev_tstamp interval [read-only]</dt>
1353     <dd>
1354     <p>The specified interval.</p>
1355     </dd>
1356     <dt>const char *path [read-only]</dt>
1357     <dd>
1358     <p>The filesystem path that is being watched.</p>
1359     </dd>
1360     </dl>
1361     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1362     <pre> static void
1363     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1364     {
1365     /* /etc/passwd changed in some way */
1366     if (w-&gt;attr.st_nlink)
1367     {
1368     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1369     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1370     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1371     }
1372     else
1373     /* you shalt not abuse printf for puts */
1374     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1375     &quot;if this is windows, they already arrived\n&quot;);
1376     }
1377    
1378     ...
1379     ev_stat passwd;
1380    
1381     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1382     ev_stat_start (loop, &amp;passwd);
1383    
1384    
1385    
1386    
1387     </pre>
1388    
1389     </div>
1390 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1391 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1392 root 1.64 <p>Idle watchers trigger events when no other events of the same or higher
1393     priority are pending (prepare, check and other idle watchers do not
1394     count).</p>
1395     <p>That is, as long as your process is busy handling sockets or timeouts
1396     (or even signals, imagine) of the same or higher priority it will not be
1397     triggered. But when your process is idle (or only lower-priority watchers
1398     are pending), the idle watchers are being called once per event loop
1399     iteration - until stopped, that is, or your process receives more events
1400     and becomes busy again with higher priority stuff.</p>
1401 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1402     active, the process will not block when waiting for new events.</p>
1403     <p>Apart from keeping your process non-blocking (which is a useful
1404     effect on its own sometimes), idle watchers are a good place to do
1405     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1406     event loop has handled all outstanding events.</p>
1407     <dl>
1408     <dt>ev_idle_init (ev_signal *, callback)</dt>
1409     <dd>
1410     <p>Initialises and configures the idle watcher - it has no parameters of any
1411     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1412     believe me.</p>
1413     </dd>
1414     </dl>
1415 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1416     callback, free it. Also, use no error checking, as usual.</p>
1417 root 1.35 <pre> static void
1418     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1419     {
1420     free (w);
1421     // now do something you wanted to do when the program has
1422     // no longer asnything immediate to do.
1423     }
1424    
1425     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1426     ev_idle_init (idle_watcher, idle_cb);
1427     ev_idle_start (loop, idle_cb);
1428    
1429    
1430    
1431    
1432     </pre>
1433 root 1.1
1434     </div>
1435 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1436 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1437 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1438 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1439 root 1.14 afterwards.</p>
1440 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1441     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1442     watchers. Other loops than the current one are fine, however. The
1443     rationale behind this is that you do not need to check for recursion in
1444     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1445     <code>ev_check</code> so if you have one watcher of each kind they will always be
1446     called in pairs bracketing the blocking call.</p>
1447 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1448     their use is somewhat advanced. This could be used, for example, to track
1449     variable changes, implement your own watchers, integrate net-snmp or a
1450 root 1.46 coroutine library and lots more. They are also occasionally useful if
1451     you cache some data and want to flush it before blocking (for example,
1452     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1453     watcher).</p>
1454 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1455 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1456     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1457     provide just this functionality). Then, in the check watcher you check for
1458     any events that occured (by checking the pending status of all watchers
1459     and stopping them) and call back into the library. The I/O and timer
1460 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1461 root 1.14 because you never know, you know?).</p>
1462     <p>As another example, the Perl Coro module uses these hooks to integrate
1463 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1464     during each prepare and only letting the process block if no coroutines
1465 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1466     with priority higher than or equal to the event loop and one coroutine
1467     of lower priority, but only once, using idle watchers to keep the event
1468     loop from blocking if lower-priority coroutines are active, thus mapping
1469     low-priority coroutines to idle/background tasks).</p>
1470 root 1.1 <dl>
1471     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1472     <dt>ev_check_init (ev_check *, callback)</dt>
1473     <dd>
1474     <p>Initialises and configures the prepare or check watcher - they have no
1475     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1476 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1477 root 1.1 </dd>
1478     </dl>
1479 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1480     and a timeout watcher in a prepare handler, as required by libadns, and
1481     in a check watcher, destroy them and call into libadns. What follows is
1482     pseudo-code only of course:</p>
1483     <pre> static ev_io iow [nfd];
1484     static ev_timer tw;
1485    
1486     static void
1487     io_cb (ev_loop *loop, ev_io *w, int revents)
1488     {
1489     // set the relevant poll flags
1490 root 1.47 // could also call adns_processreadable etc. here
1491 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1492     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1493     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1494     }
1495    
1496     // create io watchers for each fd and a timer before blocking
1497     static void
1498     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1499     {
1500 root 1.64 int timeout = 3600000;
1501     struct pollfd fds [nfd];
1502 root 1.46 // actual code will need to loop here and realloc etc.
1503     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1504    
1505     /* the callback is illegal, but won't be called as we stop during check */
1506     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1507     ev_timer_start (loop, &amp;tw);
1508    
1509     // create on ev_io per pollfd
1510     for (int i = 0; i &lt; nfd; ++i)
1511     {
1512     ev_io_init (iow + i, io_cb, fds [i].fd,
1513     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1514     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1515    
1516     fds [i].revents = 0;
1517     iow [i].data = fds + i;
1518     ev_io_start (loop, iow + i);
1519     }
1520     }
1521    
1522     // stop all watchers after blocking
1523     static void
1524     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1525     {
1526     ev_timer_stop (loop, &amp;tw);
1527    
1528     for (int i = 0; i &lt; nfd; ++i)
1529     ev_io_stop (loop, iow + i);
1530    
1531     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1532     }
1533 root 1.35
1534    
1535    
1536    
1537 root 1.46 </pre>
1538 root 1.1
1539     </div>
1540 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1541 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1542     <p>This is a rather advanced watcher type that lets you embed one event loop
1543 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1544     loop, other types of watchers might be handled in a delayed or incorrect
1545     fashion and must not be used).</p>
1546 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1547     prioritise I/O.</p>
1548     <p>As an example for a bug workaround, the kqueue backend might only support
1549     sockets on some platform, so it is unusable as generic backend, but you
1550     still want to make use of it because you have many sockets and it scales
1551     so nicely. In this case, you would create a kqueue-based loop and embed it
1552     into your default loop (which might use e.g. poll). Overall operation will
1553     be a bit slower because first libev has to poll and then call kevent, but
1554     at least you can use both at what they are best.</p>
1555     <p>As for prioritising I/O: rarely you have the case where some fds have
1556     to be watched and handled very quickly (with low latency), and even
1557     priorities and idle watchers might have too much overhead. In this case
1558     you would put all the high priority stuff in one loop and all the rest in
1559     a second one, and embed the second one in the first.</p>
1560 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1561     there might be events pending in the embedded loop. The callback must then
1562     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1563     their callbacks (you could also start an idle watcher to give the embedded
1564     loop strictly lower priority for example). You can also set the callback
1565     to <code>0</code>, in which case the embed watcher will automatically execute the
1566     embedded loop sweep.</p>
1567 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1568     callback will be invoked whenever some events have been handled. You can
1569     set the callback to <code>0</code> to avoid having to specify one if you are not
1570     interested in that.</p>
1571     <p>Also, there have not currently been made special provisions for forking:
1572     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1573     but you will also have to stop and restart any <code>ev_embed</code> watchers
1574     yourself.</p>
1575     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1576     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1577     portable one.</p>
1578     <p>So when you want to use this feature you will always have to be prepared
1579     that you cannot get an embeddable loop. The recommended way to get around
1580     this is to have a separate variables for your embeddable loop, try to
1581     create it, and if that fails, use the normal loop for everything:</p>
1582     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1583     struct ev_loop *loop_lo = 0;
1584     struct ev_embed embed;
1585    
1586     // see if there is a chance of getting one that works
1587     // (remember that a flags value of 0 means autodetection)
1588     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1589     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1590     : 0;
1591    
1592     // if we got one, then embed it, otherwise default to loop_hi
1593     if (loop_lo)
1594     {
1595     ev_embed_init (&amp;embed, 0, loop_lo);
1596     ev_embed_start (loop_hi, &amp;embed);
1597     }
1598     else
1599     loop_lo = loop_hi;
1600    
1601     </pre>
1602     <dl>
1603 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1604     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1605 root 1.36 <dd>
1606 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1607     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1608     invoked automatically, otherwise it is the responsibility of the callback
1609     to invoke it (it will continue to be called until the sweep has been done,
1610     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1611     </dd>
1612     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1613     <dd>
1614     <p>Make a single, non-blocking sweep over the embedded loop. This works
1615     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1616     apropriate way for embedded loops.</p>
1617 root 1.36 </dd>
1618 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1619     <dd>
1620     <p>The embedded event loop.</p>
1621     </dd>
1622 root 1.36 </dl>
1623    
1624    
1625    
1626    
1627    
1628     </div>
1629 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1630     <div id="code_ev_fork_code_the_audacity_to_re-2">
1631     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1632     whoever is a good citizen cared to tell libev about it by calling
1633     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1634     event loop blocks next and before <code>ev_check</code> watchers are being called,
1635     and only in the child after the fork. If whoever good citizen calling
1636     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1637     handlers will be invoked, too, of course.</p>
1638     <dl>
1639     <dt>ev_fork_init (ev_signal *, callback)</dt>
1640     <dd>
1641     <p>Initialises and configures the fork watcher - it has no parameters of any
1642     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1643     believe me.</p>
1644     </dd>
1645     </dl>
1646    
1647    
1648    
1649    
1650    
1651     </div>
1652 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1653 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1654 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1655 root 1.1 <dl>
1656     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1657     <dd>
1658     <p>This function combines a simple timer and an I/O watcher, calls your
1659     callback on whichever event happens first and automatically stop both
1660     watchers. This is useful if you want to wait for a single event on an fd
1661 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1662 root 1.1 more watchers yourself.</p>
1663 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1664     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1665     <code>events</code> set will be craeted and started.</p>
1666 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1667 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1668     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1669     dubious value.</p>
1670     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1671 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1672 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1673     value passed to <code>ev_once</code>:</p>
1674 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1675     {
1676     if (revents &amp; EV_TIMEOUT)
1677 root 1.14 /* doh, nothing entered */;
1678 root 1.1 else if (revents &amp; EV_READ)
1679 root 1.14 /* stdin might have data for us, joy! */;
1680 root 1.1 }
1681    
1682 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1683 root 1.1
1684     </pre>
1685     </dd>
1686 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1687 root 1.1 <dd>
1688     <p>Feeds the given event set into the event loop, as if the specified event
1689 root 1.14 had happened for the specified watcher (which must be a pointer to an
1690     initialised but not necessarily started event watcher).</p>
1691 root 1.1 </dd>
1692 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1693 root 1.1 <dd>
1694 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1695     the given events it.</p>
1696 root 1.1 </dd>
1697 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1698 root 1.1 <dd>
1699 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1700     loop!).</p>
1701 root 1.1 </dd>
1702     </dl>
1703    
1704 root 1.35
1705    
1706    
1707    
1708 root 1.1 </div>
1709 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1710 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1711 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1712     emulate the internals of libevent, so here are some usage hints:</p>
1713     <dl>
1714     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1715     <dt>* The following members are fully supported: ev_base, ev_callback,
1716     ev_arg, ev_fd, ev_res, ev_events.</dt>
1717     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1718     maintained by libev, it does not work exactly the same way as in libevent (consider
1719     it a private API).</dt>
1720     <dt>* Priorities are not currently supported. Initialising priorities
1721     will fail and all watchers will have the same priority, even though there
1722     is an ev_pri field.</dt>
1723     <dt>* Other members are not supported.</dt>
1724     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1725     to use the libev header file and library.</dt>
1726     </dl>
1727 root 1.23
1728     </div>
1729 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1730 root 1.23 <div id="C_SUPPORT_CONTENT">
1731 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1732     you to use some convinience methods to start/stop watchers and also change
1733     the callback model to a model using method callbacks on objects.</p>
1734     <p>To use it,</p>
1735     <pre> #include &lt;ev++.h&gt;
1736    
1737     </pre>
1738     <p>(it is not installed by default). This automatically includes <cite>ev.h</cite>
1739     and puts all of its definitions (many of them macros) into the global
1740     namespace. All C++ specific things are put into the <code>ev</code> namespace.</p>
1741     <p>It should support all the same embedding options as <cite>ev.h</cite>, most notably
1742     <code>EV_MULTIPLICITY</code>.</p>
1743     <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1744     <dl>
1745     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1746     <dd>
1747     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1748     macros from <cite>ev.h</cite>.</p>
1749     </dd>
1750     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1751     <dd>
1752     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1753     </dd>
1754     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1755     <dd>
1756     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1757     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1758     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1759     defines by many implementations.</p>
1760     <p>All of those classes have these methods:</p>
1761     <p>
1762     <dl>
1763     <dt>ev::TYPE::TYPE (object *, object::method *)</dt>
1764     <dt>ev::TYPE::TYPE (object *, object::method *, struct ev_loop *)</dt>
1765     <dt>ev::TYPE::~TYPE</dt>
1766     <dd>
1767     <p>The constructor takes a pointer to an object and a method pointer to
1768     the event handler callback to call in this class. The constructor calls
1769     <code>ev_init</code> for you, which means you have to call the <code>set</code> method
1770     before starting it. If you do not specify a loop then the constructor
1771     automatically associates the default loop with this watcher.</p>
1772     <p>The destructor automatically stops the watcher if it is active.</p>
1773     </dd>
1774     <dt>w-&gt;set (struct ev_loop *)</dt>
1775     <dd>
1776     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1777     do this when the watcher is inactive (and not pending either).</p>
1778     </dd>
1779     <dt>w-&gt;set ([args])</dt>
1780     <dd>
1781     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1782     called at least once. Unlike the C counterpart, an active watcher gets
1783     automatically stopped and restarted.</p>
1784     </dd>
1785     <dt>w-&gt;start ()</dt>
1786     <dd>
1787     <p>Starts the watcher. Note that there is no <code>loop</code> argument as the
1788     constructor already takes the loop.</p>
1789     </dd>
1790     <dt>w-&gt;stop ()</dt>
1791     <dd>
1792     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1793     </dd>
1794     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1795     <dd>
1796     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1797     <code>ev_TYPE_again</code> function.</p>
1798     </dd>
1799     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1800     <dd>
1801     <p>Invokes <code>ev_embed_sweep</code>.</p>
1802     </dd>
1803 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1804     <dd>
1805     <p>Invokes <code>ev_stat_stat</code>.</p>
1806     </dd>
1807 root 1.39 </dl>
1808     </p>
1809     </dd>
1810     </dl>
1811     <p>Example: Define a class with an IO and idle watcher, start one of them in
1812     the constructor.</p>
1813     <pre> class myclass
1814     {
1815     ev_io io; void io_cb (ev::io &amp;w, int revents);
1816     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1817    
1818     myclass ();
1819     }
1820    
1821     myclass::myclass (int fd)
1822     : io (this, &amp;myclass::io_cb),
1823     idle (this, &amp;myclass::idle_cb)
1824     {
1825     io.start (fd, ev::READ);
1826     }
1827    
1828 root 1.50
1829    
1830    
1831     </pre>
1832    
1833     </div>
1834 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1835 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1836     <p>Libev can be compiled with a variety of options, the most fundemantal is
1837 root 1.65 <code>EV_MULTIPLICITY</code>. This option determines whether (most) functions and
1838 root 1.50 callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1839     <p>To make it easier to write programs that cope with either variant, the
1840     following macros are defined:</p>
1841     <dl>
1842     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1843     <dd>
1844     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1845     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1846     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1847     <pre> ev_unref (EV_A);
1848     ev_timer_add (EV_A_ watcher);
1849     ev_loop (EV_A_ 0);
1850    
1851     </pre>
1852     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1853     which is often provided by the following macro.</p>
1854     </dd>
1855     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1856     <dd>
1857     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1858     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1859     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1860     <pre> // this is how ev_unref is being declared
1861     static void ev_unref (EV_P);
1862    
1863     // this is how you can declare your typical callback
1864     static void cb (EV_P_ ev_timer *w, int revents)
1865    
1866     </pre>
1867     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1868     suitable for use with <code>EV_A</code>.</p>
1869     </dd>
1870     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1871     <dd>
1872     <p>Similar to the other two macros, this gives you the value of the default
1873     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1874     </dd>
1875     </dl>
1876 root 1.63 <p>Example: Declare and initialise a check watcher, utilising the above
1877 root 1.65 macros so it will work regardless of whether multiple loops are supported
1878 root 1.63 or not.</p>
1879 root 1.50 <pre> static void
1880     check_cb (EV_P_ ev_timer *w, int revents)
1881     {
1882     ev_check_stop (EV_A_ w);
1883     }
1884    
1885     ev_check check;
1886     ev_check_init (&amp;check, check_cb);
1887     ev_check_start (EV_DEFAULT_ &amp;check);
1888     ev_loop (EV_DEFAULT_ 0);
1889    
1890 root 1.39 </pre>
1891 root 1.23
1892     </div>
1893 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1894 root 1.40 <div id="EMBEDDING_CONTENT">
1895     <p>Libev can (and often is) directly embedded into host
1896     applications. Examples of applications that embed it include the Deliantra
1897     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1898     and rxvt-unicode.</p>
1899     <p>The goal is to enable you to just copy the neecssary files into your
1900     source directory without having to change even a single line in them, so
1901     you can easily upgrade by simply copying (or having a checked-out copy of
1902     libev somewhere in your source tree).</p>
1903    
1904     </div>
1905     <h2 id="FILESETS">FILESETS</h2>
1906     <div id="FILESETS_CONTENT">
1907     <p>Depending on what features you need you need to include one or more sets of files
1908     in your app.</p>
1909    
1910     </div>
1911     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1912     <div id="CORE_EVENT_LOOP_CONTENT">
1913     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1914     configuration (no autoconf):</p>
1915     <pre> #define EV_STANDALONE 1
1916     #include &quot;ev.c&quot;
1917    
1918     </pre>
1919     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1920     single C source file only to provide the function implementations. To use
1921     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1922     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1923     where you can put other configuration options):</p>
1924     <pre> #define EV_STANDALONE 1
1925     #include &quot;ev.h&quot;
1926    
1927     </pre>
1928     <p>Both header files and implementation files can be compiled with a C++
1929     compiler (at least, thats a stated goal, and breakage will be treated
1930     as a bug).</p>
1931     <p>You need the following files in your source tree, or in a directory
1932     in your include path (e.g. in libev/ when using -Ilibev):</p>
1933     <pre> ev.h
1934     ev.c
1935     ev_vars.h
1936     ev_wrap.h
1937    
1938     ev_win32.c required on win32 platforms only
1939    
1940 root 1.63 ev_select.c only when select backend is enabled (which is enabled by default)
1941 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
1942     ev_epoll.c only when the epoll backend is enabled (disabled by default)
1943     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
1944     ev_port.c only when the solaris port backend is enabled (disabled by default)
1945    
1946     </pre>
1947     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
1948 root 1.44 to compile this single file.</p>
1949 root 1.40
1950     </div>
1951     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
1952     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
1953     <p>To include the libevent compatibility API, also include:</p>
1954     <pre> #include &quot;event.c&quot;
1955    
1956     </pre>
1957     <p>in the file including <cite>ev.c</cite>, and:</p>
1958     <pre> #include &quot;event.h&quot;
1959    
1960     </pre>
1961     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
1962     <p>You need the following additional files for this:</p>
1963     <pre> event.h
1964     event.c
1965    
1966     </pre>
1967    
1968     </div>
1969     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
1970     <div id="AUTOCONF_SUPPORT_CONTENT">
1971     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
1972     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
1973 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
1974     include <cite>config.h</cite> and configure itself accordingly.</p>
1975 root 1.40 <p>For this of course you need the m4 file:</p>
1976     <pre> libev.m4
1977    
1978     </pre>
1979    
1980     </div>
1981     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
1982     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
1983     <p>Libev can be configured via a variety of preprocessor symbols you have to define
1984     before including any of its files. The default is not to build for multiplicity
1985     and only include the select backend.</p>
1986     <dl>
1987     <dt>EV_STANDALONE</dt>
1988     <dd>
1989     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
1990     keeps libev from including <cite>config.h</cite>, and it also defines dummy
1991     implementations for some libevent functions (such as logging, which is not
1992     supported). It will also not define any of the structs usually found in
1993     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
1994     </dd>
1995     <dt>EV_USE_MONOTONIC</dt>
1996     <dd>
1997     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
1998     monotonic clock option at both compiletime and runtime. Otherwise no use
1999     of the monotonic clock option will be attempted. If you enable this, you
2000     usually have to link against librt or something similar. Enabling it when
2001     the functionality isn't available is safe, though, althoguh you have
2002     to make sure you link against any libraries where the <code>clock_gettime</code>
2003     function is hiding in (often <cite>-lrt</cite>).</p>
2004     </dd>
2005     <dt>EV_USE_REALTIME</dt>
2006     <dd>
2007     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2008     realtime clock option at compiletime (and assume its availability at
2009     runtime if successful). Otherwise no use of the realtime clock option will
2010     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
2011     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
2012     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
2013     </dd>
2014     <dt>EV_USE_SELECT</dt>
2015     <dd>
2016     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
2017     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
2018     other method takes over, select will be it. Otherwise the select backend
2019     will not be compiled in.</p>
2020     </dd>
2021     <dt>EV_SELECT_USE_FD_SET</dt>
2022     <dd>
2023     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
2024     structure. This is useful if libev doesn't compile due to a missing
2025     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
2026     exotic systems. This usually limits the range of file descriptors to some
2027     low limit such as 1024 or might have other limitations (winsocket only
2028     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
2029     influence the size of the <code>fd_set</code> used.</p>
2030     </dd>
2031     <dt>EV_SELECT_IS_WINSOCKET</dt>
2032     <dd>
2033     <p>When defined to <code>1</code>, the select backend will assume that
2034     select/socket/connect etc. don't understand file descriptors but
2035     wants osf handles on win32 (this is the case when the select to
2036     be used is the winsock select). This means that it will call
2037     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2038     it is assumed that all these functions actually work on fds, even
2039     on win32. Should not be defined on non-win32 platforms.</p>
2040     </dd>
2041     <dt>EV_USE_POLL</dt>
2042     <dd>
2043     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2044     backend. Otherwise it will be enabled on non-win32 platforms. It
2045     takes precedence over select.</p>
2046     </dd>
2047     <dt>EV_USE_EPOLL</dt>
2048     <dd>
2049     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2050     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2051     otherwise another method will be used as fallback. This is the
2052     preferred backend for GNU/Linux systems.</p>
2053     </dd>
2054     <dt>EV_USE_KQUEUE</dt>
2055     <dd>
2056     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2057     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2058     otherwise another method will be used as fallback. This is the preferred
2059     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2060     supports some types of fds correctly (the only platform we found that
2061     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2062     not be used unless explicitly requested. The best way to use it is to find
2063 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2064 root 1.40 kqueue loop.</p>
2065     </dd>
2066     <dt>EV_USE_PORT</dt>
2067     <dd>
2068     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2069     10 port style backend. Its availability will be detected at runtime,
2070     otherwise another method will be used as fallback. This is the preferred
2071     backend for Solaris 10 systems.</p>
2072     </dd>
2073     <dt>EV_USE_DEVPOLL</dt>
2074     <dd>
2075     <p>reserved for future expansion, works like the USE symbols above.</p>
2076     </dd>
2077 root 1.57 <dt>EV_USE_INOTIFY</dt>
2078     <dd>
2079     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2080     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2081     be detected at runtime.</p>
2082     </dd>
2083 root 1.40 <dt>EV_H</dt>
2084     <dd>
2085     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2086     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2087     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2088     </dd>
2089     <dt>EV_CONFIG_H</dt>
2090     <dd>
2091     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2092     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2093     <code>EV_H</code>, above.</p>
2094     </dd>
2095     <dt>EV_EVENT_H</dt>
2096     <dd>
2097     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2098     of how the <cite>event.h</cite> header can be found.</p>
2099     </dd>
2100     <dt>EV_PROTOTYPES</dt>
2101     <dd>
2102     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2103     prototypes, but still define all the structs and other symbols. This is
2104     occasionally useful if you want to provide your own wrapper functions
2105     around libev functions.</p>
2106     </dd>
2107     <dt>EV_MULTIPLICITY</dt>
2108     <dd>
2109     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2110     will have the <code>struct ev_loop *</code> as first argument, and you can create
2111     additional independent event loops. Otherwise there will be no support
2112     for multiple event loops and there is no first event loop pointer
2113     argument. Instead, all functions act on the single default loop.</p>
2114     </dd>
2115 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2116     <dd>
2117     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2118     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2119     code.</p>
2120     </dd>
2121 root 1.64 <dt>EV_IDLE_ENABLE</dt>
2122     <dd>
2123     <p>If undefined or defined to be <code>1</code>, then idle watchers are supported. If
2124     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2125     code.</p>
2126     </dd>
2127 root 1.48 <dt>EV_EMBED_ENABLE</dt>
2128     <dd>
2129     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2130     defined to be <code>0</code>, then they are not.</p>
2131     </dd>
2132     <dt>EV_STAT_ENABLE</dt>
2133     <dd>
2134     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2135     defined to be <code>0</code>, then they are not.</p>
2136     </dd>
2137 root 1.50 <dt>EV_FORK_ENABLE</dt>
2138     <dd>
2139     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2140     defined to be <code>0</code>, then they are not.</p>
2141     </dd>
2142 root 1.48 <dt>EV_MINIMAL</dt>
2143 root 1.40 <dd>
2144 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2145     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2146     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2147 root 1.40 </dd>
2148 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2149     <dd>
2150     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2151     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2152     than enough. If you need to manage thousands of children you might want to
2153 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2154     </dd>
2155     <dt>EV_INOTIFY_HASHSIZE</dt>
2156     <dd>
2157     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2158     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2159     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2160     watchers you might want to increase this value (<i>must</i> be a power of
2161     two).</p>
2162 root 1.51 </dd>
2163 root 1.40 <dt>EV_COMMON</dt>
2164     <dd>
2165     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2166     this macro to a something else you can include more and other types of
2167     members. You have to define it each time you include one of the files,
2168     though, and it must be identical each time.</p>
2169     <p>For example, the perl EV module uses something like this:</p>
2170     <pre> #define EV_COMMON \
2171     SV *self; /* contains this struct */ \
2172     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2173    
2174     </pre>
2175     </dd>
2176 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2177     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2178     <dt>ev_set_cb (ev, cb)</dt>
2179 root 1.40 <dd>
2180     <p>Can be used to change the callback member declaration in each watcher,
2181     and the way callbacks are invoked and set. Must expand to a struct member
2182     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2183     their default definitions. One possible use for overriding these is to
2184 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2185     method calls instead of plain function calls in C++.</p>
2186 root 1.40
2187     </div>
2188     <h2 id="EXAMPLES">EXAMPLES</h2>
2189     <div id="EXAMPLES_CONTENT">
2190     <p>For a real-world example of a program the includes libev
2191     verbatim, you can have a look at the EV perl module
2192     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2193     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2194     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2195     will be compiled. It is pretty complex because it provides its own header
2196     file.</p>
2197     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2198 root 1.63 that everybody includes and which overrides some configure choices:</p>
2199     <pre> #define EV_MINIMAL 1
2200     #define EV_USE_POLL 0
2201 root 1.41 #define EV_MULTIPLICITY 0
2202 root 1.63 #define EV_PERIODIC_ENABLE 0
2203     #define EV_STAT_ENABLE 0
2204     #define EV_FORK_ENABLE 0
2205 root 1.41 #define EV_CONFIG_H &lt;config.h&gt;
2206 root 1.63 #define EV_MINPRI 0
2207     #define EV_MAXPRI 0
2208 root 1.40
2209 root 1.41 #include &quot;ev++.h&quot;
2210 root 1.40
2211     </pre>
2212     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2213 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2214     #include &quot;ev.c&quot;
2215 root 1.40
2216 root 1.47
2217    
2218    
2219 root 1.40 </pre>
2220    
2221     </div>
2222 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2223 root 1.47 <div id="COMPLEXITIES_CONTENT">
2224     <p>In this section the complexities of (many of) the algorithms used inside
2225     libev will be explained. For complexity discussions about backends see the
2226     documentation for <code>ev_default_init</code>.</p>
2227     <p>
2228     <dl>
2229     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2230     <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2231     <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2232     <dt>Stopping check/prepare/idle watchers: O(1)</dt>
2233 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2234 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2235     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2236     <dt>Activating one watcher: O(1)</dt>
2237     </dl>
2238     </p>
2239    
2240    
2241    
2242    
2243    
2244     </div>
2245 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2246 root 1.1 <div id="AUTHOR_CONTENT">
2247 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2248 root 1.1
2249     </div>
2250     </div></body>
2251     </html>