ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.71
Committed: Sat Dec 8 14:31:45 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
CVS Tags: rel-1_72
Changes since 1.70: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.71 <meta name="created" content="Sat Dec 8 15:31:35 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124 root 1.66 <p>The newest version of this document is also available as a html-formatted
125     web page you might find easier to navigate when reading it for the first
126     time: <a href="http://cvs.schmorp.de/libev/ev.html">http://cvs.schmorp.de/libev/ev.html</a>.</p>
127 root 1.1 <p>Libev is an event loop: you register interest in certain events (such as a
128     file descriptor being readable or a timeout occuring), and it will manage
129 root 1.4 these event sources and provide your program with events.</p>
130 root 1.1 <p>To do this, it must take more or less complete control over your process
131     (or thread) by executing the <i>event loop</i> handler, and will then
132     communicate events via a callback mechanism.</p>
133     <p>You register interest in certain events by registering so-called <i>event
134     watchers</i>, which are relatively small C structures you initialise with the
135     details of the event, and then hand it over to libev by <i>starting</i> the
136     watcher.</p>
137    
138     </div>
139 root 1.55 <h1 id="FEATURES">FEATURES</h1>
140 root 1.1 <div id="FEATURES_CONTENT">
141 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
142     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
143     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
144     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
145     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
146     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
147     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
148 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
149     file watchers (<code>ev_stat</code>) and even limited support for fork events
150     (<code>ev_fork</code>).</p>
151     <p>It also is quite fast (see this
152     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
153     for example).</p>
154 root 1.1
155     </div>
156 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
157 root 1.1 <div id="CONVENTIONS_CONTENT">
158 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
159     be described, which supports multiple event loops. For more info about
160     various configuration options please have a look at <strong>EMBED</strong> section in
161     this manual. If libev was configured without support for multiple event
162     loops, then all functions taking an initial argument of name <code>loop</code>
163     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
164 root 1.1
165     </div>
166 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
167 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
168 root 1.2 <p>Libev represents time as a single floating point number, representing the
169     (fractional) number of seconds since the (POSIX) epoch (somewhere near
170     the beginning of 1970, details are complicated, don't ask). This type is
171 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
172 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
173     it, you should treat it as such.</p>
174    
175 root 1.18 </div>
176 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
177 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
178 root 1.21 <p>These functions can be called anytime, even before initialising the
179     library in any way.</p>
180 root 1.1 <dl>
181     <dt>ev_tstamp ev_time ()</dt>
182     <dd>
183 root 1.28 <p>Returns the current time as libev would use it. Please note that the
184     <code>ev_now</code> function is usually faster and also often returns the timestamp
185     you actually want to know.</p>
186 root 1.1 </dd>
187     <dt>int ev_version_major ()</dt>
188     <dt>int ev_version_minor ()</dt>
189     <dd>
190     <p>You can find out the major and minor version numbers of the library
191     you linked against by calling the functions <code>ev_version_major</code> and
192     <code>ev_version_minor</code>. If you want, you can compare against the global
193     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
194     version of the library your program was compiled against.</p>
195 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
196 root 1.1 as this indicates an incompatible change. Minor versions are usually
197     compatible to older versions, so a larger minor version alone is usually
198     not a problem.</p>
199 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
200     version.</p>
201 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
202     ev_version_major () == EV_VERSION_MAJOR
203     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
204    
205     </pre>
206 root 1.1 </dd>
207 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
208     <dd>
209     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
210     value) compiled into this binary of libev (independent of their
211     availability on the system you are running on). See <code>ev_default_loop</code> for
212     a description of the set values.</p>
213 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
214     a must have and can we have a torrent of it please!!!11</p>
215     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
216     ev_supported_backends () &amp; EVBACKEND_EPOLL));
217    
218     </pre>
219 root 1.32 </dd>
220     <dt>unsigned int ev_recommended_backends ()</dt>
221     <dd>
222     <p>Return the set of all backends compiled into this binary of libev and also
223     recommended for this platform. This set is often smaller than the one
224     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
225     most BSDs and will not be autodetected unless you explicitly request it
226     (assuming you know what you are doing). This is the set of backends that
227 root 1.34 libev will probe for if you specify no backends explicitly.</p>
228 root 1.32 </dd>
229 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
230     <dd>
231     <p>Returns the set of backends that are embeddable in other event loops. This
232     is the theoretical, all-platform, value. To find which backends
233     might be supported on the current system, you would need to look at
234     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
235     recommended ones.</p>
236     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
237     </dd>
238 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
239 root 1.1 <dd>
240 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
241     semantics is identical - to the realloc C function). It is used to
242     allocate and free memory (no surprises here). If it returns zero when
243     memory needs to be allocated, the library might abort or take some
244     potentially destructive action. The default is your system realloc
245     function.</p>
246 root 1.1 <p>You could override this function in high-availability programs to, say,
247     free some memory if it cannot allocate memory, to use a special allocator,
248     or even to sleep a while and retry until some memory is available.</p>
249 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
250     retries).</p>
251 root 1.35 <pre> static void *
252 root 1.52 persistent_realloc (void *ptr, size_t size)
253 root 1.35 {
254     for (;;)
255     {
256     void *newptr = realloc (ptr, size);
257    
258     if (newptr)
259     return newptr;
260    
261     sleep (60);
262     }
263     }
264    
265     ...
266     ev_set_allocator (persistent_realloc);
267    
268     </pre>
269 root 1.1 </dd>
270     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
271     <dd>
272     <p>Set the callback function to call on a retryable syscall error (such
273     as failed select, poll, epoll_wait). The message is a printable string
274     indicating the system call or subsystem causing the problem. If this
275     callback is set, then libev will expect it to remedy the sitution, no
276 root 1.7 matter what, when it returns. That is, libev will generally retry the
277 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
278     (such as abort).</p>
279 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
280 root 1.35 <pre> static void
281     fatal_error (const char *msg)
282     {
283     perror (msg);
284     abort ();
285     }
286    
287     ...
288     ev_set_syserr_cb (fatal_error);
289    
290     </pre>
291 root 1.1 </dd>
292     </dl>
293    
294     </div>
295 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
296 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
297     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
298     types of such loops, the <i>default</i> loop, which supports signals and child
299     events, and dynamically created loops which do not.</p>
300     <p>If you use threads, a common model is to run the default event loop
301 root 1.18 in your main thread (or in a separate thread) and for each thread you
302 root 1.7 create, you also create another event loop. Libev itself does no locking
303     whatsoever, so if you mix calls to the same event loop in different
304     threads, make sure you lock (this is usually a bad idea, though, even if
305 root 1.9 done correctly, because it's hideous and inefficient).</p>
306 root 1.1 <dl>
307     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
308     <dd>
309     <p>This will initialise the default event loop if it hasn't been initialised
310     yet and return it. If the default loop could not be initialised, returns
311     false. If it already was initialised it simply returns it (and ignores the
312 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
313 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
314     function.</p>
315     <p>The flags argument can be used to specify special behaviour or specific
316 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
317     <p>The following flags are supported:</p>
318 root 1.1 <p>
319     <dl>
320 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
321 root 1.1 <dd>
322 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
323 root 1.1 thing, believe me).</p>
324     </dd>
325 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
326 root 1.1 <dd>
327 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
328     or setgid) then libev will <i>not</i> look at the environment variable
329     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
330     override the flags completely if it is found in the environment. This is
331     useful to try out specific backends to test their performance, or to work
332     around bugs.</p>
333 root 1.1 </dd>
334 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
335     <dd>
336     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
337     a fork, you can also make libev check for a fork in each iteration by
338     enabling this flag.</p>
339     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
340     and thus this might slow down your event loop if you do a lot of loop
341 root 1.64 iterations and little real work, but is usually not noticeable (on my
342 root 1.62 Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
343     without a syscall and thus <i>very</i> fast, but my Linux system also has
344     <code>pthread_atfork</code> which is even faster).</p>
345     <p>The big advantage of this flag is that you can forget about fork (and
346     forget about forgetting to tell libev about forking) when you use this
347     flag.</p>
348     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
349     environment variable.</p>
350     </dd>
351 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
352 root 1.29 <dd>
353     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
354     libev tries to roll its own fd_set with no limits on the number of fds,
355     but if that fails, expect a fairly low limit on the number of fds when
356     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
357     the fastest backend for a low number of fds.</p>
358     </dd>
359 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
360 root 1.29 <dd>
361     <p>And this is your standard poll(2) backend. It's more complicated than
362     select, but handles sparse fds better and has no artificial limit on the
363     number of fds you can use (except it will slow down considerably with a
364     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
365     </dd>
366 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
367 root 1.29 <dd>
368     <p>For few fds, this backend is a bit little slower than poll and select,
369     but it scales phenomenally better. While poll and select usually scale like
370     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
371     either O(1) or O(active_fds).</p>
372     <p>While stopping and starting an I/O watcher in the same iteration will
373     result in some caching, there is still a syscall per such incident
374     (because the fd could point to a different file description now), so its
375     best to avoid that. Also, dup()ed file descriptors might not work very
376     well if you register events for both fds.</p>
377 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
378     need to use non-blocking I/O or other means to avoid blocking when no data
379     (or space) is available.</p>
380 root 1.29 </dd>
381 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
382 root 1.29 <dd>
383     <p>Kqueue deserves special mention, as at the time of this writing, it
384     was broken on all BSDs except NetBSD (usually it doesn't work with
385     anything but sockets and pipes, except on Darwin, where of course its
386 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
387     unless you explicitly specify it explicitly in the flags (i.e. using
388     <code>EVBACKEND_KQUEUE</code>).</p>
389 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
390     kernel is more efficient (which says nothing about its actual speed, of
391     course). While starting and stopping an I/O watcher does not cause an
392     extra syscall as with epoll, it still adds up to four event changes per
393     incident, so its best to avoid that.</p>
394     </dd>
395 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
396 root 1.29 <dd>
397     <p>This is not implemented yet (and might never be).</p>
398     </dd>
399 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
400 root 1.29 <dd>
401     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
402     it's really slow, but it still scales very well (O(active_fds)).</p>
403 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
404     notifications, so you need to use non-blocking I/O or other means to avoid
405     blocking when no data (or space) is available.</p>
406 root 1.29 </dd>
407 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
408 root 1.29 <dd>
409 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
410     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
411 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
412 root 1.1 </dd>
413     </dl>
414     </p>
415 root 1.29 <p>If one or more of these are ored into the flags value, then only these
416     backends will be tried (in the reverse order as given here). If none are
417     specified, most compiled-in backend will be tried, usually in reverse
418     order of their flag values :)</p>
419 root 1.34 <p>The most typical usage is like this:</p>
420     <pre> if (!ev_default_loop (0))
421     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
422    
423     </pre>
424     <p>Restrict libev to the select and poll backends, and do not allow
425     environment settings to be taken into account:</p>
426     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
427    
428     </pre>
429     <p>Use whatever libev has to offer, but make sure that kqueue is used if
430     available (warning, breaks stuff, best use only with your own private
431     event loop and only if you know the OS supports your types of fds):</p>
432     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
433    
434     </pre>
435 root 1.1 </dd>
436     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
437     <dd>
438     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
439     always distinct from the default loop. Unlike the default loop, it cannot
440     handle signal and child watchers, and attempts to do so will be greeted by
441     undefined behaviour (or a failed assertion if assertions are enabled).</p>
442 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
443 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
444     if (!epoller)
445     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
446    
447     </pre>
448 root 1.1 </dd>
449     <dt>ev_default_destroy ()</dt>
450     <dd>
451     <p>Destroys the default loop again (frees all memory and kernel state
452 root 1.38 etc.). None of the active event watchers will be stopped in the normal
453     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
454     responsibility to either stop all watchers cleanly yoursef <i>before</i>
455     calling this function, or cope with the fact afterwards (which is usually
456     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
457     for example).</p>
458 root 1.1 </dd>
459     <dt>ev_loop_destroy (loop)</dt>
460     <dd>
461     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
462     earlier call to <code>ev_loop_new</code>.</p>
463     </dd>
464     <dt>ev_default_fork ()</dt>
465     <dd>
466     <p>This function reinitialises the kernel state for backends that have
467     one. Despite the name, you can call it anytime, but it makes most sense
468     after forking, in either the parent or child process (or both, but that
469     again makes little sense).</p>
470 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
471     only if you want to use the event library in both processes. If you just
472     fork+exec, you don't have to call it.</p>
473 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
474 root 1.1 it just in case after a fork. To make this easy, the function will fit in
475     quite nicely into a call to <code>pthread_atfork</code>:</p>
476     <pre> pthread_atfork (0, 0, ev_default_fork);
477    
478     </pre>
479 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
480     without calling this function, so if you force one of those backends you
481     do not need to care.</p>
482 root 1.1 </dd>
483     <dt>ev_loop_fork (loop)</dt>
484     <dd>
485     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
486     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
487     after fork, and how you do this is entirely your own problem.</p>
488     </dd>
489 root 1.64 <dt>unsigned int ev_loop_count (loop)</dt>
490     <dd>
491     <p>Returns the count of loop iterations for the loop, which is identical to
492     the number of times libev did poll for new events. It starts at <code>0</code> and
493     happily wraps around with enough iterations.</p>
494     <p>This value can sometimes be useful as a generation counter of sorts (it
495     &quot;ticks&quot; the number of loop iterations), as it roughly corresponds with
496     <code>ev_prepare</code> and <code>ev_check</code> calls.</p>
497     </dd>
498 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
499 root 1.1 <dd>
500 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
501 root 1.1 use.</p>
502     </dd>
503 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
504 root 1.1 <dd>
505     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
506 root 1.35 received events and started processing them. This timestamp does not
507     change as long as callbacks are being processed, and this is also the base
508     time used for relative timers. You can treat it as the timestamp of the
509     event occuring (or more correctly, libev finding out about it).</p>
510 root 1.1 </dd>
511     <dt>ev_loop (loop, int flags)</dt>
512     <dd>
513     <p>Finally, this is it, the event handler. This function usually is called
514     after you initialised all your watchers and you want to start handling
515     events.</p>
516 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
517     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
518 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
519     relying on all watchers to be stopped when deciding when a program has
520     finished (especially in interactive programs), but having a program that
521     automatically loops as long as it has to and no longer by virtue of
522     relying on its watchers stopping correctly is a thing of beauty.</p>
523 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
524     those events and any outstanding ones, but will not block your process in
525 root 1.9 case there are no events and will return after one iteration of the loop.</p>
526 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
527     neccessary) and will handle those and any outstanding ones. It will block
528 root 1.9 your process until at least one new event arrives, and will return after
529 root 1.34 one iteration of the loop. This is useful if you are waiting for some
530     external event in conjunction with something not expressible using other
531     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
532     usually a better approach for this kind of thing.</p>
533     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
534     <pre> * If there are no active watchers (reference count is zero), return.
535     - Queue prepare watchers and then call all outstanding watchers.
536     - If we have been forked, recreate the kernel state.
537     - Update the kernel state with all outstanding changes.
538     - Update the &quot;event loop time&quot;.
539     - Calculate for how long to block.
540     - Block the process, waiting for any events.
541     - Queue all outstanding I/O (fd) events.
542     - Update the &quot;event loop time&quot; and do time jump handling.
543     - Queue all outstanding timers.
544     - Queue all outstanding periodics.
545     - If no events are pending now, queue all idle watchers.
546     - Queue all check watchers.
547     - Call all queued watchers in reverse order (i.e. check watchers first).
548     Signals and child watchers are implemented as I/O watchers, and will
549     be handled here by queueing them when their watcher gets executed.
550     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
551     were used, return, otherwise continue with step *.
552 root 1.28
553     </pre>
554 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
555 root 1.35 anymore.</p>
556     <pre> ... queue jobs here, make sure they register event watchers as long
557     ... as they still have work to do (even an idle watcher will do..)
558     ev_loop (my_loop, 0);
559     ... jobs done. yeah!
560    
561     </pre>
562 root 1.1 </dd>
563     <dt>ev_unloop (loop, how)</dt>
564     <dd>
565 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
566     has processed all outstanding events). The <code>how</code> argument must be either
567 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
568 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
569 root 1.1 </dd>
570     <dt>ev_ref (loop)</dt>
571     <dt>ev_unref (loop)</dt>
572     <dd>
573 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
574     loop: Every watcher keeps one reference, and as long as the reference
575     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
576     a watcher you never unregister that should not keep <code>ev_loop</code> from
577     returning, ev_unref() after starting, and ev_ref() before stopping it. For
578     example, libev itself uses this for its internal signal pipe: It is not
579     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
580     no event watchers registered by it are active. It is also an excellent
581     way to do this for generic recurring timers or from within third-party
582     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
583 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
584 root 1.35 running when nothing else is active.</p>
585 root 1.54 <pre> struct ev_signal exitsig;
586 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
587 root 1.54 ev_signal_start (loop, &amp;exitsig);
588     evf_unref (loop);
589 root 1.35
590     </pre>
591 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
592     <pre> ev_ref (loop);
593     ev_signal_stop (loop, &amp;exitsig);
594 root 1.35
595     </pre>
596 root 1.1 </dd>
597     </dl>
598    
599 root 1.43
600    
601    
602    
603 root 1.1 </div>
604 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
605 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
606     <p>A watcher is a structure that you create and register to record your
607     interest in some event. For instance, if you want to wait for STDIN to
608 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
609 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
610     {
611     ev_io_stop (w);
612     ev_unloop (loop, EVUNLOOP_ALL);
613     }
614    
615     struct ev_loop *loop = ev_default_loop (0);
616     struct ev_io stdin_watcher;
617     ev_init (&amp;stdin_watcher, my_cb);
618     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
619     ev_io_start (loop, &amp;stdin_watcher);
620     ev_loop (loop, 0);
621    
622     </pre>
623     <p>As you can see, you are responsible for allocating the memory for your
624     watcher structures (and it is usually a bad idea to do this on the stack,
625     although this can sometimes be quite valid).</p>
626     <p>Each watcher structure must be initialised by a call to <code>ev_init
627     (watcher *, callback)</code>, which expects a callback to be provided. This
628     callback gets invoked each time the event occurs (or, in the case of io
629     watchers, each time the event loop detects that the file descriptor given
630     is readable and/or writable).</p>
631     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
632     with arguments specific to this watcher type. There is also a macro
633     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
634     (watcher *, callback, ...)</code>.</p>
635     <p>To make the watcher actually watch out for events, you have to start it
636     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
637     *)</code>), and you can stop watching for events at any time by calling the
638     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
639     <p>As long as your watcher is active (has been started but not stopped) you
640     must not touch the values stored in it. Most specifically you must never
641 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
642 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
643     registered watcher structure as second, and a bitset of received events as
644     third argument.</p>
645 root 1.14 <p>The received events usually include a single bit per event type received
646 root 1.1 (you can receive multiple events at the same time). The possible bit masks
647     are:</p>
648     <dl>
649 root 1.10 <dt><code>EV_READ</code></dt>
650     <dt><code>EV_WRITE</code></dt>
651 root 1.1 <dd>
652 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
653 root 1.1 writable.</p>
654     </dd>
655 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
656 root 1.1 <dd>
657 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
658 root 1.1 </dd>
659 root 1.10 <dt><code>EV_PERIODIC</code></dt>
660 root 1.1 <dd>
661 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
662 root 1.1 </dd>
663 root 1.10 <dt><code>EV_SIGNAL</code></dt>
664 root 1.1 <dd>
665 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
666 root 1.1 </dd>
667 root 1.10 <dt><code>EV_CHILD</code></dt>
668 root 1.1 <dd>
669 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
670 root 1.1 </dd>
671 root 1.48 <dt><code>EV_STAT</code></dt>
672     <dd>
673     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
674     </dd>
675 root 1.10 <dt><code>EV_IDLE</code></dt>
676 root 1.1 <dd>
677 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
678 root 1.1 </dd>
679 root 1.10 <dt><code>EV_PREPARE</code></dt>
680     <dt><code>EV_CHECK</code></dt>
681 root 1.1 <dd>
682 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
683     to gather new events, and all <code>ev_check</code> watchers are invoked just after
684 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
685     received events. Callbacks of both watcher types can start and stop as
686     many watchers as they want, and all of them will be taken into account
687 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
688 root 1.1 <code>ev_loop</code> from blocking).</p>
689     </dd>
690 root 1.50 <dt><code>EV_EMBED</code></dt>
691     <dd>
692     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
693     </dd>
694     <dt><code>EV_FORK</code></dt>
695     <dd>
696     <p>The event loop has been resumed in the child process after fork (see
697     <code>ev_fork</code>).</p>
698     </dd>
699 root 1.10 <dt><code>EV_ERROR</code></dt>
700 root 1.1 <dd>
701     <p>An unspecified error has occured, the watcher has been stopped. This might
702     happen because the watcher could not be properly started because libev
703     ran out of memory, a file descriptor was found to be closed or any other
704     problem. You best act on it by reporting the problem and somehow coping
705     with the watcher being stopped.</p>
706     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
707     for example it might indicate that a fd is readable or writable, and if
708     your callbacks is well-written it can just attempt the operation and cope
709     with the error from read() or write(). This will not work in multithreaded
710     programs, though, so beware.</p>
711     </dd>
712     </dl>
713    
714     </div>
715 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
716     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
717 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
718     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
719     <dl>
720     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
721     <dd>
722     <p>This macro initialises the generic portion of a watcher. The contents
723     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
724     the generic parts of the watcher are initialised, you <i>need</i> to call
725     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
726     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
727     which rolls both calls into one.</p>
728     <p>You can reinitialise a watcher at any time as long as it has been stopped
729     (or never started) and there are no pending events outstanding.</p>
730 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
731 root 1.37 int revents)</code>.</p>
732     </dd>
733     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
734     <dd>
735     <p>This macro initialises the type-specific parts of a watcher. You need to
736     call <code>ev_init</code> at least once before you call this macro, but you can
737     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
738     macro on a watcher that is active (it can be pending, however, which is a
739     difference to the <code>ev_init</code> macro).</p>
740     <p>Although some watcher types do not have type-specific arguments
741     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
742     </dd>
743     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
744     <dd>
745     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
746     calls into a single call. This is the most convinient method to initialise
747     a watcher. The same limitations apply, of course.</p>
748     </dd>
749     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
750     <dd>
751     <p>Starts (activates) the given watcher. Only active watchers will receive
752     events. If the watcher is already active nothing will happen.</p>
753     </dd>
754     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
755     <dd>
756     <p>Stops the given watcher again (if active) and clears the pending
757     status. It is possible that stopped watchers are pending (for example,
758     non-repeating timers are being stopped when they become pending), but
759     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
760     you want to free or reuse the memory used by the watcher it is therefore a
761     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
762     </dd>
763     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
764     <dd>
765     <p>Returns a true value iff the watcher is active (i.e. it has been started
766     and not yet been stopped). As long as a watcher is active you must not modify
767     it.</p>
768     </dd>
769     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
770     <dd>
771     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
772     events but its callback has not yet been invoked). As long as a watcher
773     is pending (but not active) you must not call an init function on it (but
774 root 1.70 <code>ev_TYPE_set</code> is safe), you must not change its priority, and you must
775     make sure the watcher is available to libev (e.g. you cannot <code>free ()</code>
776     it).</p>
777 root 1.37 </dd>
778 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
779 root 1.37 <dd>
780     <p>Returns the callback currently set on the watcher.</p>
781     </dd>
782     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
783     <dd>
784     <p>Change the callback. You can change the callback at virtually any time
785     (modulo threads).</p>
786     </dd>
787 root 1.64 <dt>ev_set_priority (ev_TYPE *watcher, priority)</dt>
788     <dt>int ev_priority (ev_TYPE *watcher)</dt>
789     <dd>
790     <p>Set and query the priority of the watcher. The priority is a small
791     integer between <code>EV_MAXPRI</code> (default: <code>2</code>) and <code>EV_MINPRI</code>
792     (default: <code>-2</code>). Pending watchers with higher priority will be invoked
793     before watchers with lower priority, but priority will not keep watchers
794     from being executed (except for <code>ev_idle</code> watchers).</p>
795     <p>This means that priorities are <i>only</i> used for ordering callback
796     invocation after new events have been received. This is useful, for
797     example, to reduce latency after idling, or more often, to bind two
798     watchers on the same event and make sure one is called first.</p>
799     <p>If you need to suppress invocation when higher priority events are pending
800     you need to look at <code>ev_idle</code> watchers, which provide this functionality.</p>
801 root 1.70 <p>You <i>must not</i> change the priority of a watcher as long as it is active or
802     pending.</p>
803 root 1.64 <p>The default priority used by watchers when no priority has been set is
804     always <code>0</code>, which is supposed to not be too high and not be too low :).</p>
805     <p>Setting a priority outside the range of <code>EV_MINPRI</code> to <code>EV_MAXPRI</code> is
806     fine, as long as you do not mind that the priority value you query might
807     or might not have been adjusted to be within valid range.</p>
808     </dd>
809 root 1.70 <dt>ev_invoke (loop, ev_TYPE *watcher, int revents)</dt>
810     <dd>
811     <p>Invoke the <code>watcher</code> with the given <code>loop</code> and <code>revents</code>. Neither
812     <code>loop</code> nor <code>revents</code> need to be valid as long as the watcher callback
813     can deal with that fact.</p>
814     </dd>
815     <dt>int ev_clear_pending (loop, ev_TYPE *watcher)</dt>
816     <dd>
817     <p>If the watcher is pending, this function returns clears its pending status
818     and returns its <code>revents</code> bitset (as if its callback was invoked). If the
819     watcher isn't pending it does nothing and returns <code>0</code>.</p>
820     </dd>
821 root 1.37 </dl>
822    
823    
824    
825    
826    
827     </div>
828 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
829     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
830     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
831 root 1.14 and read at any time, libev will completely ignore it. This can be used
832 root 1.1 to associate arbitrary data with your watcher. If you need more data and
833     don't want to allocate memory and store a pointer to it in that data
834     member, you can also &quot;subclass&quot; the watcher type and provide your own
835     data:</p>
836     <pre> struct my_io
837     {
838     struct ev_io io;
839     int otherfd;
840     void *somedata;
841     struct whatever *mostinteresting;
842     }
843    
844     </pre>
845     <p>And since your callback will be called with a pointer to the watcher, you
846     can cast it back to your own type:</p>
847     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
848     {
849     struct my_io *w = (struct my_io *)w_;
850     ...
851     }
852    
853     </pre>
854 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
855     instead have been omitted.</p>
856     <p>Another common scenario is having some data structure with multiple
857     watchers:</p>
858     <pre> struct my_biggy
859     {
860     int some_data;
861     ev_timer t1;
862     ev_timer t2;
863     }
864 root 1.1
865 root 1.56 </pre>
866     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
867     you need to use <code>offsetof</code>:</p>
868     <pre> #include &lt;stddef.h&gt;
869 root 1.1
870 root 1.56 static void
871     t1_cb (EV_P_ struct ev_timer *w, int revents)
872     {
873     struct my_biggy big = (struct my_biggy *
874     (((char *)w) - offsetof (struct my_biggy, t1));
875     }
876    
877     static void
878     t2_cb (EV_P_ struct ev_timer *w, int revents)
879     {
880     struct my_biggy big = (struct my_biggy *
881     (((char *)w) - offsetof (struct my_biggy, t2));
882     }
883 root 1.1
884    
885    
886 root 1.56
887     </pre>
888    
889 root 1.1 </div>
890 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
891 root 1.1 <div id="WATCHER_TYPES_CONTENT">
892     <p>This section describes each watcher in detail, but will not repeat
893 root 1.48 information given in the last section. Any initialisation/set macros,
894     functions and members specific to the watcher type are explained.</p>
895     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
896     while the watcher is active, you can look at the member and expect some
897     sensible content, but you must not modify it (you can modify it while the
898     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
899     means you can expect it to have some sensible content while the watcher
900     is active, but you can also modify it. Modifying it may not do something
901     sensible or take immediate effect (or do anything at all), but libev will
902     not crash or malfunction in any way.</p>
903 root 1.1
904 root 1.35
905    
906    
907    
908 root 1.1 </div>
909 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
910 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
911 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
912 root 1.43 in each iteration of the event loop, or, more precisely, when reading
913     would not block the process and writing would at least be able to write
914     some data. This behaviour is called level-triggering because you keep
915     receiving events as long as the condition persists. Remember you can stop
916     the watcher if you don't want to act on the event and neither want to
917     receive future events.</p>
918 root 1.25 <p>In general you can register as many read and/or write event watchers per
919 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
920     descriptors to non-blocking mode is also usually a good idea (but not
921     required if you know what you are doing).</p>
922     <p>You have to be careful with dup'ed file descriptors, though. Some backends
923     (the linux epoll backend is a notable example) cannot handle dup'ed file
924     descriptors correctly if you register interest in two or more fds pointing
925 root 1.43 to the same underlying file/socket/etc. description (that is, they share
926 root 1.26 the same underlying &quot;file open&quot;).</p>
927 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
928 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
929     <code>EVBACKEND_POLL</code>).</p>
930 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
931     receive &quot;spurious&quot; readyness notifications, that is your callback might
932     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
933     because there is no data. Not only are some backends known to create a
934     lot of those (for example solaris ports), it is very easy to get into
935     this situation even with a relatively standard program structure. Thus
936     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
937     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
938     <p>If you cannot run the fd in non-blocking mode (for example you should not
939     play around with an Xlib connection), then you have to seperately re-test
940 root 1.65 whether a file descriptor is really ready with a known-to-be good interface
941 root 1.43 such as poll (fortunately in our Xlib example, Xlib already does this on
942     its own, so its quite safe to use).</p>
943 root 1.1 <dl>
944     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
945     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
946     <dd>
947 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
948     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
949     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
950 root 1.1 </dd>
951 root 1.48 <dt>int fd [read-only]</dt>
952     <dd>
953     <p>The file descriptor being watched.</p>
954     </dd>
955     <dt>int events [read-only]</dt>
956     <dd>
957     <p>The events being watched.</p>
958     </dd>
959 root 1.1 </dl>
960 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
961 root 1.35 readable, but only once. Since it is likely line-buffered, you could
962 root 1.54 attempt to read a whole line in the callback.</p>
963 root 1.35 <pre> static void
964     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
965     {
966     ev_io_stop (loop, w);
967     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
968     }
969    
970     ...
971     struct ev_loop *loop = ev_default_init (0);
972     struct ev_io stdin_readable;
973     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
974     ev_io_start (loop, &amp;stdin_readable);
975     ev_loop (loop, 0);
976    
977    
978    
979    
980     </pre>
981 root 1.1
982     </div>
983 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
984 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
985 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
986     given time, and optionally repeating in regular intervals after that.</p>
987     <p>The timers are based on real time, that is, if you register an event that
988 root 1.25 times out after an hour and you reset your system clock to last years
989 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
990 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
991 root 1.1 monotonic clock option helps a lot here).</p>
992 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
993     time. This is usually the right thing as this timestamp refers to the time
994 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
995     you suspect event processing to be delayed and you <i>need</i> to base the timeout
996 root 1.25 on the current time, use something like this to adjust for this:</p>
997 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
998    
999     </pre>
1000 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
1001     but if multiple timers become ready during the same loop iteration then
1002     order of execution is undefined.</p>
1003 root 1.1 <dl>
1004     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
1005     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
1006     <dd>
1007     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
1008     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
1009     timer will automatically be configured to trigger again <code>repeat</code> seconds
1010     later, again, and again, until stopped manually.</p>
1011     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
1012     configure a timer to trigger every 10 seconds, then it will trigger at
1013     exactly 10 second intervals. If, however, your program cannot keep up with
1014 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
1015 root 1.1 timer will not fire more than once per event loop iteration.</p>
1016     </dd>
1017     <dt>ev_timer_again (loop)</dt>
1018     <dd>
1019     <p>This will act as if the timer timed out and restart it again if it is
1020     repeating. The exact semantics are:</p>
1021 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
1022     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
1023     <p>If the timer is repeating, either start it if necessary (with the
1024     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
1025 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
1026 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
1027     timeout, that is, you want to be called when there have been, say, 60
1028     seconds of inactivity on the socket. The easiest way to do this is to
1029     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
1030 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
1031     you go into an idle state where you do not expect data to travel on the
1032 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
1033     automatically restart it if need be.</p>
1034     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
1035     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
1036 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
1037     ev_timer_again (loop, timer);
1038     ...
1039     timer-&gt;again = 17.;
1040     ev_timer_again (loop, timer);
1041     ...
1042     timer-&gt;again = 10.;
1043     ev_timer_again (loop, timer);
1044    
1045     </pre>
1046 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1047     you want to modify its timeout value.</p>
1048 root 1.48 </dd>
1049     <dt>ev_tstamp repeat [read-write]</dt>
1050     <dd>
1051     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1052     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1053     which is also when any modifications are taken into account.</p>
1054 root 1.1 </dd>
1055     </dl>
1056 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1057 root 1.35 <pre> static void
1058     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1059     {
1060     .. one minute over, w is actually stopped right here
1061     }
1062    
1063     struct ev_timer mytimer;
1064     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1065     ev_timer_start (loop, &amp;mytimer);
1066    
1067     </pre>
1068 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1069 root 1.35 inactivity.</p>
1070     <pre> static void
1071     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1072     {
1073     .. ten seconds without any activity
1074     }
1075    
1076     struct ev_timer mytimer;
1077     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1078     ev_timer_again (&amp;mytimer); /* start timer */
1079     ev_loop (loop, 0);
1080    
1081     // and in some piece of code that gets executed on any &quot;activity&quot;:
1082     // reset the timeout to start ticking again at 10 seconds
1083     ev_timer_again (&amp;mytimer);
1084    
1085    
1086    
1087    
1088     </pre>
1089 root 1.1
1090     </div>
1091 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1092 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1093 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1094     (and unfortunately a bit complex).</p>
1095 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1096 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1097     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1098 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1099     + 10.</code>) and then reset your system clock to the last year, then it will
1100 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1101 root 1.1 roughly 10 seconds later and of course not if you reset your system time
1102     again).</p>
1103     <p>They can also be used to implement vastly more complex timers, such as
1104     triggering an event on eahc midnight, local time.</p>
1105 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1106     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1107     during the same loop iteration then order of execution is undefined.</p>
1108 root 1.1 <dl>
1109     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1110     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1111     <dd>
1112     <p>Lots of arguments, lets sort it out... There are basically three modes of
1113     operation, and we will explain them from simplest to complex:</p>
1114     <p>
1115     <dl>
1116     <dt>* absolute timer (interval = reschedule_cb = 0)</dt>
1117     <dd>
1118     <p>In this configuration the watcher triggers an event at the wallclock time
1119     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1120     that is, if it is to be run at January 1st 2011 then it will run when the
1121     system time reaches or surpasses this time.</p>
1122     </dd>
1123     <dt>* non-repeating interval timer (interval &gt; 0, reschedule_cb = 0)</dt>
1124     <dd>
1125     <p>In this mode the watcher will always be scheduled to time out at the next
1126     <code>at + N * interval</code> time (for some integer N) and then repeat, regardless
1127     of any time jumps.</p>
1128     <p>This can be used to create timers that do not drift with respect to system
1129     time:</p>
1130     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1131    
1132     </pre>
1133     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1134     but only that the the callback will be called when the system time shows a
1135 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1136 root 1.1 by 3600.</p>
1137     <p>Another way to think about it (for the mathematically inclined) is that
1138 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1139 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1140     </dd>
1141     <dt>* manual reschedule mode (reschedule_cb = callback)</dt>
1142     <dd>
1143     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1144     ignored. Instead, each time the periodic watcher gets scheduled, the
1145     reschedule callback will be called with the watcher as first, and the
1146     current time as second argument.</p>
1147 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1148     ever, or make any event loop modifications</i>. If you need to stop it,
1149     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1150     starting a prepare watcher).</p>
1151 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1152     ev_tstamp now)</code>, e.g.:</p>
1153 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1154     {
1155     return now + 60.;
1156     }
1157    
1158     </pre>
1159     <p>It must return the next time to trigger, based on the passed time value
1160     (that is, the lowest time value larger than to the second argument). It
1161     will usually be called just before the callback will be triggered, but
1162     might be called at other times, too.</p>
1163 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1164 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1165 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1166     triggers on each midnight, local time. To do this, you would calculate the
1167 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1168     you do this is, again, up to you (but it is not trivial, which is the main
1169     reason I omitted it as an example).</p>
1170 root 1.1 </dd>
1171     </dl>
1172     </p>
1173     </dd>
1174     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1175     <dd>
1176     <p>Simply stops and restarts the periodic watcher again. This is only useful
1177     when you changed some parameters or the reschedule callback would return
1178     a different time than the last time it was called (e.g. in a crond like
1179     program when the crontabs have changed).</p>
1180     </dd>
1181 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1182     <dd>
1183     <p>The current interval value. Can be modified any time, but changes only
1184     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1185     called.</p>
1186     </dd>
1187     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1188     <dd>
1189     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1190     switched off. Can be changed any time, but changes only take effect when
1191     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1192     </dd>
1193 root 1.1 </dl>
1194 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1195 root 1.35 system clock is divisible by 3600. The callback invocation times have
1196     potentially a lot of jittering, but good long-term stability.</p>
1197     <pre> static void
1198     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1199     {
1200     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1201     }
1202    
1203     struct ev_periodic hourly_tick;
1204     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1205     ev_periodic_start (loop, &amp;hourly_tick);
1206    
1207     </pre>
1208 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1209 root 1.35 <pre> #include &lt;math.h&gt;
1210    
1211     static ev_tstamp
1212     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1213     {
1214     return fmod (now, 3600.) + 3600.;
1215     }
1216    
1217     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1218    
1219     </pre>
1220 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1221 root 1.35 <pre> struct ev_periodic hourly_tick;
1222     ev_periodic_init (&amp;hourly_tick, clock_cb,
1223     fmod (ev_now (loop), 3600.), 3600., 0);
1224     ev_periodic_start (loop, &amp;hourly_tick);
1225    
1226    
1227    
1228    
1229     </pre>
1230 root 1.1
1231     </div>
1232 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1233 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1234 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1235     signal one or more times. Even though signals are very asynchronous, libev
1236 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1237 root 1.1 normal event processing, like any other event.</p>
1238 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1239 root 1.1 first watcher gets started will libev actually register a signal watcher
1240     with the kernel (thus it coexists with your own signal handlers as long
1241     as you don't register any with libev). Similarly, when the last signal
1242     watcher for a signal is stopped libev will reset the signal handler to
1243     SIG_DFL (regardless of what it was set to before).</p>
1244     <dl>
1245     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1246     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1247     <dd>
1248     <p>Configures the watcher to trigger on the given signal number (usually one
1249     of the <code>SIGxxx</code> constants).</p>
1250     </dd>
1251 root 1.48 <dt>int signum [read-only]</dt>
1252     <dd>
1253     <p>The signal the watcher watches out for.</p>
1254     </dd>
1255 root 1.1 </dl>
1256    
1257 root 1.36
1258    
1259    
1260    
1261 root 1.1 </div>
1262 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1263     <div id="code_ev_child_code_watch_out_for_pro-2">
1264 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1265     some child status changes (most typically when a child of yours dies).</p>
1266     <dl>
1267     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1268     <dt>ev_child_set (ev_child *, int pid)</dt>
1269     <dd>
1270     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1271     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1272     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1273 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1274     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1275     process causing the status change.</p>
1276 root 1.1 </dd>
1277 root 1.48 <dt>int pid [read-only]</dt>
1278     <dd>
1279     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1280     </dd>
1281     <dt>int rpid [read-write]</dt>
1282     <dd>
1283     <p>The process id that detected a status change.</p>
1284     </dd>
1285     <dt>int rstatus [read-write]</dt>
1286     <dd>
1287     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1288     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1289     </dd>
1290 root 1.1 </dl>
1291 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1292 root 1.35 <pre> static void
1293     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1294     {
1295     ev_unloop (loop, EVUNLOOP_ALL);
1296     }
1297    
1298     struct ev_signal signal_watcher;
1299     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1300     ev_signal_start (loop, &amp;sigint_cb);
1301    
1302    
1303    
1304    
1305     </pre>
1306 root 1.1
1307     </div>
1308 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1309     <div id="code_ev_stat_code_did_the_file_attri-2">
1310     <p>This watches a filesystem path for attribute changes. That is, it calls
1311     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1312     compared to the last time, invoking the callback if it did.</p>
1313     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1314     not exist&quot; is a status change like any other. The condition &quot;path does
1315     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1316     otherwise always forced to be at least one) and all the other fields of
1317     the stat buffer having unspecified contents.</p>
1318 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1319     relative and your working directory changes, the behaviour is undefined.</p>
1320 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1321 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1322 root 1.48 can specify a recommended polling interval for this case. If you specify
1323     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1324     unspecified default</i> value will be used (which you can expect to be around
1325     five seconds, although this might change dynamically). Libev will also
1326     impose a minimum interval which is currently around <code>0.1</code>, but thats
1327     usually overkill.</p>
1328     <p>This watcher type is not meant for massive numbers of stat watchers,
1329     as even with OS-supported change notifications, this can be
1330     resource-intensive.</p>
1331 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1332     implemented (implementing kqueue support is left as an exercise for the
1333     reader). Inotify will be used to give hints only and should not change the
1334     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1335     to fall back to regular polling again even with inotify, but changes are
1336     usually detected immediately, and if the file exists there will be no
1337     polling.</p>
1338 root 1.48 <dl>
1339     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1340     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1341     <dd>
1342     <p>Configures the watcher to wait for status changes of the given
1343     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1344     be detected and should normally be specified as <code>0</code> to let libev choose
1345     a suitable value. The memory pointed to by <code>path</code> must point to the same
1346     path for as long as the watcher is active.</p>
1347     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1348     relative to the attributes at the time the watcher was started (or the
1349     last change was detected).</p>
1350     </dd>
1351     <dt>ev_stat_stat (ev_stat *)</dt>
1352     <dd>
1353     <p>Updates the stat buffer immediately with new values. If you change the
1354     watched path in your callback, you could call this fucntion to avoid
1355     detecting this change (while introducing a race condition). Can also be
1356     useful simply to find out the new values.</p>
1357     </dd>
1358     <dt>ev_statdata attr [read-only]</dt>
1359     <dd>
1360     <p>The most-recently detected attributes of the file. Although the type is of
1361     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1362     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1363     was some error while <code>stat</code>ing the file.</p>
1364     </dd>
1365     <dt>ev_statdata prev [read-only]</dt>
1366     <dd>
1367     <p>The previous attributes of the file. The callback gets invoked whenever
1368     <code>prev</code> != <code>attr</code>.</p>
1369     </dd>
1370     <dt>ev_tstamp interval [read-only]</dt>
1371     <dd>
1372     <p>The specified interval.</p>
1373     </dd>
1374     <dt>const char *path [read-only]</dt>
1375     <dd>
1376     <p>The filesystem path that is being watched.</p>
1377     </dd>
1378     </dl>
1379     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1380     <pre> static void
1381     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1382     {
1383     /* /etc/passwd changed in some way */
1384     if (w-&gt;attr.st_nlink)
1385     {
1386     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1387     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1388     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1389     }
1390     else
1391     /* you shalt not abuse printf for puts */
1392     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1393     &quot;if this is windows, they already arrived\n&quot;);
1394     }
1395    
1396     ...
1397     ev_stat passwd;
1398    
1399     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1400     ev_stat_start (loop, &amp;passwd);
1401    
1402    
1403    
1404    
1405     </pre>
1406    
1407     </div>
1408 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1409 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1410 root 1.64 <p>Idle watchers trigger events when no other events of the same or higher
1411     priority are pending (prepare, check and other idle watchers do not
1412     count).</p>
1413     <p>That is, as long as your process is busy handling sockets or timeouts
1414     (or even signals, imagine) of the same or higher priority it will not be
1415     triggered. But when your process is idle (or only lower-priority watchers
1416     are pending), the idle watchers are being called once per event loop
1417     iteration - until stopped, that is, or your process receives more events
1418     and becomes busy again with higher priority stuff.</p>
1419 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1420     active, the process will not block when waiting for new events.</p>
1421     <p>Apart from keeping your process non-blocking (which is a useful
1422     effect on its own sometimes), idle watchers are a good place to do
1423     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1424     event loop has handled all outstanding events.</p>
1425     <dl>
1426     <dt>ev_idle_init (ev_signal *, callback)</dt>
1427     <dd>
1428     <p>Initialises and configures the idle watcher - it has no parameters of any
1429     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1430     believe me.</p>
1431     </dd>
1432     </dl>
1433 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1434     callback, free it. Also, use no error checking, as usual.</p>
1435 root 1.35 <pre> static void
1436     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1437     {
1438     free (w);
1439     // now do something you wanted to do when the program has
1440     // no longer asnything immediate to do.
1441     }
1442    
1443     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1444     ev_idle_init (idle_watcher, idle_cb);
1445     ev_idle_start (loop, idle_cb);
1446    
1447    
1448    
1449    
1450     </pre>
1451 root 1.1
1452     </div>
1453 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1454 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1455 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1456 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1457 root 1.14 afterwards.</p>
1458 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1459     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1460     watchers. Other loops than the current one are fine, however. The
1461     rationale behind this is that you do not need to check for recursion in
1462     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1463     <code>ev_check</code> so if you have one watcher of each kind they will always be
1464     called in pairs bracketing the blocking call.</p>
1465 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1466     their use is somewhat advanced. This could be used, for example, to track
1467     variable changes, implement your own watchers, integrate net-snmp or a
1468 root 1.46 coroutine library and lots more. They are also occasionally useful if
1469     you cache some data and want to flush it before blocking (for example,
1470     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1471     watcher).</p>
1472 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1473 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1474     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1475     provide just this functionality). Then, in the check watcher you check for
1476     any events that occured (by checking the pending status of all watchers
1477     and stopping them) and call back into the library. The I/O and timer
1478 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1479 root 1.14 because you never know, you know?).</p>
1480     <p>As another example, the Perl Coro module uses these hooks to integrate
1481 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1482     during each prepare and only letting the process block if no coroutines
1483 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1484     with priority higher than or equal to the event loop and one coroutine
1485     of lower priority, but only once, using idle watchers to keep the event
1486     loop from blocking if lower-priority coroutines are active, thus mapping
1487     low-priority coroutines to idle/background tasks).</p>
1488 root 1.1 <dl>
1489     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1490     <dt>ev_check_init (ev_check *, callback)</dt>
1491     <dd>
1492     <p>Initialises and configures the prepare or check watcher - they have no
1493     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1494 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1495 root 1.1 </dd>
1496     </dl>
1497 root 1.46 <p>Example: To include a library such as adns, you would add IO watchers
1498     and a timeout watcher in a prepare handler, as required by libadns, and
1499     in a check watcher, destroy them and call into libadns. What follows is
1500     pseudo-code only of course:</p>
1501     <pre> static ev_io iow [nfd];
1502     static ev_timer tw;
1503    
1504     static void
1505     io_cb (ev_loop *loop, ev_io *w, int revents)
1506     {
1507     // set the relevant poll flags
1508 root 1.47 // could also call adns_processreadable etc. here
1509 root 1.46 struct pollfd *fd = (struct pollfd *)w-&gt;data;
1510     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1511     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1512     }
1513    
1514     // create io watchers for each fd and a timer before blocking
1515     static void
1516     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1517     {
1518 root 1.64 int timeout = 3600000;
1519     struct pollfd fds [nfd];
1520 root 1.46 // actual code will need to loop here and realloc etc.
1521     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1522    
1523     /* the callback is illegal, but won't be called as we stop during check */
1524     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1525     ev_timer_start (loop, &amp;tw);
1526    
1527     // create on ev_io per pollfd
1528     for (int i = 0; i &lt; nfd; ++i)
1529     {
1530     ev_io_init (iow + i, io_cb, fds [i].fd,
1531     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1532     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1533    
1534     fds [i].revents = 0;
1535     iow [i].data = fds + i;
1536     ev_io_start (loop, iow + i);
1537     }
1538     }
1539    
1540     // stop all watchers after blocking
1541     static void
1542     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1543     {
1544     ev_timer_stop (loop, &amp;tw);
1545    
1546     for (int i = 0; i &lt; nfd; ++i)
1547     ev_io_stop (loop, iow + i);
1548    
1549     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1550     }
1551 root 1.35
1552    
1553    
1554    
1555 root 1.46 </pre>
1556 root 1.1
1557     </div>
1558 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1559 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1560     <p>This is a rather advanced watcher type that lets you embed one event loop
1561 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1562     loop, other types of watchers might be handled in a delayed or incorrect
1563     fashion and must not be used).</p>
1564 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1565     prioritise I/O.</p>
1566     <p>As an example for a bug workaround, the kqueue backend might only support
1567     sockets on some platform, so it is unusable as generic backend, but you
1568     still want to make use of it because you have many sockets and it scales
1569     so nicely. In this case, you would create a kqueue-based loop and embed it
1570     into your default loop (which might use e.g. poll). Overall operation will
1571     be a bit slower because first libev has to poll and then call kevent, but
1572     at least you can use both at what they are best.</p>
1573     <p>As for prioritising I/O: rarely you have the case where some fds have
1574     to be watched and handled very quickly (with low latency), and even
1575     priorities and idle watchers might have too much overhead. In this case
1576     you would put all the high priority stuff in one loop and all the rest in
1577     a second one, and embed the second one in the first.</p>
1578 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1579     there might be events pending in the embedded loop. The callback must then
1580     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1581     their callbacks (you could also start an idle watcher to give the embedded
1582     loop strictly lower priority for example). You can also set the callback
1583     to <code>0</code>, in which case the embed watcher will automatically execute the
1584     embedded loop sweep.</p>
1585 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1586     callback will be invoked whenever some events have been handled. You can
1587     set the callback to <code>0</code> to avoid having to specify one if you are not
1588     interested in that.</p>
1589     <p>Also, there have not currently been made special provisions for forking:
1590     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1591     but you will also have to stop and restart any <code>ev_embed</code> watchers
1592     yourself.</p>
1593     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1594     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1595     portable one.</p>
1596     <p>So when you want to use this feature you will always have to be prepared
1597     that you cannot get an embeddable loop. The recommended way to get around
1598     this is to have a separate variables for your embeddable loop, try to
1599     create it, and if that fails, use the normal loop for everything:</p>
1600     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1601     struct ev_loop *loop_lo = 0;
1602     struct ev_embed embed;
1603    
1604     // see if there is a chance of getting one that works
1605     // (remember that a flags value of 0 means autodetection)
1606     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1607     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1608     : 0;
1609    
1610     // if we got one, then embed it, otherwise default to loop_hi
1611     if (loop_lo)
1612     {
1613     ev_embed_init (&amp;embed, 0, loop_lo);
1614     ev_embed_start (loop_hi, &amp;embed);
1615     }
1616     else
1617     loop_lo = loop_hi;
1618    
1619     </pre>
1620     <dl>
1621 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1622     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1623 root 1.36 <dd>
1624 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1625     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1626     invoked automatically, otherwise it is the responsibility of the callback
1627     to invoke it (it will continue to be called until the sweep has been done,
1628     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1629     </dd>
1630     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1631     <dd>
1632     <p>Make a single, non-blocking sweep over the embedded loop. This works
1633     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1634     apropriate way for embedded loops.</p>
1635 root 1.36 </dd>
1636 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1637     <dd>
1638     <p>The embedded event loop.</p>
1639     </dd>
1640 root 1.36 </dl>
1641    
1642    
1643    
1644    
1645    
1646     </div>
1647 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1648     <div id="code_ev_fork_code_the_audacity_to_re-2">
1649     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1650     whoever is a good citizen cared to tell libev about it by calling
1651     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1652     event loop blocks next and before <code>ev_check</code> watchers are being called,
1653     and only in the child after the fork. If whoever good citizen calling
1654     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1655     handlers will be invoked, too, of course.</p>
1656     <dl>
1657     <dt>ev_fork_init (ev_signal *, callback)</dt>
1658     <dd>
1659     <p>Initialises and configures the fork watcher - it has no parameters of any
1660     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1661     believe me.</p>
1662     </dd>
1663     </dl>
1664    
1665    
1666    
1667    
1668    
1669     </div>
1670 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1671 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1672 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1673 root 1.1 <dl>
1674     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1675     <dd>
1676     <p>This function combines a simple timer and an I/O watcher, calls your
1677     callback on whichever event happens first and automatically stop both
1678     watchers. This is useful if you want to wait for a single event on an fd
1679 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1680 root 1.1 more watchers yourself.</p>
1681 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1682     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1683     <code>events</code> set will be craeted and started.</p>
1684 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1685 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1686     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1687     dubious value.</p>
1688     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1689 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1690 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1691     value passed to <code>ev_once</code>:</p>
1692 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1693     {
1694     if (revents &amp; EV_TIMEOUT)
1695 root 1.14 /* doh, nothing entered */;
1696 root 1.1 else if (revents &amp; EV_READ)
1697 root 1.14 /* stdin might have data for us, joy! */;
1698 root 1.1 }
1699    
1700 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1701 root 1.1
1702     </pre>
1703     </dd>
1704 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1705 root 1.1 <dd>
1706     <p>Feeds the given event set into the event loop, as if the specified event
1707 root 1.14 had happened for the specified watcher (which must be a pointer to an
1708     initialised but not necessarily started event watcher).</p>
1709 root 1.1 </dd>
1710 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1711 root 1.1 <dd>
1712 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1713     the given events it.</p>
1714 root 1.1 </dd>
1715 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1716 root 1.1 <dd>
1717 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1718     loop!).</p>
1719 root 1.1 </dd>
1720     </dl>
1721    
1722 root 1.35
1723    
1724    
1725    
1726 root 1.1 </div>
1727 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1728 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1729 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1730     emulate the internals of libevent, so here are some usage hints:</p>
1731     <dl>
1732     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1733     <dt>* The following members are fully supported: ev_base, ev_callback,
1734     ev_arg, ev_fd, ev_res, ev_events.</dt>
1735     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1736     maintained by libev, it does not work exactly the same way as in libevent (consider
1737     it a private API).</dt>
1738     <dt>* Priorities are not currently supported. Initialising priorities
1739     will fail and all watchers will have the same priority, even though there
1740     is an ev_pri field.</dt>
1741     <dt>* Other members are not supported.</dt>
1742     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1743     to use the libev header file and library.</dt>
1744     </dl>
1745 root 1.23
1746     </div>
1747 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1748 root 1.23 <div id="C_SUPPORT_CONTENT">
1749 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1750     you to use some convinience methods to start/stop watchers and also change
1751     the callback model to a model using method callbacks on objects.</p>
1752     <p>To use it,</p>
1753     <pre> #include &lt;ev++.h&gt;
1754    
1755     </pre>
1756 root 1.68 <p>This automatically includes <cite>ev.h</cite> and puts all of its definitions (many
1757     of them macros) into the global namespace. All C++ specific things are
1758     put into the <code>ev</code> namespace. It should support all the same embedding
1759     options as <cite>ev.h</cite>, most notably <code>EV_MULTIPLICITY</code>.</p>
1760 root 1.69 <p>Care has been taken to keep the overhead low. The only data member the C++
1761     classes add (compared to plain C-style watchers) is the event loop pointer
1762     that the watcher is associated with (or no additional members at all if
1763     you disable <code>EV_MULTIPLICITY</code> when embedding libev).</p>
1764     <p>Currently, functions, and static and non-static member functions can be
1765 root 1.68 used as callbacks. Other types should be easy to add as long as they only
1766     need one additional pointer for context. If you need support for other
1767     types of functors please contact the author (preferably after implementing
1768     it).</p>
1769 root 1.39 <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1770     <dl>
1771     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1772     <dd>
1773     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1774     macros from <cite>ev.h</cite>.</p>
1775     </dd>
1776     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1777     <dd>
1778     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1779     </dd>
1780     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1781     <dd>
1782     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1783     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1784     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1785     defines by many implementations.</p>
1786     <p>All of those classes have these methods:</p>
1787     <p>
1788     <dl>
1789 root 1.68 <dt>ev::TYPE::TYPE ()</dt>
1790     <dt>ev::TYPE::TYPE (struct ev_loop *)</dt>
1791 root 1.39 <dt>ev::TYPE::~TYPE</dt>
1792     <dd>
1793 root 1.68 <p>The constructor (optionally) takes an event loop to associate the watcher
1794     with. If it is omitted, it will use <code>EV_DEFAULT</code>.</p>
1795     <p>The constructor calls <code>ev_init</code> for you, which means you have to call the
1796     <code>set</code> method before starting it.</p>
1797     <p>It will not set a callback, however: You have to call the templated <code>set</code>
1798     method to set a callback before you can start the watcher.</p>
1799     <p>(The reason why you have to use a method is a limitation in C++ which does
1800     not allow explicit template arguments for constructors).</p>
1801 root 1.39 <p>The destructor automatically stops the watcher if it is active.</p>
1802     </dd>
1803 root 1.68 <dt>w-&gt;set&lt;class, &amp;class::method&gt; (object *)</dt>
1804     <dd>
1805     <p>This method sets the callback method to call. The method has to have a
1806     signature of <code>void (*)(ev_TYPE &amp;, int)</code>, it receives the watcher as
1807     first argument and the <code>revents</code> as second. The object must be given as
1808     parameter and is stored in the <code>data</code> member of the watcher.</p>
1809     <p>This method synthesizes efficient thunking code to call your method from
1810     the C callback that libev requires. If your compiler can inline your
1811     callback (i.e. it is visible to it at the place of the <code>set</code> call and
1812     your compiler is good :), then the method will be fully inlined into the
1813     thunking function, making it as fast as a direct C callback.</p>
1814     <p>Example: simple class declaration and watcher initialisation</p>
1815     <pre> struct myclass
1816     {
1817     void io_cb (ev::io &amp;w, int revents) { }
1818     }
1819    
1820     myclass obj;
1821     ev::io iow;
1822     iow.set &lt;myclass, &amp;myclass::io_cb&gt; (&amp;obj);
1823    
1824     </pre>
1825     </dd>
1826 root 1.70 <dt>w-&gt;set&lt;function&gt; (void *data = 0)</dt>
1827 root 1.68 <dd>
1828     <p>Also sets a callback, but uses a static method or plain function as
1829     callback. The optional <code>data</code> argument will be stored in the watcher's
1830     <code>data</code> member and is free for you to use.</p>
1831 root 1.70 <p>The prototype of the <code>function</code> must be <code>void (*)(ev::TYPE &amp;w, int)</code>.</p>
1832 root 1.68 <p>See the method-<code>set</code> above for more details.</p>
1833 root 1.70 <p>Example:</p>
1834     <pre> static void io_cb (ev::io &amp;w, int revents) { }
1835     iow.set &lt;io_cb&gt; ();
1836    
1837     </pre>
1838 root 1.68 </dd>
1839 root 1.39 <dt>w-&gt;set (struct ev_loop *)</dt>
1840     <dd>
1841     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1842     do this when the watcher is inactive (and not pending either).</p>
1843     </dd>
1844     <dt>w-&gt;set ([args])</dt>
1845     <dd>
1846     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1847 root 1.68 called at least once. Unlike the C counterpart, an active watcher gets
1848     automatically stopped and restarted when reconfiguring it with this
1849     method.</p>
1850 root 1.39 </dd>
1851     <dt>w-&gt;start ()</dt>
1852     <dd>
1853 root 1.68 <p>Starts the watcher. Note that there is no <code>loop</code> argument, as the
1854     constructor already stores the event loop.</p>
1855 root 1.39 </dd>
1856     <dt>w-&gt;stop ()</dt>
1857     <dd>
1858     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1859     </dd>
1860     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1861     <dd>
1862     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1863     <code>ev_TYPE_again</code> function.</p>
1864     </dd>
1865     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1866     <dd>
1867     <p>Invokes <code>ev_embed_sweep</code>.</p>
1868     </dd>
1869 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1870     <dd>
1871     <p>Invokes <code>ev_stat_stat</code>.</p>
1872     </dd>
1873 root 1.39 </dl>
1874     </p>
1875     </dd>
1876     </dl>
1877     <p>Example: Define a class with an IO and idle watcher, start one of them in
1878     the constructor.</p>
1879     <pre> class myclass
1880     {
1881     ev_io io; void io_cb (ev::io &amp;w, int revents);
1882     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1883    
1884     myclass ();
1885     }
1886    
1887     myclass::myclass (int fd)
1888     {
1889 root 1.68 io .set &lt;myclass, &amp;myclass::io_cb &gt; (this);
1890     idle.set &lt;myclass, &amp;myclass::idle_cb&gt; (this);
1891    
1892 root 1.39 io.start (fd, ev::READ);
1893     }
1894    
1895 root 1.50
1896    
1897    
1898     </pre>
1899    
1900     </div>
1901 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1902 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1903     <p>Libev can be compiled with a variety of options, the most fundemantal is
1904 root 1.65 <code>EV_MULTIPLICITY</code>. This option determines whether (most) functions and
1905 root 1.50 callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1906     <p>To make it easier to write programs that cope with either variant, the
1907     following macros are defined:</p>
1908     <dl>
1909     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
1910     <dd>
1911     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
1912     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
1913     <code>EV_A_</code> is used when other arguments are following. Example:</p>
1914     <pre> ev_unref (EV_A);
1915     ev_timer_add (EV_A_ watcher);
1916     ev_loop (EV_A_ 0);
1917    
1918     </pre>
1919     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
1920     which is often provided by the following macro.</p>
1921     </dd>
1922     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
1923     <dd>
1924     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
1925     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
1926     <code>EV_P_</code> is used when other parameters are following. Example:</p>
1927     <pre> // this is how ev_unref is being declared
1928     static void ev_unref (EV_P);
1929    
1930     // this is how you can declare your typical callback
1931     static void cb (EV_P_ ev_timer *w, int revents)
1932    
1933     </pre>
1934     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
1935     suitable for use with <code>EV_A</code>.</p>
1936     </dd>
1937     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
1938     <dd>
1939     <p>Similar to the other two macros, this gives you the value of the default
1940     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
1941     </dd>
1942     </dl>
1943 root 1.63 <p>Example: Declare and initialise a check watcher, utilising the above
1944 root 1.65 macros so it will work regardless of whether multiple loops are supported
1945 root 1.63 or not.</p>
1946 root 1.50 <pre> static void
1947     check_cb (EV_P_ ev_timer *w, int revents)
1948     {
1949     ev_check_stop (EV_A_ w);
1950     }
1951    
1952     ev_check check;
1953     ev_check_init (&amp;check, check_cb);
1954     ev_check_start (EV_DEFAULT_ &amp;check);
1955     ev_loop (EV_DEFAULT_ 0);
1956    
1957 root 1.39 </pre>
1958 root 1.23
1959     </div>
1960 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
1961 root 1.40 <div id="EMBEDDING_CONTENT">
1962     <p>Libev can (and often is) directly embedded into host
1963     applications. Examples of applications that embed it include the Deliantra
1964     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
1965     and rxvt-unicode.</p>
1966     <p>The goal is to enable you to just copy the neecssary files into your
1967     source directory without having to change even a single line in them, so
1968     you can easily upgrade by simply copying (or having a checked-out copy of
1969     libev somewhere in your source tree).</p>
1970    
1971     </div>
1972     <h2 id="FILESETS">FILESETS</h2>
1973     <div id="FILESETS_CONTENT">
1974     <p>Depending on what features you need you need to include one or more sets of files
1975     in your app.</p>
1976    
1977     </div>
1978     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
1979     <div id="CORE_EVENT_LOOP_CONTENT">
1980     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
1981     configuration (no autoconf):</p>
1982     <pre> #define EV_STANDALONE 1
1983     #include &quot;ev.c&quot;
1984    
1985     </pre>
1986     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
1987     single C source file only to provide the function implementations. To use
1988     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
1989     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
1990     where you can put other configuration options):</p>
1991     <pre> #define EV_STANDALONE 1
1992     #include &quot;ev.h&quot;
1993    
1994     </pre>
1995     <p>Both header files and implementation files can be compiled with a C++
1996     compiler (at least, thats a stated goal, and breakage will be treated
1997     as a bug).</p>
1998     <p>You need the following files in your source tree, or in a directory
1999     in your include path (e.g. in libev/ when using -Ilibev):</p>
2000     <pre> ev.h
2001     ev.c
2002     ev_vars.h
2003     ev_wrap.h
2004    
2005     ev_win32.c required on win32 platforms only
2006    
2007 root 1.63 ev_select.c only when select backend is enabled (which is enabled by default)
2008 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
2009     ev_epoll.c only when the epoll backend is enabled (disabled by default)
2010     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
2011     ev_port.c only when the solaris port backend is enabled (disabled by default)
2012    
2013     </pre>
2014     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
2015 root 1.44 to compile this single file.</p>
2016 root 1.40
2017     </div>
2018     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
2019     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
2020     <p>To include the libevent compatibility API, also include:</p>
2021     <pre> #include &quot;event.c&quot;
2022    
2023     </pre>
2024     <p>in the file including <cite>ev.c</cite>, and:</p>
2025     <pre> #include &quot;event.h&quot;
2026    
2027     </pre>
2028     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
2029     <p>You need the following additional files for this:</p>
2030     <pre> event.h
2031     event.c
2032    
2033     </pre>
2034    
2035     </div>
2036     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
2037     <div id="AUTOCONF_SUPPORT_CONTENT">
2038     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
2039     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
2040 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
2041     include <cite>config.h</cite> and configure itself accordingly.</p>
2042 root 1.40 <p>For this of course you need the m4 file:</p>
2043     <pre> libev.m4
2044    
2045     </pre>
2046    
2047     </div>
2048     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
2049     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
2050     <p>Libev can be configured via a variety of preprocessor symbols you have to define
2051     before including any of its files. The default is not to build for multiplicity
2052     and only include the select backend.</p>
2053     <dl>
2054     <dt>EV_STANDALONE</dt>
2055     <dd>
2056     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
2057     keeps libev from including <cite>config.h</cite>, and it also defines dummy
2058     implementations for some libevent functions (such as logging, which is not
2059     supported). It will also not define any of the structs usually found in
2060     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
2061     </dd>
2062     <dt>EV_USE_MONOTONIC</dt>
2063     <dd>
2064     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2065     monotonic clock option at both compiletime and runtime. Otherwise no use
2066     of the monotonic clock option will be attempted. If you enable this, you
2067     usually have to link against librt or something similar. Enabling it when
2068     the functionality isn't available is safe, though, althoguh you have
2069     to make sure you link against any libraries where the <code>clock_gettime</code>
2070     function is hiding in (often <cite>-lrt</cite>).</p>
2071     </dd>
2072     <dt>EV_USE_REALTIME</dt>
2073     <dd>
2074     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2075     realtime clock option at compiletime (and assume its availability at
2076     runtime if successful). Otherwise no use of the realtime clock option will
2077     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
2078     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
2079     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
2080     </dd>
2081     <dt>EV_USE_SELECT</dt>
2082     <dd>
2083     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
2084     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
2085     other method takes over, select will be it. Otherwise the select backend
2086     will not be compiled in.</p>
2087     </dd>
2088     <dt>EV_SELECT_USE_FD_SET</dt>
2089     <dd>
2090     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
2091     structure. This is useful if libev doesn't compile due to a missing
2092     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
2093     exotic systems. This usually limits the range of file descriptors to some
2094     low limit such as 1024 or might have other limitations (winsocket only
2095     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
2096     influence the size of the <code>fd_set</code> used.</p>
2097     </dd>
2098     <dt>EV_SELECT_IS_WINSOCKET</dt>
2099     <dd>
2100     <p>When defined to <code>1</code>, the select backend will assume that
2101     select/socket/connect etc. don't understand file descriptors but
2102     wants osf handles on win32 (this is the case when the select to
2103     be used is the winsock select). This means that it will call
2104     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2105     it is assumed that all these functions actually work on fds, even
2106     on win32. Should not be defined on non-win32 platforms.</p>
2107     </dd>
2108     <dt>EV_USE_POLL</dt>
2109     <dd>
2110     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2111     backend. Otherwise it will be enabled on non-win32 platforms. It
2112     takes precedence over select.</p>
2113     </dd>
2114     <dt>EV_USE_EPOLL</dt>
2115     <dd>
2116     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2117     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2118     otherwise another method will be used as fallback. This is the
2119     preferred backend for GNU/Linux systems.</p>
2120     </dd>
2121     <dt>EV_USE_KQUEUE</dt>
2122     <dd>
2123     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2124     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2125     otherwise another method will be used as fallback. This is the preferred
2126     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2127     supports some types of fds correctly (the only platform we found that
2128     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2129     not be used unless explicitly requested. The best way to use it is to find
2130 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2131 root 1.40 kqueue loop.</p>
2132     </dd>
2133     <dt>EV_USE_PORT</dt>
2134     <dd>
2135     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2136     10 port style backend. Its availability will be detected at runtime,
2137     otherwise another method will be used as fallback. This is the preferred
2138     backend for Solaris 10 systems.</p>
2139     </dd>
2140     <dt>EV_USE_DEVPOLL</dt>
2141     <dd>
2142     <p>reserved for future expansion, works like the USE symbols above.</p>
2143     </dd>
2144 root 1.57 <dt>EV_USE_INOTIFY</dt>
2145     <dd>
2146     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2147     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2148     be detected at runtime.</p>
2149     </dd>
2150 root 1.40 <dt>EV_H</dt>
2151     <dd>
2152     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2153     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2154     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2155     </dd>
2156     <dt>EV_CONFIG_H</dt>
2157     <dd>
2158     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2159     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2160     <code>EV_H</code>, above.</p>
2161     </dd>
2162     <dt>EV_EVENT_H</dt>
2163     <dd>
2164     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2165     of how the <cite>event.h</cite> header can be found.</p>
2166     </dd>
2167     <dt>EV_PROTOTYPES</dt>
2168     <dd>
2169     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2170     prototypes, but still define all the structs and other symbols. This is
2171     occasionally useful if you want to provide your own wrapper functions
2172     around libev functions.</p>
2173     </dd>
2174     <dt>EV_MULTIPLICITY</dt>
2175     <dd>
2176     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2177     will have the <code>struct ev_loop *</code> as first argument, and you can create
2178     additional independent event loops. Otherwise there will be no support
2179     for multiple event loops and there is no first event loop pointer
2180     argument. Instead, all functions act on the single default loop.</p>
2181     </dd>
2182 root 1.66 <dt>EV_MINPRI</dt>
2183     <dt>EV_MAXPRI</dt>
2184     <dd>
2185     <p>The range of allowed priorities. <code>EV_MINPRI</code> must be smaller or equal to
2186     <code>EV_MAXPRI</code>, but otherwise there are no non-obvious limitations. You can
2187     provide for more priorities by overriding those symbols (usually defined
2188     to be <code>-2</code> and <code>2</code>, respectively).</p>
2189     <p>When doing priority-based operations, libev usually has to linearly search
2190     all the priorities, so having many of them (hundreds) uses a lot of space
2191     and time, so using the defaults of five priorities (-2 .. +2) is usually
2192     fine.</p>
2193     <p>If your embedding app does not need any priorities, defining these both to
2194     <code>0</code> will save some memory and cpu.</p>
2195     </dd>
2196 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2197     <dd>
2198     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2199     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2200     code.</p>
2201     </dd>
2202 root 1.64 <dt>EV_IDLE_ENABLE</dt>
2203     <dd>
2204     <p>If undefined or defined to be <code>1</code>, then idle watchers are supported. If
2205     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2206     code.</p>
2207     </dd>
2208 root 1.48 <dt>EV_EMBED_ENABLE</dt>
2209     <dd>
2210     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2211     defined to be <code>0</code>, then they are not.</p>
2212     </dd>
2213     <dt>EV_STAT_ENABLE</dt>
2214     <dd>
2215     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2216     defined to be <code>0</code>, then they are not.</p>
2217     </dd>
2218 root 1.50 <dt>EV_FORK_ENABLE</dt>
2219     <dd>
2220     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2221     defined to be <code>0</code>, then they are not.</p>
2222     </dd>
2223 root 1.48 <dt>EV_MINIMAL</dt>
2224 root 1.40 <dd>
2225 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2226     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2227     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2228 root 1.40 </dd>
2229 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2230     <dd>
2231     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2232     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2233     than enough. If you need to manage thousands of children you might want to
2234 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2235     </dd>
2236     <dt>EV_INOTIFY_HASHSIZE</dt>
2237     <dd>
2238     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2239     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2240     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2241     watchers you might want to increase this value (<i>must</i> be a power of
2242     two).</p>
2243 root 1.51 </dd>
2244 root 1.40 <dt>EV_COMMON</dt>
2245     <dd>
2246     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2247     this macro to a something else you can include more and other types of
2248     members. You have to define it each time you include one of the files,
2249     though, and it must be identical each time.</p>
2250     <p>For example, the perl EV module uses something like this:</p>
2251     <pre> #define EV_COMMON \
2252     SV *self; /* contains this struct */ \
2253     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2254    
2255     </pre>
2256     </dd>
2257 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2258     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2259     <dt>ev_set_cb (ev, cb)</dt>
2260 root 1.40 <dd>
2261     <p>Can be used to change the callback member declaration in each watcher,
2262     and the way callbacks are invoked and set. Must expand to a struct member
2263     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2264     their default definitions. One possible use for overriding these is to
2265 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2266     method calls instead of plain function calls in C++.</p>
2267 root 1.40
2268     </div>
2269     <h2 id="EXAMPLES">EXAMPLES</h2>
2270     <div id="EXAMPLES_CONTENT">
2271     <p>For a real-world example of a program the includes libev
2272     verbatim, you can have a look at the EV perl module
2273     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2274     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2275     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2276     will be compiled. It is pretty complex because it provides its own header
2277     file.</p>
2278     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2279 root 1.63 that everybody includes and which overrides some configure choices:</p>
2280     <pre> #define EV_MINIMAL 1
2281     #define EV_USE_POLL 0
2282 root 1.41 #define EV_MULTIPLICITY 0
2283 root 1.63 #define EV_PERIODIC_ENABLE 0
2284     #define EV_STAT_ENABLE 0
2285     #define EV_FORK_ENABLE 0
2286 root 1.41 #define EV_CONFIG_H &lt;config.h&gt;
2287 root 1.63 #define EV_MINPRI 0
2288     #define EV_MAXPRI 0
2289 root 1.40
2290 root 1.41 #include &quot;ev++.h&quot;
2291 root 1.40
2292     </pre>
2293     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2294 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2295     #include &quot;ev.c&quot;
2296 root 1.40
2297 root 1.47
2298    
2299    
2300 root 1.40 </pre>
2301    
2302     </div>
2303 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2304 root 1.47 <div id="COMPLEXITIES_CONTENT">
2305     <p>In this section the complexities of (many of) the algorithms used inside
2306     libev will be explained. For complexity discussions about backends see the
2307     documentation for <code>ev_default_init</code>.</p>
2308 root 1.67 <p>All of the following are about amortised time: If an array needs to be
2309     extended, libev needs to realloc and move the whole array, but this
2310     happens asymptotically never with higher number of elements, so O(1) might
2311     mean it might do a lengthy realloc operation in rare cases, but on average
2312     it is much faster and asymptotically approaches constant time.</p>
2313 root 1.47 <p>
2314     <dl>
2315     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2316 root 1.66 <dd>
2317     <p>This means that, when you have a watcher that triggers in one hour and
2318     there are 100 watchers that would trigger before that then inserting will
2319     have to skip those 100 watchers.</p>
2320     </dd>
2321 root 1.47 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2322 root 1.66 <dd>
2323     <p>That means that for changing a timer costs less than removing/adding them
2324     as only the relative motion in the event queue has to be paid for.</p>
2325     </dd>
2326 root 1.47 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2327 root 1.66 <dd>
2328 root 1.67 <p>These just add the watcher into an array or at the head of a list.
2329     =item Stopping check/prepare/idle watchers: O(1)</p>
2330 root 1.66 </dd>
2331 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2332 root 1.66 <dd>
2333     <p>These watchers are stored in lists then need to be walked to find the
2334     correct watcher to remove. The lists are usually short (you don't usually
2335     have many watchers waiting for the same fd or signal).</p>
2336     </dd>
2337 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2338     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2339 root 1.66 <dd>
2340     <p>A change means an I/O watcher gets started or stopped, which requires
2341     libev to recalculate its status (and possibly tell the kernel).</p>
2342     </dd>
2343 root 1.47 <dt>Activating one watcher: O(1)</dt>
2344 root 1.66 <dt>Priority handling: O(number_of_priorities)</dt>
2345     <dd>
2346     <p>Priorities are implemented by allocating some space for each
2347     priority. When doing priority-based operations, libev usually has to
2348     linearly search all the priorities.</p>
2349     </dd>
2350 root 1.47 </dl>
2351     </p>
2352    
2353    
2354    
2355    
2356    
2357     </div>
2358 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2359 root 1.1 <div id="AUTHOR_CONTENT">
2360 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2361 root 1.1
2362     </div>
2363     </div></body>
2364     </html>