ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.76
Committed: Sun Dec 9 19:47:29 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
CVS Tags: rel-1_8
Changes since 1.75: +4 -4 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.76 <meta name="created" content="Sun Dec 9 20:47:27 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.43 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a></li>
33     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
34     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
35     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
36     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
37 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
38 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
39     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
40     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
41 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
42 root 1.1 </ul>
43     </li>
44     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
45 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
46     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
47 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
48 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
49     <ul><li><a href="#FILESETS">FILESETS</a>
50     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
51     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
52     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
53     </ul>
54     </li>
55     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
56     <li><a href="#EXAMPLES">EXAMPLES</a></li>
57     </ul>
58     </li>
59 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
60 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
61     </li>
62     </ul><hr />
63     <!-- INDEX END -->
64    
65 root 1.55 <h1 id="NAME">NAME</h1>
66 root 1.1 <div id="NAME_CONTENT">
67     <p>libev - a high performance full-featured event loop written in C</p>
68    
69     </div>
70 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
71 root 1.1 <div id="SYNOPSIS_CONTENT">
72 root 1.54 <pre> #include &lt;ev.h&gt;
73    
74     </pre>
75    
76     </div>
77 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
78 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
79     <pre> #include &lt;ev.h&gt;
80 root 1.53
81     ev_io stdin_watcher;
82     ev_timer timeout_watcher;
83    
84     /* called when data readable on stdin */
85     static void
86     stdin_cb (EV_P_ struct ev_io *w, int revents)
87     {
88     /* puts (&quot;stdin ready&quot;); */
89     ev_io_stop (EV_A_ w); /* just a syntax example */
90     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
91     }
92    
93     static void
94     timeout_cb (EV_P_ struct ev_timer *w, int revents)
95     {
96     /* puts (&quot;timeout&quot;); */
97     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
98     }
99    
100     int
101     main (void)
102     {
103     struct ev_loop *loop = ev_default_loop (0);
104    
105     /* initialise an io watcher, then start it */
106     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
107     ev_io_start (loop, &amp;stdin_watcher);
108    
109     /* simple non-repeating 5.5 second timeout */
110     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
111     ev_timer_start (loop, &amp;timeout_watcher);
112    
113     /* loop till timeout or data ready */
114     ev_loop (loop, 0);
115    
116     return 0;
117     }
118 root 1.1
119     </pre>
120    
121     </div>
122 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
123 root 1.1 <div id="DESCRIPTION_CONTENT">
124 root 1.66 <p>The newest version of this document is also available as a html-formatted
125     web page you might find easier to navigate when reading it for the first
126     time: <a href="http://cvs.schmorp.de/libev/ev.html">http://cvs.schmorp.de/libev/ev.html</a>.</p>
127 root 1.1 <p>Libev is an event loop: you register interest in certain events (such as a
128     file descriptor being readable or a timeout occuring), and it will manage
129 root 1.4 these event sources and provide your program with events.</p>
130 root 1.1 <p>To do this, it must take more or less complete control over your process
131     (or thread) by executing the <i>event loop</i> handler, and will then
132     communicate events via a callback mechanism.</p>
133     <p>You register interest in certain events by registering so-called <i>event
134     watchers</i>, which are relatively small C structures you initialise with the
135     details of the event, and then hand it over to libev by <i>starting</i> the
136     watcher.</p>
137    
138     </div>
139 root 1.55 <h1 id="FEATURES">FEATURES</h1>
140 root 1.1 <div id="FEATURES_CONTENT">
141 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
142     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
143     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
144     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
145     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
146     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
147     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
148 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
149     file watchers (<code>ev_stat</code>) and even limited support for fork events
150     (<code>ev_fork</code>).</p>
151     <p>It also is quite fast (see this
152     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
153     for example).</p>
154 root 1.1
155     </div>
156 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
157 root 1.1 <div id="CONVENTIONS_CONTENT">
158 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
159     be described, which supports multiple event loops. For more info about
160     various configuration options please have a look at <strong>EMBED</strong> section in
161     this manual. If libev was configured without support for multiple event
162     loops, then all functions taking an initial argument of name <code>loop</code>
163     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
164 root 1.1
165     </div>
166 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
167 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
168 root 1.2 <p>Libev represents time as a single floating point number, representing the
169     (fractional) number of seconds since the (POSIX) epoch (somewhere near
170     the beginning of 1970, details are complicated, don't ask). This type is
171 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
172 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
173     it, you should treat it as such.</p>
174    
175 root 1.18 </div>
176 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
177 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
178 root 1.21 <p>These functions can be called anytime, even before initialising the
179     library in any way.</p>
180 root 1.1 <dl>
181     <dt>ev_tstamp ev_time ()</dt>
182     <dd>
183 root 1.28 <p>Returns the current time as libev would use it. Please note that the
184     <code>ev_now</code> function is usually faster and also often returns the timestamp
185     you actually want to know.</p>
186 root 1.1 </dd>
187     <dt>int ev_version_major ()</dt>
188     <dt>int ev_version_minor ()</dt>
189     <dd>
190 root 1.76 <p>You can find out the major and minor ABI version numbers of the library
191 root 1.1 you linked against by calling the functions <code>ev_version_major</code> and
192     <code>ev_version_minor</code>. If you want, you can compare against the global
193     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
194     version of the library your program was compiled against.</p>
195 root 1.76 <p>These version numbers refer to the ABI version of the library, not the
196     release version.</p>
197 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
198 root 1.75 as this indicates an incompatible change. Minor versions are usually
199 root 1.1 compatible to older versions, so a larger minor version alone is usually
200     not a problem.</p>
201 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
202     version.</p>
203 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
204     ev_version_major () == EV_VERSION_MAJOR
205     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
206    
207     </pre>
208 root 1.1 </dd>
209 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
210     <dd>
211     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
212     value) compiled into this binary of libev (independent of their
213     availability on the system you are running on). See <code>ev_default_loop</code> for
214     a description of the set values.</p>
215 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
216     a must have and can we have a torrent of it please!!!11</p>
217     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
218     ev_supported_backends () &amp; EVBACKEND_EPOLL));
219    
220     </pre>
221 root 1.32 </dd>
222     <dt>unsigned int ev_recommended_backends ()</dt>
223     <dd>
224     <p>Return the set of all backends compiled into this binary of libev and also
225     recommended for this platform. This set is often smaller than the one
226     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
227     most BSDs and will not be autodetected unless you explicitly request it
228     (assuming you know what you are doing). This is the set of backends that
229 root 1.34 libev will probe for if you specify no backends explicitly.</p>
230 root 1.32 </dd>
231 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
232     <dd>
233     <p>Returns the set of backends that are embeddable in other event loops. This
234     is the theoretical, all-platform, value. To find which backends
235     might be supported on the current system, you would need to look at
236     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
237     recommended ones.</p>
238     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
239     </dd>
240 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
241 root 1.1 <dd>
242 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
243     semantics is identical - to the realloc C function). It is used to
244     allocate and free memory (no surprises here). If it returns zero when
245     memory needs to be allocated, the library might abort or take some
246     potentially destructive action. The default is your system realloc
247     function.</p>
248 root 1.1 <p>You could override this function in high-availability programs to, say,
249     free some memory if it cannot allocate memory, to use a special allocator,
250     or even to sleep a while and retry until some memory is available.</p>
251 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
252     retries).</p>
253 root 1.35 <pre> static void *
254 root 1.52 persistent_realloc (void *ptr, size_t size)
255 root 1.35 {
256     for (;;)
257     {
258     void *newptr = realloc (ptr, size);
259    
260     if (newptr)
261     return newptr;
262    
263     sleep (60);
264     }
265     }
266    
267     ...
268     ev_set_allocator (persistent_realloc);
269    
270     </pre>
271 root 1.1 </dd>
272     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
273     <dd>
274     <p>Set the callback function to call on a retryable syscall error (such
275     as failed select, poll, epoll_wait). The message is a printable string
276     indicating the system call or subsystem causing the problem. If this
277     callback is set, then libev will expect it to remedy the sitution, no
278 root 1.7 matter what, when it returns. That is, libev will generally retry the
279 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
280     (such as abort).</p>
281 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
282 root 1.35 <pre> static void
283     fatal_error (const char *msg)
284     {
285     perror (msg);
286     abort ();
287     }
288    
289     ...
290     ev_set_syserr_cb (fatal_error);
291    
292     </pre>
293 root 1.1 </dd>
294     </dl>
295    
296     </div>
297 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
298 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
299     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
300     types of such loops, the <i>default</i> loop, which supports signals and child
301     events, and dynamically created loops which do not.</p>
302     <p>If you use threads, a common model is to run the default event loop
303 root 1.18 in your main thread (or in a separate thread) and for each thread you
304 root 1.7 create, you also create another event loop. Libev itself does no locking
305     whatsoever, so if you mix calls to the same event loop in different
306     threads, make sure you lock (this is usually a bad idea, though, even if
307 root 1.9 done correctly, because it's hideous and inefficient).</p>
308 root 1.1 <dl>
309     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
310     <dd>
311     <p>This will initialise the default event loop if it hasn't been initialised
312     yet and return it. If the default loop could not be initialised, returns
313     false. If it already was initialised it simply returns it (and ignores the
314 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
315 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
316     function.</p>
317     <p>The flags argument can be used to specify special behaviour or specific
318 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
319     <p>The following flags are supported:</p>
320 root 1.1 <p>
321     <dl>
322 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
323 root 1.1 <dd>
324 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
325 root 1.1 thing, believe me).</p>
326     </dd>
327 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
328 root 1.1 <dd>
329 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
330     or setgid) then libev will <i>not</i> look at the environment variable
331     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
332     override the flags completely if it is found in the environment. This is
333     useful to try out specific backends to test their performance, or to work
334     around bugs.</p>
335 root 1.1 </dd>
336 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
337     <dd>
338     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
339     a fork, you can also make libev check for a fork in each iteration by
340     enabling this flag.</p>
341     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
342     and thus this might slow down your event loop if you do a lot of loop
343 root 1.64 iterations and little real work, but is usually not noticeable (on my
344 root 1.62 Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
345     without a syscall and thus <i>very</i> fast, but my Linux system also has
346     <code>pthread_atfork</code> which is even faster).</p>
347     <p>The big advantage of this flag is that you can forget about fork (and
348     forget about forgetting to tell libev about forking) when you use this
349     flag.</p>
350     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
351     environment variable.</p>
352     </dd>
353 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
354 root 1.29 <dd>
355     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
356     libev tries to roll its own fd_set with no limits on the number of fds,
357     but if that fails, expect a fairly low limit on the number of fds when
358     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
359     the fastest backend for a low number of fds.</p>
360     </dd>
361 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
362 root 1.29 <dd>
363     <p>And this is your standard poll(2) backend. It's more complicated than
364     select, but handles sparse fds better and has no artificial limit on the
365     number of fds you can use (except it will slow down considerably with a
366     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
367     </dd>
368 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
369 root 1.29 <dd>
370     <p>For few fds, this backend is a bit little slower than poll and select,
371     but it scales phenomenally better. While poll and select usually scale like
372     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
373     either O(1) or O(active_fds).</p>
374     <p>While stopping and starting an I/O watcher in the same iteration will
375     result in some caching, there is still a syscall per such incident
376     (because the fd could point to a different file description now), so its
377     best to avoid that. Also, dup()ed file descriptors might not work very
378     well if you register events for both fds.</p>
379 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
380     need to use non-blocking I/O or other means to avoid blocking when no data
381     (or space) is available.</p>
382 root 1.29 </dd>
383 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
384 root 1.29 <dd>
385     <p>Kqueue deserves special mention, as at the time of this writing, it
386     was broken on all BSDs except NetBSD (usually it doesn't work with
387     anything but sockets and pipes, except on Darwin, where of course its
388 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
389     unless you explicitly specify it explicitly in the flags (i.e. using
390     <code>EVBACKEND_KQUEUE</code>).</p>
391 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
392     kernel is more efficient (which says nothing about its actual speed, of
393     course). While starting and stopping an I/O watcher does not cause an
394     extra syscall as with epoll, it still adds up to four event changes per
395     incident, so its best to avoid that.</p>
396     </dd>
397 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
398 root 1.29 <dd>
399     <p>This is not implemented yet (and might never be).</p>
400     </dd>
401 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
402 root 1.29 <dd>
403     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
404     it's really slow, but it still scales very well (O(active_fds)).</p>
405 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
406     notifications, so you need to use non-blocking I/O or other means to avoid
407     blocking when no data (or space) is available.</p>
408 root 1.29 </dd>
409 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
410 root 1.29 <dd>
411 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
412     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
413 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
414 root 1.1 </dd>
415     </dl>
416     </p>
417 root 1.29 <p>If one or more of these are ored into the flags value, then only these
418     backends will be tried (in the reverse order as given here). If none are
419     specified, most compiled-in backend will be tried, usually in reverse
420     order of their flag values :)</p>
421 root 1.34 <p>The most typical usage is like this:</p>
422     <pre> if (!ev_default_loop (0))
423     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
424    
425     </pre>
426     <p>Restrict libev to the select and poll backends, and do not allow
427     environment settings to be taken into account:</p>
428     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
429    
430     </pre>
431     <p>Use whatever libev has to offer, but make sure that kqueue is used if
432     available (warning, breaks stuff, best use only with your own private
433     event loop and only if you know the OS supports your types of fds):</p>
434     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
435    
436     </pre>
437 root 1.1 </dd>
438     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
439     <dd>
440     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
441     always distinct from the default loop. Unlike the default loop, it cannot
442     handle signal and child watchers, and attempts to do so will be greeted by
443     undefined behaviour (or a failed assertion if assertions are enabled).</p>
444 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
445 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
446     if (!epoller)
447     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
448    
449     </pre>
450 root 1.1 </dd>
451     <dt>ev_default_destroy ()</dt>
452     <dd>
453     <p>Destroys the default loop again (frees all memory and kernel state
454 root 1.38 etc.). None of the active event watchers will be stopped in the normal
455     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
456     responsibility to either stop all watchers cleanly yoursef <i>before</i>
457     calling this function, or cope with the fact afterwards (which is usually
458     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
459     for example).</p>
460 root 1.1 </dd>
461     <dt>ev_loop_destroy (loop)</dt>
462     <dd>
463     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
464     earlier call to <code>ev_loop_new</code>.</p>
465     </dd>
466     <dt>ev_default_fork ()</dt>
467     <dd>
468     <p>This function reinitialises the kernel state for backends that have
469     one. Despite the name, you can call it anytime, but it makes most sense
470     after forking, in either the parent or child process (or both, but that
471     again makes little sense).</p>
472 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
473     only if you want to use the event library in both processes. If you just
474     fork+exec, you don't have to call it.</p>
475 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
476 root 1.1 it just in case after a fork. To make this easy, the function will fit in
477     quite nicely into a call to <code>pthread_atfork</code>:</p>
478     <pre> pthread_atfork (0, 0, ev_default_fork);
479    
480     </pre>
481 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
482     without calling this function, so if you force one of those backends you
483     do not need to care.</p>
484 root 1.1 </dd>
485     <dt>ev_loop_fork (loop)</dt>
486     <dd>
487     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
488     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
489     after fork, and how you do this is entirely your own problem.</p>
490     </dd>
491 root 1.64 <dt>unsigned int ev_loop_count (loop)</dt>
492     <dd>
493     <p>Returns the count of loop iterations for the loop, which is identical to
494     the number of times libev did poll for new events. It starts at <code>0</code> and
495     happily wraps around with enough iterations.</p>
496     <p>This value can sometimes be useful as a generation counter of sorts (it
497     &quot;ticks&quot; the number of loop iterations), as it roughly corresponds with
498     <code>ev_prepare</code> and <code>ev_check</code> calls.</p>
499     </dd>
500 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
501 root 1.1 <dd>
502 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
503 root 1.1 use.</p>
504     </dd>
505 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
506 root 1.1 <dd>
507     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
508 root 1.35 received events and started processing them. This timestamp does not
509     change as long as callbacks are being processed, and this is also the base
510     time used for relative timers. You can treat it as the timestamp of the
511     event occuring (or more correctly, libev finding out about it).</p>
512 root 1.1 </dd>
513     <dt>ev_loop (loop, int flags)</dt>
514     <dd>
515     <p>Finally, this is it, the event handler. This function usually is called
516     after you initialised all your watchers and you want to start handling
517     events.</p>
518 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
519     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
520 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
521     relying on all watchers to be stopped when deciding when a program has
522     finished (especially in interactive programs), but having a program that
523     automatically loops as long as it has to and no longer by virtue of
524     relying on its watchers stopping correctly is a thing of beauty.</p>
525 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
526     those events and any outstanding ones, but will not block your process in
527 root 1.9 case there are no events and will return after one iteration of the loop.</p>
528 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
529     neccessary) and will handle those and any outstanding ones. It will block
530 root 1.9 your process until at least one new event arrives, and will return after
531 root 1.34 one iteration of the loop. This is useful if you are waiting for some
532     external event in conjunction with something not expressible using other
533     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
534     usually a better approach for this kind of thing.</p>
535     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
536 root 1.73 <pre> - Before the first iteration, call any pending watchers.
537     * If there are no active watchers (reference count is zero), return.
538     - Queue all prepare watchers and then call all outstanding watchers.
539 root 1.34 - If we have been forked, recreate the kernel state.
540     - Update the kernel state with all outstanding changes.
541     - Update the &quot;event loop time&quot;.
542     - Calculate for how long to block.
543     - Block the process, waiting for any events.
544     - Queue all outstanding I/O (fd) events.
545     - Update the &quot;event loop time&quot; and do time jump handling.
546     - Queue all outstanding timers.
547     - Queue all outstanding periodics.
548     - If no events are pending now, queue all idle watchers.
549     - Queue all check watchers.
550     - Call all queued watchers in reverse order (i.e. check watchers first).
551     Signals and child watchers are implemented as I/O watchers, and will
552     be handled here by queueing them when their watcher gets executed.
553     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
554     were used, return, otherwise continue with step *.
555 root 1.28
556     </pre>
557 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
558 root 1.35 anymore.</p>
559     <pre> ... queue jobs here, make sure they register event watchers as long
560     ... as they still have work to do (even an idle watcher will do..)
561     ev_loop (my_loop, 0);
562     ... jobs done. yeah!
563    
564     </pre>
565 root 1.1 </dd>
566     <dt>ev_unloop (loop, how)</dt>
567     <dd>
568 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
569     has processed all outstanding events). The <code>how</code> argument must be either
570 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
571 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
572 root 1.1 </dd>
573     <dt>ev_ref (loop)</dt>
574     <dt>ev_unref (loop)</dt>
575     <dd>
576 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
577     loop: Every watcher keeps one reference, and as long as the reference
578     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
579     a watcher you never unregister that should not keep <code>ev_loop</code> from
580     returning, ev_unref() after starting, and ev_ref() before stopping it. For
581     example, libev itself uses this for its internal signal pipe: It is not
582     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
583     no event watchers registered by it are active. It is also an excellent
584     way to do this for generic recurring timers or from within third-party
585     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
586 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
587 root 1.35 running when nothing else is active.</p>
588 root 1.54 <pre> struct ev_signal exitsig;
589 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
590 root 1.54 ev_signal_start (loop, &amp;exitsig);
591     evf_unref (loop);
592 root 1.35
593     </pre>
594 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
595     <pre> ev_ref (loop);
596     ev_signal_stop (loop, &amp;exitsig);
597 root 1.35
598     </pre>
599 root 1.1 </dd>
600     </dl>
601    
602 root 1.43
603    
604    
605    
606 root 1.1 </div>
607 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
608 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
609     <p>A watcher is a structure that you create and register to record your
610     interest in some event. For instance, if you want to wait for STDIN to
611 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
612 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
613     {
614     ev_io_stop (w);
615     ev_unloop (loop, EVUNLOOP_ALL);
616     }
617    
618     struct ev_loop *loop = ev_default_loop (0);
619     struct ev_io stdin_watcher;
620     ev_init (&amp;stdin_watcher, my_cb);
621     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
622     ev_io_start (loop, &amp;stdin_watcher);
623     ev_loop (loop, 0);
624    
625     </pre>
626     <p>As you can see, you are responsible for allocating the memory for your
627     watcher structures (and it is usually a bad idea to do this on the stack,
628     although this can sometimes be quite valid).</p>
629     <p>Each watcher structure must be initialised by a call to <code>ev_init
630     (watcher *, callback)</code>, which expects a callback to be provided. This
631     callback gets invoked each time the event occurs (or, in the case of io
632     watchers, each time the event loop detects that the file descriptor given
633     is readable and/or writable).</p>
634     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
635     with arguments specific to this watcher type. There is also a macro
636     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
637     (watcher *, callback, ...)</code>.</p>
638     <p>To make the watcher actually watch out for events, you have to start it
639     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
640     *)</code>), and you can stop watching for events at any time by calling the
641     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
642     <p>As long as your watcher is active (has been started but not stopped) you
643     must not touch the values stored in it. Most specifically you must never
644 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
645 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
646     registered watcher structure as second, and a bitset of received events as
647     third argument.</p>
648 root 1.14 <p>The received events usually include a single bit per event type received
649 root 1.1 (you can receive multiple events at the same time). The possible bit masks
650     are:</p>
651     <dl>
652 root 1.10 <dt><code>EV_READ</code></dt>
653     <dt><code>EV_WRITE</code></dt>
654 root 1.1 <dd>
655 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
656 root 1.1 writable.</p>
657     </dd>
658 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
659 root 1.1 <dd>
660 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
661 root 1.1 </dd>
662 root 1.10 <dt><code>EV_PERIODIC</code></dt>
663 root 1.1 <dd>
664 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
665 root 1.1 </dd>
666 root 1.10 <dt><code>EV_SIGNAL</code></dt>
667 root 1.1 <dd>
668 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
669 root 1.1 </dd>
670 root 1.10 <dt><code>EV_CHILD</code></dt>
671 root 1.1 <dd>
672 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
673 root 1.1 </dd>
674 root 1.48 <dt><code>EV_STAT</code></dt>
675     <dd>
676     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
677     </dd>
678 root 1.10 <dt><code>EV_IDLE</code></dt>
679 root 1.1 <dd>
680 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
681 root 1.1 </dd>
682 root 1.10 <dt><code>EV_PREPARE</code></dt>
683     <dt><code>EV_CHECK</code></dt>
684 root 1.1 <dd>
685 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
686     to gather new events, and all <code>ev_check</code> watchers are invoked just after
687 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
688     received events. Callbacks of both watcher types can start and stop as
689     many watchers as they want, and all of them will be taken into account
690 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
691 root 1.1 <code>ev_loop</code> from blocking).</p>
692     </dd>
693 root 1.50 <dt><code>EV_EMBED</code></dt>
694     <dd>
695     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
696     </dd>
697     <dt><code>EV_FORK</code></dt>
698     <dd>
699     <p>The event loop has been resumed in the child process after fork (see
700     <code>ev_fork</code>).</p>
701     </dd>
702 root 1.10 <dt><code>EV_ERROR</code></dt>
703 root 1.1 <dd>
704     <p>An unspecified error has occured, the watcher has been stopped. This might
705     happen because the watcher could not be properly started because libev
706     ran out of memory, a file descriptor was found to be closed or any other
707     problem. You best act on it by reporting the problem and somehow coping
708     with the watcher being stopped.</p>
709     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
710     for example it might indicate that a fd is readable or writable, and if
711     your callbacks is well-written it can just attempt the operation and cope
712     with the error from read() or write(). This will not work in multithreaded
713     programs, though, so beware.</p>
714     </dd>
715     </dl>
716    
717     </div>
718 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
719     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
720 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
721     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
722     <dl>
723     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
724     <dd>
725     <p>This macro initialises the generic portion of a watcher. The contents
726     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
727     the generic parts of the watcher are initialised, you <i>need</i> to call
728     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
729     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
730     which rolls both calls into one.</p>
731     <p>You can reinitialise a watcher at any time as long as it has been stopped
732     (or never started) and there are no pending events outstanding.</p>
733 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
734 root 1.37 int revents)</code>.</p>
735     </dd>
736     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
737     <dd>
738     <p>This macro initialises the type-specific parts of a watcher. You need to
739     call <code>ev_init</code> at least once before you call this macro, but you can
740     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
741     macro on a watcher that is active (it can be pending, however, which is a
742     difference to the <code>ev_init</code> macro).</p>
743     <p>Although some watcher types do not have type-specific arguments
744     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
745     </dd>
746     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
747     <dd>
748     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
749     calls into a single call. This is the most convinient method to initialise
750     a watcher. The same limitations apply, of course.</p>
751     </dd>
752     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
753     <dd>
754     <p>Starts (activates) the given watcher. Only active watchers will receive
755     events. If the watcher is already active nothing will happen.</p>
756     </dd>
757     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
758     <dd>
759     <p>Stops the given watcher again (if active) and clears the pending
760     status. It is possible that stopped watchers are pending (for example,
761     non-repeating timers are being stopped when they become pending), but
762     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
763     you want to free or reuse the memory used by the watcher it is therefore a
764     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
765     </dd>
766     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
767     <dd>
768     <p>Returns a true value iff the watcher is active (i.e. it has been started
769     and not yet been stopped). As long as a watcher is active you must not modify
770     it.</p>
771     </dd>
772     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
773     <dd>
774     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
775     events but its callback has not yet been invoked). As long as a watcher
776     is pending (but not active) you must not call an init function on it (but
777 root 1.70 <code>ev_TYPE_set</code> is safe), you must not change its priority, and you must
778     make sure the watcher is available to libev (e.g. you cannot <code>free ()</code>
779     it).</p>
780 root 1.37 </dd>
781 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
782 root 1.37 <dd>
783     <p>Returns the callback currently set on the watcher.</p>
784     </dd>
785     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
786     <dd>
787     <p>Change the callback. You can change the callback at virtually any time
788     (modulo threads).</p>
789     </dd>
790 root 1.64 <dt>ev_set_priority (ev_TYPE *watcher, priority)</dt>
791     <dt>int ev_priority (ev_TYPE *watcher)</dt>
792     <dd>
793     <p>Set and query the priority of the watcher. The priority is a small
794     integer between <code>EV_MAXPRI</code> (default: <code>2</code>) and <code>EV_MINPRI</code>
795     (default: <code>-2</code>). Pending watchers with higher priority will be invoked
796     before watchers with lower priority, but priority will not keep watchers
797     from being executed (except for <code>ev_idle</code> watchers).</p>
798     <p>This means that priorities are <i>only</i> used for ordering callback
799     invocation after new events have been received. This is useful, for
800     example, to reduce latency after idling, or more often, to bind two
801     watchers on the same event and make sure one is called first.</p>
802     <p>If you need to suppress invocation when higher priority events are pending
803     you need to look at <code>ev_idle</code> watchers, which provide this functionality.</p>
804 root 1.70 <p>You <i>must not</i> change the priority of a watcher as long as it is active or
805     pending.</p>
806 root 1.64 <p>The default priority used by watchers when no priority has been set is
807     always <code>0</code>, which is supposed to not be too high and not be too low :).</p>
808     <p>Setting a priority outside the range of <code>EV_MINPRI</code> to <code>EV_MAXPRI</code> is
809     fine, as long as you do not mind that the priority value you query might
810     or might not have been adjusted to be within valid range.</p>
811     </dd>
812 root 1.70 <dt>ev_invoke (loop, ev_TYPE *watcher, int revents)</dt>
813     <dd>
814     <p>Invoke the <code>watcher</code> with the given <code>loop</code> and <code>revents</code>. Neither
815     <code>loop</code> nor <code>revents</code> need to be valid as long as the watcher callback
816     can deal with that fact.</p>
817     </dd>
818     <dt>int ev_clear_pending (loop, ev_TYPE *watcher)</dt>
819     <dd>
820     <p>If the watcher is pending, this function returns clears its pending status
821     and returns its <code>revents</code> bitset (as if its callback was invoked). If the
822     watcher isn't pending it does nothing and returns <code>0</code>.</p>
823     </dd>
824 root 1.37 </dl>
825    
826    
827    
828    
829    
830     </div>
831 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
832     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
833     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
834 root 1.14 and read at any time, libev will completely ignore it. This can be used
835 root 1.1 to associate arbitrary data with your watcher. If you need more data and
836     don't want to allocate memory and store a pointer to it in that data
837     member, you can also &quot;subclass&quot; the watcher type and provide your own
838     data:</p>
839     <pre> struct my_io
840     {
841     struct ev_io io;
842     int otherfd;
843     void *somedata;
844     struct whatever *mostinteresting;
845     }
846    
847     </pre>
848     <p>And since your callback will be called with a pointer to the watcher, you
849     can cast it back to your own type:</p>
850     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
851     {
852     struct my_io *w = (struct my_io *)w_;
853     ...
854     }
855    
856     </pre>
857 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
858     instead have been omitted.</p>
859     <p>Another common scenario is having some data structure with multiple
860     watchers:</p>
861     <pre> struct my_biggy
862     {
863     int some_data;
864     ev_timer t1;
865     ev_timer t2;
866     }
867 root 1.1
868 root 1.56 </pre>
869     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
870     you need to use <code>offsetof</code>:</p>
871     <pre> #include &lt;stddef.h&gt;
872 root 1.1
873 root 1.56 static void
874     t1_cb (EV_P_ struct ev_timer *w, int revents)
875     {
876     struct my_biggy big = (struct my_biggy *
877     (((char *)w) - offsetof (struct my_biggy, t1));
878     }
879    
880     static void
881     t2_cb (EV_P_ struct ev_timer *w, int revents)
882     {
883     struct my_biggy big = (struct my_biggy *
884     (((char *)w) - offsetof (struct my_biggy, t2));
885     }
886 root 1.1
887    
888    
889 root 1.56
890     </pre>
891    
892 root 1.1 </div>
893 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
894 root 1.1 <div id="WATCHER_TYPES_CONTENT">
895     <p>This section describes each watcher in detail, but will not repeat
896 root 1.48 information given in the last section. Any initialisation/set macros,
897     functions and members specific to the watcher type are explained.</p>
898     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
899     while the watcher is active, you can look at the member and expect some
900     sensible content, but you must not modify it (you can modify it while the
901     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
902     means you can expect it to have some sensible content while the watcher
903     is active, but you can also modify it. Modifying it may not do something
904     sensible or take immediate effect (or do anything at all), but libev will
905     not crash or malfunction in any way.</p>
906 root 1.1
907 root 1.35
908    
909    
910    
911 root 1.1 </div>
912 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
913 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
914 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
915 root 1.43 in each iteration of the event loop, or, more precisely, when reading
916     would not block the process and writing would at least be able to write
917     some data. This behaviour is called level-triggering because you keep
918     receiving events as long as the condition persists. Remember you can stop
919     the watcher if you don't want to act on the event and neither want to
920     receive future events.</p>
921 root 1.25 <p>In general you can register as many read and/or write event watchers per
922 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
923     descriptors to non-blocking mode is also usually a good idea (but not
924     required if you know what you are doing).</p>
925     <p>You have to be careful with dup'ed file descriptors, though. Some backends
926     (the linux epoll backend is a notable example) cannot handle dup'ed file
927     descriptors correctly if you register interest in two or more fds pointing
928 root 1.43 to the same underlying file/socket/etc. description (that is, they share
929 root 1.26 the same underlying &quot;file open&quot;).</p>
930 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
931 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
932     <code>EVBACKEND_POLL</code>).</p>
933 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
934     receive &quot;spurious&quot; readyness notifications, that is your callback might
935     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
936     because there is no data. Not only are some backends known to create a
937     lot of those (for example solaris ports), it is very easy to get into
938     this situation even with a relatively standard program structure. Thus
939     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
940     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
941     <p>If you cannot run the fd in non-blocking mode (for example you should not
942     play around with an Xlib connection), then you have to seperately re-test
943 root 1.65 whether a file descriptor is really ready with a known-to-be good interface
944 root 1.43 such as poll (fortunately in our Xlib example, Xlib already does this on
945     its own, so its quite safe to use).</p>
946 root 1.1 <dl>
947     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
948     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
949     <dd>
950 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
951     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
952     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
953 root 1.1 </dd>
954 root 1.48 <dt>int fd [read-only]</dt>
955     <dd>
956     <p>The file descriptor being watched.</p>
957     </dd>
958     <dt>int events [read-only]</dt>
959     <dd>
960     <p>The events being watched.</p>
961     </dd>
962 root 1.1 </dl>
963 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
964 root 1.35 readable, but only once. Since it is likely line-buffered, you could
965 root 1.54 attempt to read a whole line in the callback.</p>
966 root 1.35 <pre> static void
967     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
968     {
969     ev_io_stop (loop, w);
970     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
971     }
972    
973     ...
974     struct ev_loop *loop = ev_default_init (0);
975     struct ev_io stdin_readable;
976     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
977     ev_io_start (loop, &amp;stdin_readable);
978     ev_loop (loop, 0);
979    
980    
981    
982    
983     </pre>
984 root 1.1
985     </div>
986 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
987 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
988 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
989     given time, and optionally repeating in regular intervals after that.</p>
990     <p>The timers are based on real time, that is, if you register an event that
991 root 1.25 times out after an hour and you reset your system clock to last years
992 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
993 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
994 root 1.1 monotonic clock option helps a lot here).</p>
995 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
996     time. This is usually the right thing as this timestamp refers to the time
997 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
998     you suspect event processing to be delayed and you <i>need</i> to base the timeout
999 root 1.25 on the current time, use something like this to adjust for this:</p>
1000 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
1001    
1002     </pre>
1003 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
1004     but if multiple timers become ready during the same loop iteration then
1005     order of execution is undefined.</p>
1006 root 1.1 <dl>
1007     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
1008     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
1009     <dd>
1010     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
1011     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
1012     timer will automatically be configured to trigger again <code>repeat</code> seconds
1013     later, again, and again, until stopped manually.</p>
1014     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
1015     configure a timer to trigger every 10 seconds, then it will trigger at
1016     exactly 10 second intervals. If, however, your program cannot keep up with
1017 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
1018 root 1.1 timer will not fire more than once per event loop iteration.</p>
1019     </dd>
1020     <dt>ev_timer_again (loop)</dt>
1021     <dd>
1022     <p>This will act as if the timer timed out and restart it again if it is
1023     repeating. The exact semantics are:</p>
1024 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
1025     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
1026     <p>If the timer is repeating, either start it if necessary (with the
1027     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
1028 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
1029 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
1030     timeout, that is, you want to be called when there have been, say, 60
1031     seconds of inactivity on the socket. The easiest way to do this is to
1032     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
1033 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
1034     you go into an idle state where you do not expect data to travel on the
1035 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
1036     automatically restart it if need be.</p>
1037     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
1038     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
1039 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
1040     ev_timer_again (loop, timer);
1041     ...
1042     timer-&gt;again = 17.;
1043     ev_timer_again (loop, timer);
1044     ...
1045     timer-&gt;again = 10.;
1046     ev_timer_again (loop, timer);
1047    
1048     </pre>
1049 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1050     you want to modify its timeout value.</p>
1051 root 1.48 </dd>
1052     <dt>ev_tstamp repeat [read-write]</dt>
1053     <dd>
1054     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1055     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1056     which is also when any modifications are taken into account.</p>
1057 root 1.1 </dd>
1058     </dl>
1059 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1060 root 1.35 <pre> static void
1061     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1062     {
1063     .. one minute over, w is actually stopped right here
1064     }
1065    
1066     struct ev_timer mytimer;
1067     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1068     ev_timer_start (loop, &amp;mytimer);
1069    
1070     </pre>
1071 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1072 root 1.35 inactivity.</p>
1073     <pre> static void
1074     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1075     {
1076     .. ten seconds without any activity
1077     }
1078    
1079     struct ev_timer mytimer;
1080     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1081     ev_timer_again (&amp;mytimer); /* start timer */
1082     ev_loop (loop, 0);
1083    
1084     // and in some piece of code that gets executed on any &quot;activity&quot;:
1085     // reset the timeout to start ticking again at 10 seconds
1086     ev_timer_again (&amp;mytimer);
1087    
1088    
1089    
1090    
1091     </pre>
1092 root 1.1
1093     </div>
1094 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1095 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1096 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1097     (and unfortunately a bit complex).</p>
1098 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1099 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1100     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1101 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1102     + 10.</code>) and then reset your system clock to the last year, then it will
1103 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1104 root 1.74 roughly 10 seconds later).</p>
1105 root 1.1 <p>They can also be used to implement vastly more complex timers, such as
1106 root 1.74 triggering an event on each midnight, local time or other, complicated,
1107     rules.</p>
1108 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1109     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1110     during the same loop iteration then order of execution is undefined.</p>
1111 root 1.1 <dl>
1112     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1113     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1114     <dd>
1115     <p>Lots of arguments, lets sort it out... There are basically three modes of
1116     operation, and we will explain them from simplest to complex:</p>
1117     <p>
1118     <dl>
1119 root 1.74 <dt>* absolute timer (at = time, interval = reschedule_cb = 0)</dt>
1120 root 1.1 <dd>
1121     <p>In this configuration the watcher triggers an event at the wallclock time
1122     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1123     that is, if it is to be run at January 1st 2011 then it will run when the
1124     system time reaches or surpasses this time.</p>
1125     </dd>
1126 root 1.74 <dt>* non-repeating interval timer (at = offset, interval &gt; 0, reschedule_cb = 0)</dt>
1127 root 1.1 <dd>
1128     <p>In this mode the watcher will always be scheduled to time out at the next
1129 root 1.74 <code>at + N * interval</code> time (for some integer N, which can also be negative)
1130     and then repeat, regardless of any time jumps.</p>
1131 root 1.1 <p>This can be used to create timers that do not drift with respect to system
1132     time:</p>
1133     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1134    
1135     </pre>
1136     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1137     but only that the the callback will be called when the system time shows a
1138 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1139 root 1.1 by 3600.</p>
1140     <p>Another way to think about it (for the mathematically inclined) is that
1141 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1142 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1143 root 1.74 <p>For numerical stability it is preferable that the <code>at</code> value is near
1144     <code>ev_now ()</code> (the current time), but there is no range requirement for
1145     this value.</p>
1146 root 1.1 </dd>
1147 root 1.74 <dt>* manual reschedule mode (at and interval ignored, reschedule_cb = callback)</dt>
1148 root 1.1 <dd>
1149     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1150     ignored. Instead, each time the periodic watcher gets scheduled, the
1151     reschedule callback will be called with the watcher as first, and the
1152     current time as second argument.</p>
1153 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1154     ever, or make any event loop modifications</i>. If you need to stop it,
1155     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1156 root 1.74 starting an <code>ev_prepare</code> watcher, which is legal).</p>
1157 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1158     ev_tstamp now)</code>, e.g.:</p>
1159 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1160     {
1161     return now + 60.;
1162     }
1163    
1164     </pre>
1165     <p>It must return the next time to trigger, based on the passed time value
1166     (that is, the lowest time value larger than to the second argument). It
1167     will usually be called just before the callback will be triggered, but
1168     might be called at other times, too.</p>
1169 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1170 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1171 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1172     triggers on each midnight, local time. To do this, you would calculate the
1173 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1174     you do this is, again, up to you (but it is not trivial, which is the main
1175     reason I omitted it as an example).</p>
1176 root 1.1 </dd>
1177     </dl>
1178     </p>
1179     </dd>
1180     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1181     <dd>
1182     <p>Simply stops and restarts the periodic watcher again. This is only useful
1183     when you changed some parameters or the reschedule callback would return
1184     a different time than the last time it was called (e.g. in a crond like
1185     program when the crontabs have changed).</p>
1186     </dd>
1187 root 1.74 <dt>ev_tstamp offset [read-write]</dt>
1188     <dd>
1189     <p>When repeating, this contains the offset value, otherwise this is the
1190     absolute point in time (the <code>at</code> value passed to <code>ev_periodic_set</code>).</p>
1191     <p>Can be modified any time, but changes only take effect when the periodic
1192     timer fires or <code>ev_periodic_again</code> is being called.</p>
1193     </dd>
1194 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1195     <dd>
1196     <p>The current interval value. Can be modified any time, but changes only
1197     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1198     called.</p>
1199     </dd>
1200     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1201     <dd>
1202     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1203     switched off. Can be changed any time, but changes only take effect when
1204     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1205     </dd>
1206 root 1.1 </dl>
1207 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1208 root 1.35 system clock is divisible by 3600. The callback invocation times have
1209     potentially a lot of jittering, but good long-term stability.</p>
1210     <pre> static void
1211     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1212     {
1213     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1214     }
1215    
1216     struct ev_periodic hourly_tick;
1217     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1218     ev_periodic_start (loop, &amp;hourly_tick);
1219    
1220     </pre>
1221 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1222 root 1.35 <pre> #include &lt;math.h&gt;
1223    
1224     static ev_tstamp
1225     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1226     {
1227     return fmod (now, 3600.) + 3600.;
1228     }
1229    
1230     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1231    
1232     </pre>
1233 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1234 root 1.35 <pre> struct ev_periodic hourly_tick;
1235     ev_periodic_init (&amp;hourly_tick, clock_cb,
1236     fmod (ev_now (loop), 3600.), 3600., 0);
1237     ev_periodic_start (loop, &amp;hourly_tick);
1238    
1239    
1240    
1241    
1242     </pre>
1243 root 1.1
1244     </div>
1245 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1246 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1247 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1248     signal one or more times. Even though signals are very asynchronous, libev
1249 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1250 root 1.1 normal event processing, like any other event.</p>
1251 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1252 root 1.1 first watcher gets started will libev actually register a signal watcher
1253     with the kernel (thus it coexists with your own signal handlers as long
1254     as you don't register any with libev). Similarly, when the last signal
1255     watcher for a signal is stopped libev will reset the signal handler to
1256     SIG_DFL (regardless of what it was set to before).</p>
1257     <dl>
1258     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1259     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1260     <dd>
1261     <p>Configures the watcher to trigger on the given signal number (usually one
1262     of the <code>SIGxxx</code> constants).</p>
1263     </dd>
1264 root 1.48 <dt>int signum [read-only]</dt>
1265     <dd>
1266     <p>The signal the watcher watches out for.</p>
1267     </dd>
1268 root 1.1 </dl>
1269    
1270 root 1.36
1271    
1272    
1273    
1274 root 1.1 </div>
1275 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1276     <div id="code_ev_child_code_watch_out_for_pro-2">
1277 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1278     some child status changes (most typically when a child of yours dies).</p>
1279     <dl>
1280     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1281     <dt>ev_child_set (ev_child *, int pid)</dt>
1282     <dd>
1283     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1284     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1285     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1286 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1287     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1288     process causing the status change.</p>
1289 root 1.1 </dd>
1290 root 1.48 <dt>int pid [read-only]</dt>
1291     <dd>
1292     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1293     </dd>
1294     <dt>int rpid [read-write]</dt>
1295     <dd>
1296     <p>The process id that detected a status change.</p>
1297     </dd>
1298     <dt>int rstatus [read-write]</dt>
1299     <dd>
1300     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1301     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1302     </dd>
1303 root 1.1 </dl>
1304 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1305 root 1.35 <pre> static void
1306     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1307     {
1308     ev_unloop (loop, EVUNLOOP_ALL);
1309     }
1310    
1311     struct ev_signal signal_watcher;
1312     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1313     ev_signal_start (loop, &amp;sigint_cb);
1314    
1315    
1316    
1317    
1318     </pre>
1319 root 1.1
1320     </div>
1321 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1322     <div id="code_ev_stat_code_did_the_file_attri-2">
1323     <p>This watches a filesystem path for attribute changes. That is, it calls
1324     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1325     compared to the last time, invoking the callback if it did.</p>
1326     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1327     not exist&quot; is a status change like any other. The condition &quot;path does
1328     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1329     otherwise always forced to be at least one) and all the other fields of
1330     the stat buffer having unspecified contents.</p>
1331 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1332     relative and your working directory changes, the behaviour is undefined.</p>
1333 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1334 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1335 root 1.48 can specify a recommended polling interval for this case. If you specify
1336     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1337     unspecified default</i> value will be used (which you can expect to be around
1338     five seconds, although this might change dynamically). Libev will also
1339     impose a minimum interval which is currently around <code>0.1</code>, but thats
1340     usually overkill.</p>
1341     <p>This watcher type is not meant for massive numbers of stat watchers,
1342     as even with OS-supported change notifications, this can be
1343     resource-intensive.</p>
1344 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1345     implemented (implementing kqueue support is left as an exercise for the
1346     reader). Inotify will be used to give hints only and should not change the
1347     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1348     to fall back to regular polling again even with inotify, but changes are
1349     usually detected immediately, and if the file exists there will be no
1350     polling.</p>
1351 root 1.48 <dl>
1352     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1353     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1354     <dd>
1355     <p>Configures the watcher to wait for status changes of the given
1356     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1357     be detected and should normally be specified as <code>0</code> to let libev choose
1358     a suitable value. The memory pointed to by <code>path</code> must point to the same
1359     path for as long as the watcher is active.</p>
1360     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1361     relative to the attributes at the time the watcher was started (or the
1362     last change was detected).</p>
1363     </dd>
1364     <dt>ev_stat_stat (ev_stat *)</dt>
1365     <dd>
1366     <p>Updates the stat buffer immediately with new values. If you change the
1367     watched path in your callback, you could call this fucntion to avoid
1368     detecting this change (while introducing a race condition). Can also be
1369     useful simply to find out the new values.</p>
1370     </dd>
1371     <dt>ev_statdata attr [read-only]</dt>
1372     <dd>
1373     <p>The most-recently detected attributes of the file. Although the type is of
1374     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1375     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1376     was some error while <code>stat</code>ing the file.</p>
1377     </dd>
1378     <dt>ev_statdata prev [read-only]</dt>
1379     <dd>
1380     <p>The previous attributes of the file. The callback gets invoked whenever
1381     <code>prev</code> != <code>attr</code>.</p>
1382     </dd>
1383     <dt>ev_tstamp interval [read-only]</dt>
1384     <dd>
1385     <p>The specified interval.</p>
1386     </dd>
1387     <dt>const char *path [read-only]</dt>
1388     <dd>
1389     <p>The filesystem path that is being watched.</p>
1390     </dd>
1391     </dl>
1392     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1393     <pre> static void
1394     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1395     {
1396     /* /etc/passwd changed in some way */
1397     if (w-&gt;attr.st_nlink)
1398     {
1399     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1400     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1401     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1402     }
1403     else
1404     /* you shalt not abuse printf for puts */
1405     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1406     &quot;if this is windows, they already arrived\n&quot;);
1407     }
1408    
1409     ...
1410     ev_stat passwd;
1411    
1412     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1413     ev_stat_start (loop, &amp;passwd);
1414    
1415    
1416    
1417    
1418     </pre>
1419    
1420     </div>
1421 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1422 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1423 root 1.64 <p>Idle watchers trigger events when no other events of the same or higher
1424     priority are pending (prepare, check and other idle watchers do not
1425     count).</p>
1426     <p>That is, as long as your process is busy handling sockets or timeouts
1427     (or even signals, imagine) of the same or higher priority it will not be
1428     triggered. But when your process is idle (or only lower-priority watchers
1429     are pending), the idle watchers are being called once per event loop
1430     iteration - until stopped, that is, or your process receives more events
1431     and becomes busy again with higher priority stuff.</p>
1432 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1433     active, the process will not block when waiting for new events.</p>
1434     <p>Apart from keeping your process non-blocking (which is a useful
1435     effect on its own sometimes), idle watchers are a good place to do
1436     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1437     event loop has handled all outstanding events.</p>
1438     <dl>
1439     <dt>ev_idle_init (ev_signal *, callback)</dt>
1440     <dd>
1441     <p>Initialises and configures the idle watcher - it has no parameters of any
1442     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1443     believe me.</p>
1444     </dd>
1445     </dl>
1446 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1447     callback, free it. Also, use no error checking, as usual.</p>
1448 root 1.35 <pre> static void
1449     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1450     {
1451     free (w);
1452     // now do something you wanted to do when the program has
1453     // no longer asnything immediate to do.
1454     }
1455    
1456     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1457     ev_idle_init (idle_watcher, idle_cb);
1458     ev_idle_start (loop, idle_cb);
1459    
1460    
1461    
1462    
1463     </pre>
1464 root 1.1
1465     </div>
1466 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1467 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1468 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1469 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1470 root 1.14 afterwards.</p>
1471 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1472     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1473     watchers. Other loops than the current one are fine, however. The
1474     rationale behind this is that you do not need to check for recursion in
1475     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1476     <code>ev_check</code> so if you have one watcher of each kind they will always be
1477     called in pairs bracketing the blocking call.</p>
1478 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1479     their use is somewhat advanced. This could be used, for example, to track
1480     variable changes, implement your own watchers, integrate net-snmp or a
1481 root 1.46 coroutine library and lots more. They are also occasionally useful if
1482     you cache some data and want to flush it before blocking (for example,
1483     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1484     watcher).</p>
1485 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1486 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1487     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1488     provide just this functionality). Then, in the check watcher you check for
1489     any events that occured (by checking the pending status of all watchers
1490     and stopping them) and call back into the library. The I/O and timer
1491 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1492 root 1.14 because you never know, you know?).</p>
1493     <p>As another example, the Perl Coro module uses these hooks to integrate
1494 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1495     during each prepare and only letting the process block if no coroutines
1496 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1497     with priority higher than or equal to the event loop and one coroutine
1498     of lower priority, but only once, using idle watchers to keep the event
1499     loop from blocking if lower-priority coroutines are active, thus mapping
1500     low-priority coroutines to idle/background tasks).</p>
1501 root 1.73 <p>It is recommended to give <code>ev_check</code> watchers highest (<code>EV_MAXPRI</code>)
1502     priority, to ensure that they are being run before any other watchers
1503     after the poll. Also, <code>ev_check</code> watchers (and <code>ev_prepare</code> watchers,
1504     too) should not activate (&quot;feed&quot;) events into libev. While libev fully
1505     supports this, they will be called before other <code>ev_check</code> watchers did
1506     their job. As <code>ev_check</code> watchers are often used to embed other event
1507     loops those other event loops might be in an unusable state until their
1508     <code>ev_check</code> watcher ran (always remind yourself to coexist peacefully with
1509     others).</p>
1510 root 1.1 <dl>
1511     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1512     <dt>ev_check_init (ev_check *, callback)</dt>
1513     <dd>
1514     <p>Initialises and configures the prepare or check watcher - they have no
1515     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1516 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1517 root 1.1 </dd>
1518     </dl>
1519 root 1.72 <p>There are a number of principal ways to embed other event loops or modules
1520     into libev. Here are some ideas on how to include libadns into libev
1521     (there is a Perl module named <code>EV::ADNS</code> that does this, which you could
1522     use for an actually working example. Another Perl module named <code>EV::Glib</code>
1523     embeds a Glib main context into libev, and finally, <code>Glib::EV</code> embeds EV
1524     into the Glib event loop).</p>
1525     <p>Method 1: Add IO watchers and a timeout watcher in a prepare handler,
1526     and in a check watcher, destroy them and call into libadns. What follows
1527     is pseudo-code only of course. This requires you to either use a low
1528     priority for the check watcher or use <code>ev_clear_pending</code> explicitly, as
1529     the callbacks for the IO/timeout watchers might not have been called yet.</p>
1530 root 1.46 <pre> static ev_io iow [nfd];
1531     static ev_timer tw;
1532    
1533     static void
1534     io_cb (ev_loop *loop, ev_io *w, int revents)
1535     {
1536     }
1537    
1538     // create io watchers for each fd and a timer before blocking
1539     static void
1540     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1541     {
1542 root 1.64 int timeout = 3600000;
1543     struct pollfd fds [nfd];
1544 root 1.46 // actual code will need to loop here and realloc etc.
1545     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1546    
1547     /* the callback is illegal, but won't be called as we stop during check */
1548     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1549     ev_timer_start (loop, &amp;tw);
1550    
1551 root 1.72 // create one ev_io per pollfd
1552 root 1.46 for (int i = 0; i &lt; nfd; ++i)
1553     {
1554     ev_io_init (iow + i, io_cb, fds [i].fd,
1555     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1556     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1557    
1558     fds [i].revents = 0;
1559     ev_io_start (loop, iow + i);
1560     }
1561     }
1562    
1563     // stop all watchers after blocking
1564     static void
1565     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1566     {
1567     ev_timer_stop (loop, &amp;tw);
1568    
1569     for (int i = 0; i &lt; nfd; ++i)
1570 root 1.72 {
1571     // set the relevant poll flags
1572     // could also call adns_processreadable etc. here
1573     struct pollfd *fd = fds + i;
1574     int revents = ev_clear_pending (iow + i);
1575     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1576     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1577    
1578     // now stop the watcher
1579     ev_io_stop (loop, iow + i);
1580     }
1581 root 1.46
1582     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1583     }
1584 root 1.35
1585 root 1.72 </pre>
1586     <p>Method 2: This would be just like method 1, but you run <code>adns_afterpoll</code>
1587     in the prepare watcher and would dispose of the check watcher.</p>
1588     <p>Method 3: If the module to be embedded supports explicit event
1589     notification (adns does), you can also make use of the actual watcher
1590     callbacks, and only destroy/create the watchers in the prepare watcher.</p>
1591     <pre> static void
1592     timer_cb (EV_P_ ev_timer *w, int revents)
1593     {
1594     adns_state ads = (adns_state)w-&gt;data;
1595     update_now (EV_A);
1596    
1597     adns_processtimeouts (ads, &amp;tv_now);
1598     }
1599    
1600     static void
1601     io_cb (EV_P_ ev_io *w, int revents)
1602     {
1603     adns_state ads = (adns_state)w-&gt;data;
1604     update_now (EV_A);
1605    
1606     if (revents &amp; EV_READ ) adns_processreadable (ads, w-&gt;fd, &amp;tv_now);
1607     if (revents &amp; EV_WRITE) adns_processwriteable (ads, w-&gt;fd, &amp;tv_now);
1608     }
1609    
1610     // do not ever call adns_afterpoll
1611    
1612     </pre>
1613     <p>Method 4: Do not use a prepare or check watcher because the module you
1614     want to embed is too inflexible to support it. Instead, youc na override
1615     their poll function. The drawback with this solution is that the main
1616     loop is now no longer controllable by EV. The <code>Glib::EV</code> module does
1617     this.</p>
1618     <pre> static gint
1619     event_poll_func (GPollFD *fds, guint nfds, gint timeout)
1620     {
1621     int got_events = 0;
1622    
1623     for (n = 0; n &lt; nfds; ++n)
1624     // create/start io watcher that sets the relevant bits in fds[n] and increment got_events
1625    
1626     if (timeout &gt;= 0)
1627     // create/start timer
1628    
1629     // poll
1630     ev_loop (EV_A_ 0);
1631    
1632     // stop timer again
1633     if (timeout &gt;= 0)
1634     ev_timer_stop (EV_A_ &amp;to);
1635    
1636     // stop io watchers again - their callbacks should have set
1637     for (n = 0; n &lt; nfds; ++n)
1638     ev_io_stop (EV_A_ iow [n]);
1639    
1640     return got_events;
1641     }
1642    
1643 root 1.35
1644    
1645    
1646 root 1.46 </pre>
1647 root 1.1
1648     </div>
1649 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1650 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1651     <p>This is a rather advanced watcher type that lets you embed one event loop
1652 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1653     loop, other types of watchers might be handled in a delayed or incorrect
1654     fashion and must not be used).</p>
1655 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1656     prioritise I/O.</p>
1657     <p>As an example for a bug workaround, the kqueue backend might only support
1658     sockets on some platform, so it is unusable as generic backend, but you
1659     still want to make use of it because you have many sockets and it scales
1660     so nicely. In this case, you would create a kqueue-based loop and embed it
1661     into your default loop (which might use e.g. poll). Overall operation will
1662     be a bit slower because first libev has to poll and then call kevent, but
1663     at least you can use both at what they are best.</p>
1664     <p>As for prioritising I/O: rarely you have the case where some fds have
1665     to be watched and handled very quickly (with low latency), and even
1666     priorities and idle watchers might have too much overhead. In this case
1667     you would put all the high priority stuff in one loop and all the rest in
1668     a second one, and embed the second one in the first.</p>
1669 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1670     there might be events pending in the embedded loop. The callback must then
1671     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1672     their callbacks (you could also start an idle watcher to give the embedded
1673     loop strictly lower priority for example). You can also set the callback
1674     to <code>0</code>, in which case the embed watcher will automatically execute the
1675     embedded loop sweep.</p>
1676 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1677     callback will be invoked whenever some events have been handled. You can
1678     set the callback to <code>0</code> to avoid having to specify one if you are not
1679     interested in that.</p>
1680     <p>Also, there have not currently been made special provisions for forking:
1681     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1682     but you will also have to stop and restart any <code>ev_embed</code> watchers
1683     yourself.</p>
1684     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1685     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1686     portable one.</p>
1687     <p>So when you want to use this feature you will always have to be prepared
1688     that you cannot get an embeddable loop. The recommended way to get around
1689     this is to have a separate variables for your embeddable loop, try to
1690     create it, and if that fails, use the normal loop for everything:</p>
1691     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1692     struct ev_loop *loop_lo = 0;
1693     struct ev_embed embed;
1694    
1695     // see if there is a chance of getting one that works
1696     // (remember that a flags value of 0 means autodetection)
1697     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1698     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1699     : 0;
1700    
1701     // if we got one, then embed it, otherwise default to loop_hi
1702     if (loop_lo)
1703     {
1704     ev_embed_init (&amp;embed, 0, loop_lo);
1705     ev_embed_start (loop_hi, &amp;embed);
1706     }
1707     else
1708     loop_lo = loop_hi;
1709    
1710     </pre>
1711     <dl>
1712 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1713     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1714 root 1.36 <dd>
1715 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1716     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1717     invoked automatically, otherwise it is the responsibility of the callback
1718     to invoke it (it will continue to be called until the sweep has been done,
1719     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1720     </dd>
1721     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1722     <dd>
1723     <p>Make a single, non-blocking sweep over the embedded loop. This works
1724     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1725     apropriate way for embedded loops.</p>
1726 root 1.36 </dd>
1727 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1728     <dd>
1729     <p>The embedded event loop.</p>
1730     </dd>
1731 root 1.36 </dl>
1732    
1733    
1734    
1735    
1736    
1737     </div>
1738 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1739     <div id="code_ev_fork_code_the_audacity_to_re-2">
1740     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1741     whoever is a good citizen cared to tell libev about it by calling
1742     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1743     event loop blocks next and before <code>ev_check</code> watchers are being called,
1744     and only in the child after the fork. If whoever good citizen calling
1745     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1746     handlers will be invoked, too, of course.</p>
1747     <dl>
1748     <dt>ev_fork_init (ev_signal *, callback)</dt>
1749     <dd>
1750     <p>Initialises and configures the fork watcher - it has no parameters of any
1751     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1752     believe me.</p>
1753     </dd>
1754     </dl>
1755    
1756    
1757    
1758    
1759    
1760     </div>
1761 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1762 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1763 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1764 root 1.1 <dl>
1765     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1766     <dd>
1767     <p>This function combines a simple timer and an I/O watcher, calls your
1768     callback on whichever event happens first and automatically stop both
1769     watchers. This is useful if you want to wait for a single event on an fd
1770 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1771 root 1.1 more watchers yourself.</p>
1772 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1773     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1774     <code>events</code> set will be craeted and started.</p>
1775 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1776 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1777     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1778     dubious value.</p>
1779     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1780 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1781 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1782     value passed to <code>ev_once</code>:</p>
1783 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1784     {
1785     if (revents &amp; EV_TIMEOUT)
1786 root 1.14 /* doh, nothing entered */;
1787 root 1.1 else if (revents &amp; EV_READ)
1788 root 1.14 /* stdin might have data for us, joy! */;
1789 root 1.1 }
1790    
1791 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1792 root 1.1
1793     </pre>
1794     </dd>
1795 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1796 root 1.1 <dd>
1797     <p>Feeds the given event set into the event loop, as if the specified event
1798 root 1.14 had happened for the specified watcher (which must be a pointer to an
1799     initialised but not necessarily started event watcher).</p>
1800 root 1.1 </dd>
1801 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1802 root 1.1 <dd>
1803 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1804     the given events it.</p>
1805 root 1.1 </dd>
1806 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1807 root 1.1 <dd>
1808 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1809     loop!).</p>
1810 root 1.1 </dd>
1811     </dl>
1812    
1813 root 1.35
1814    
1815    
1816    
1817 root 1.1 </div>
1818 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1819 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1820 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1821     emulate the internals of libevent, so here are some usage hints:</p>
1822     <dl>
1823     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1824     <dt>* The following members are fully supported: ev_base, ev_callback,
1825     ev_arg, ev_fd, ev_res, ev_events.</dt>
1826     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1827     maintained by libev, it does not work exactly the same way as in libevent (consider
1828     it a private API).</dt>
1829     <dt>* Priorities are not currently supported. Initialising priorities
1830     will fail and all watchers will have the same priority, even though there
1831     is an ev_pri field.</dt>
1832     <dt>* Other members are not supported.</dt>
1833     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1834     to use the libev header file and library.</dt>
1835     </dl>
1836 root 1.23
1837     </div>
1838 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1839 root 1.23 <div id="C_SUPPORT_CONTENT">
1840 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1841     you to use some convinience methods to start/stop watchers and also change
1842     the callback model to a model using method callbacks on objects.</p>
1843     <p>To use it,</p>
1844     <pre> #include &lt;ev++.h&gt;
1845    
1846     </pre>
1847 root 1.68 <p>This automatically includes <cite>ev.h</cite> and puts all of its definitions (many
1848     of them macros) into the global namespace. All C++ specific things are
1849     put into the <code>ev</code> namespace. It should support all the same embedding
1850     options as <cite>ev.h</cite>, most notably <code>EV_MULTIPLICITY</code>.</p>
1851 root 1.69 <p>Care has been taken to keep the overhead low. The only data member the C++
1852     classes add (compared to plain C-style watchers) is the event loop pointer
1853     that the watcher is associated with (or no additional members at all if
1854     you disable <code>EV_MULTIPLICITY</code> when embedding libev).</p>
1855     <p>Currently, functions, and static and non-static member functions can be
1856 root 1.68 used as callbacks. Other types should be easy to add as long as they only
1857     need one additional pointer for context. If you need support for other
1858     types of functors please contact the author (preferably after implementing
1859     it).</p>
1860 root 1.39 <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1861     <dl>
1862     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1863     <dd>
1864     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1865     macros from <cite>ev.h</cite>.</p>
1866     </dd>
1867     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1868     <dd>
1869     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1870     </dd>
1871     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1872     <dd>
1873     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1874     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1875     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1876     defines by many implementations.</p>
1877     <p>All of those classes have these methods:</p>
1878     <p>
1879     <dl>
1880 root 1.68 <dt>ev::TYPE::TYPE ()</dt>
1881     <dt>ev::TYPE::TYPE (struct ev_loop *)</dt>
1882 root 1.39 <dt>ev::TYPE::~TYPE</dt>
1883     <dd>
1884 root 1.68 <p>The constructor (optionally) takes an event loop to associate the watcher
1885     with. If it is omitted, it will use <code>EV_DEFAULT</code>.</p>
1886     <p>The constructor calls <code>ev_init</code> for you, which means you have to call the
1887     <code>set</code> method before starting it.</p>
1888     <p>It will not set a callback, however: You have to call the templated <code>set</code>
1889     method to set a callback before you can start the watcher.</p>
1890     <p>(The reason why you have to use a method is a limitation in C++ which does
1891     not allow explicit template arguments for constructors).</p>
1892 root 1.39 <p>The destructor automatically stops the watcher if it is active.</p>
1893     </dd>
1894 root 1.68 <dt>w-&gt;set&lt;class, &amp;class::method&gt; (object *)</dt>
1895     <dd>
1896     <p>This method sets the callback method to call. The method has to have a
1897     signature of <code>void (*)(ev_TYPE &amp;, int)</code>, it receives the watcher as
1898     first argument and the <code>revents</code> as second. The object must be given as
1899     parameter and is stored in the <code>data</code> member of the watcher.</p>
1900     <p>This method synthesizes efficient thunking code to call your method from
1901     the C callback that libev requires. If your compiler can inline your
1902     callback (i.e. it is visible to it at the place of the <code>set</code> call and
1903     your compiler is good :), then the method will be fully inlined into the
1904     thunking function, making it as fast as a direct C callback.</p>
1905     <p>Example: simple class declaration and watcher initialisation</p>
1906     <pre> struct myclass
1907     {
1908     void io_cb (ev::io &amp;w, int revents) { }
1909     }
1910    
1911     myclass obj;
1912     ev::io iow;
1913     iow.set &lt;myclass, &amp;myclass::io_cb&gt; (&amp;obj);
1914    
1915     </pre>
1916     </dd>
1917 root 1.70 <dt>w-&gt;set&lt;function&gt; (void *data = 0)</dt>
1918 root 1.68 <dd>
1919     <p>Also sets a callback, but uses a static method or plain function as
1920     callback. The optional <code>data</code> argument will be stored in the watcher's
1921     <code>data</code> member and is free for you to use.</p>
1922 root 1.70 <p>The prototype of the <code>function</code> must be <code>void (*)(ev::TYPE &amp;w, int)</code>.</p>
1923 root 1.68 <p>See the method-<code>set</code> above for more details.</p>
1924 root 1.70 <p>Example:</p>
1925     <pre> static void io_cb (ev::io &amp;w, int revents) { }
1926     iow.set &lt;io_cb&gt; ();
1927    
1928     </pre>
1929 root 1.68 </dd>
1930 root 1.39 <dt>w-&gt;set (struct ev_loop *)</dt>
1931     <dd>
1932     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1933     do this when the watcher is inactive (and not pending either).</p>
1934     </dd>
1935     <dt>w-&gt;set ([args])</dt>
1936     <dd>
1937     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1938 root 1.68 called at least once. Unlike the C counterpart, an active watcher gets
1939     automatically stopped and restarted when reconfiguring it with this
1940     method.</p>
1941 root 1.39 </dd>
1942     <dt>w-&gt;start ()</dt>
1943     <dd>
1944 root 1.68 <p>Starts the watcher. Note that there is no <code>loop</code> argument, as the
1945     constructor already stores the event loop.</p>
1946 root 1.39 </dd>
1947     <dt>w-&gt;stop ()</dt>
1948     <dd>
1949     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1950     </dd>
1951     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1952     <dd>
1953     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1954     <code>ev_TYPE_again</code> function.</p>
1955     </dd>
1956     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1957     <dd>
1958     <p>Invokes <code>ev_embed_sweep</code>.</p>
1959     </dd>
1960 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1961     <dd>
1962     <p>Invokes <code>ev_stat_stat</code>.</p>
1963     </dd>
1964 root 1.39 </dl>
1965     </p>
1966     </dd>
1967     </dl>
1968     <p>Example: Define a class with an IO and idle watcher, start one of them in
1969     the constructor.</p>
1970     <pre> class myclass
1971     {
1972     ev_io io; void io_cb (ev::io &amp;w, int revents);
1973     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
1974    
1975     myclass ();
1976     }
1977    
1978     myclass::myclass (int fd)
1979     {
1980 root 1.68 io .set &lt;myclass, &amp;myclass::io_cb &gt; (this);
1981     idle.set &lt;myclass, &amp;myclass::idle_cb&gt; (this);
1982    
1983 root 1.39 io.start (fd, ev::READ);
1984     }
1985    
1986 root 1.50
1987    
1988    
1989     </pre>
1990    
1991     </div>
1992 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
1993 root 1.50 <div id="MACRO_MAGIC_CONTENT">
1994     <p>Libev can be compiled with a variety of options, the most fundemantal is
1995 root 1.65 <code>EV_MULTIPLICITY</code>. This option determines whether (most) functions and
1996 root 1.50 callbacks have an initial <code>struct ev_loop *</code> argument.</p>
1997     <p>To make it easier to write programs that cope with either variant, the
1998     following macros are defined:</p>
1999     <dl>
2000     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
2001     <dd>
2002     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
2003     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
2004     <code>EV_A_</code> is used when other arguments are following. Example:</p>
2005     <pre> ev_unref (EV_A);
2006     ev_timer_add (EV_A_ watcher);
2007     ev_loop (EV_A_ 0);
2008    
2009     </pre>
2010     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
2011     which is often provided by the following macro.</p>
2012     </dd>
2013     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
2014     <dd>
2015     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
2016     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
2017     <code>EV_P_</code> is used when other parameters are following. Example:</p>
2018     <pre> // this is how ev_unref is being declared
2019     static void ev_unref (EV_P);
2020    
2021     // this is how you can declare your typical callback
2022     static void cb (EV_P_ ev_timer *w, int revents)
2023    
2024     </pre>
2025     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
2026     suitable for use with <code>EV_A</code>.</p>
2027     </dd>
2028     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
2029     <dd>
2030     <p>Similar to the other two macros, this gives you the value of the default
2031     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
2032     </dd>
2033     </dl>
2034 root 1.63 <p>Example: Declare and initialise a check watcher, utilising the above
2035 root 1.65 macros so it will work regardless of whether multiple loops are supported
2036 root 1.63 or not.</p>
2037 root 1.50 <pre> static void
2038     check_cb (EV_P_ ev_timer *w, int revents)
2039     {
2040     ev_check_stop (EV_A_ w);
2041     }
2042    
2043     ev_check check;
2044     ev_check_init (&amp;check, check_cb);
2045     ev_check_start (EV_DEFAULT_ &amp;check);
2046     ev_loop (EV_DEFAULT_ 0);
2047    
2048 root 1.39 </pre>
2049 root 1.23
2050     </div>
2051 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
2052 root 1.40 <div id="EMBEDDING_CONTENT">
2053     <p>Libev can (and often is) directly embedded into host
2054     applications. Examples of applications that embed it include the Deliantra
2055     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
2056     and rxvt-unicode.</p>
2057     <p>The goal is to enable you to just copy the neecssary files into your
2058     source directory without having to change even a single line in them, so
2059     you can easily upgrade by simply copying (or having a checked-out copy of
2060     libev somewhere in your source tree).</p>
2061    
2062     </div>
2063     <h2 id="FILESETS">FILESETS</h2>
2064     <div id="FILESETS_CONTENT">
2065     <p>Depending on what features you need you need to include one or more sets of files
2066     in your app.</p>
2067    
2068     </div>
2069     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
2070     <div id="CORE_EVENT_LOOP_CONTENT">
2071     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
2072     configuration (no autoconf):</p>
2073     <pre> #define EV_STANDALONE 1
2074     #include &quot;ev.c&quot;
2075    
2076     </pre>
2077     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
2078     single C source file only to provide the function implementations. To use
2079     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
2080     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
2081     where you can put other configuration options):</p>
2082     <pre> #define EV_STANDALONE 1
2083     #include &quot;ev.h&quot;
2084    
2085     </pre>
2086     <p>Both header files and implementation files can be compiled with a C++
2087     compiler (at least, thats a stated goal, and breakage will be treated
2088     as a bug).</p>
2089     <p>You need the following files in your source tree, or in a directory
2090     in your include path (e.g. in libev/ when using -Ilibev):</p>
2091     <pre> ev.h
2092     ev.c
2093     ev_vars.h
2094     ev_wrap.h
2095    
2096     ev_win32.c required on win32 platforms only
2097    
2098 root 1.63 ev_select.c only when select backend is enabled (which is enabled by default)
2099 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
2100     ev_epoll.c only when the epoll backend is enabled (disabled by default)
2101     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
2102     ev_port.c only when the solaris port backend is enabled (disabled by default)
2103    
2104     </pre>
2105     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
2106 root 1.44 to compile this single file.</p>
2107 root 1.40
2108     </div>
2109     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
2110     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
2111     <p>To include the libevent compatibility API, also include:</p>
2112     <pre> #include &quot;event.c&quot;
2113    
2114     </pre>
2115     <p>in the file including <cite>ev.c</cite>, and:</p>
2116     <pre> #include &quot;event.h&quot;
2117    
2118     </pre>
2119     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
2120     <p>You need the following additional files for this:</p>
2121     <pre> event.h
2122     event.c
2123    
2124     </pre>
2125    
2126     </div>
2127     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
2128     <div id="AUTOCONF_SUPPORT_CONTENT">
2129     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
2130     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
2131 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
2132     include <cite>config.h</cite> and configure itself accordingly.</p>
2133 root 1.40 <p>For this of course you need the m4 file:</p>
2134     <pre> libev.m4
2135    
2136     </pre>
2137    
2138     </div>
2139     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
2140     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
2141     <p>Libev can be configured via a variety of preprocessor symbols you have to define
2142     before including any of its files. The default is not to build for multiplicity
2143     and only include the select backend.</p>
2144     <dl>
2145     <dt>EV_STANDALONE</dt>
2146     <dd>
2147     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
2148     keeps libev from including <cite>config.h</cite>, and it also defines dummy
2149     implementations for some libevent functions (such as logging, which is not
2150     supported). It will also not define any of the structs usually found in
2151     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
2152     </dd>
2153     <dt>EV_USE_MONOTONIC</dt>
2154     <dd>
2155     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2156     monotonic clock option at both compiletime and runtime. Otherwise no use
2157     of the monotonic clock option will be attempted. If you enable this, you
2158     usually have to link against librt or something similar. Enabling it when
2159     the functionality isn't available is safe, though, althoguh you have
2160     to make sure you link against any libraries where the <code>clock_gettime</code>
2161     function is hiding in (often <cite>-lrt</cite>).</p>
2162     </dd>
2163     <dt>EV_USE_REALTIME</dt>
2164     <dd>
2165     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2166     realtime clock option at compiletime (and assume its availability at
2167     runtime if successful). Otherwise no use of the realtime clock option will
2168     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
2169     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
2170     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
2171     </dd>
2172     <dt>EV_USE_SELECT</dt>
2173     <dd>
2174     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
2175     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
2176     other method takes over, select will be it. Otherwise the select backend
2177     will not be compiled in.</p>
2178     </dd>
2179     <dt>EV_SELECT_USE_FD_SET</dt>
2180     <dd>
2181     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
2182     structure. This is useful if libev doesn't compile due to a missing
2183     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
2184     exotic systems. This usually limits the range of file descriptors to some
2185     low limit such as 1024 or might have other limitations (winsocket only
2186     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
2187     influence the size of the <code>fd_set</code> used.</p>
2188     </dd>
2189     <dt>EV_SELECT_IS_WINSOCKET</dt>
2190     <dd>
2191     <p>When defined to <code>1</code>, the select backend will assume that
2192     select/socket/connect etc. don't understand file descriptors but
2193     wants osf handles on win32 (this is the case when the select to
2194     be used is the winsock select). This means that it will call
2195     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2196     it is assumed that all these functions actually work on fds, even
2197     on win32. Should not be defined on non-win32 platforms.</p>
2198     </dd>
2199     <dt>EV_USE_POLL</dt>
2200     <dd>
2201     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2202     backend. Otherwise it will be enabled on non-win32 platforms. It
2203     takes precedence over select.</p>
2204     </dd>
2205     <dt>EV_USE_EPOLL</dt>
2206     <dd>
2207     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2208     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2209     otherwise another method will be used as fallback. This is the
2210     preferred backend for GNU/Linux systems.</p>
2211     </dd>
2212     <dt>EV_USE_KQUEUE</dt>
2213     <dd>
2214     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2215     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2216     otherwise another method will be used as fallback. This is the preferred
2217     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2218     supports some types of fds correctly (the only platform we found that
2219     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2220     not be used unless explicitly requested. The best way to use it is to find
2221 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2222 root 1.40 kqueue loop.</p>
2223     </dd>
2224     <dt>EV_USE_PORT</dt>
2225     <dd>
2226     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2227     10 port style backend. Its availability will be detected at runtime,
2228     otherwise another method will be used as fallback. This is the preferred
2229     backend for Solaris 10 systems.</p>
2230     </dd>
2231     <dt>EV_USE_DEVPOLL</dt>
2232     <dd>
2233     <p>reserved for future expansion, works like the USE symbols above.</p>
2234     </dd>
2235 root 1.57 <dt>EV_USE_INOTIFY</dt>
2236     <dd>
2237     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2238     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2239     be detected at runtime.</p>
2240     </dd>
2241 root 1.40 <dt>EV_H</dt>
2242     <dd>
2243     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2244     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2245     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2246     </dd>
2247     <dt>EV_CONFIG_H</dt>
2248     <dd>
2249     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2250     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2251     <code>EV_H</code>, above.</p>
2252     </dd>
2253     <dt>EV_EVENT_H</dt>
2254     <dd>
2255     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2256     of how the <cite>event.h</cite> header can be found.</p>
2257     </dd>
2258     <dt>EV_PROTOTYPES</dt>
2259     <dd>
2260     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2261     prototypes, but still define all the structs and other symbols. This is
2262     occasionally useful if you want to provide your own wrapper functions
2263     around libev functions.</p>
2264     </dd>
2265     <dt>EV_MULTIPLICITY</dt>
2266     <dd>
2267     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2268     will have the <code>struct ev_loop *</code> as first argument, and you can create
2269     additional independent event loops. Otherwise there will be no support
2270     for multiple event loops and there is no first event loop pointer
2271     argument. Instead, all functions act on the single default loop.</p>
2272     </dd>
2273 root 1.66 <dt>EV_MINPRI</dt>
2274     <dt>EV_MAXPRI</dt>
2275     <dd>
2276     <p>The range of allowed priorities. <code>EV_MINPRI</code> must be smaller or equal to
2277     <code>EV_MAXPRI</code>, but otherwise there are no non-obvious limitations. You can
2278     provide for more priorities by overriding those symbols (usually defined
2279     to be <code>-2</code> and <code>2</code>, respectively).</p>
2280     <p>When doing priority-based operations, libev usually has to linearly search
2281     all the priorities, so having many of them (hundreds) uses a lot of space
2282     and time, so using the defaults of five priorities (-2 .. +2) is usually
2283     fine.</p>
2284     <p>If your embedding app does not need any priorities, defining these both to
2285     <code>0</code> will save some memory and cpu.</p>
2286     </dd>
2287 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2288     <dd>
2289     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2290     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2291     code.</p>
2292     </dd>
2293 root 1.64 <dt>EV_IDLE_ENABLE</dt>
2294     <dd>
2295     <p>If undefined or defined to be <code>1</code>, then idle watchers are supported. If
2296     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2297     code.</p>
2298     </dd>
2299 root 1.48 <dt>EV_EMBED_ENABLE</dt>
2300     <dd>
2301     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2302     defined to be <code>0</code>, then they are not.</p>
2303     </dd>
2304     <dt>EV_STAT_ENABLE</dt>
2305     <dd>
2306     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2307     defined to be <code>0</code>, then they are not.</p>
2308     </dd>
2309 root 1.50 <dt>EV_FORK_ENABLE</dt>
2310     <dd>
2311     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2312     defined to be <code>0</code>, then they are not.</p>
2313     </dd>
2314 root 1.48 <dt>EV_MINIMAL</dt>
2315 root 1.40 <dd>
2316 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2317     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2318     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2319 root 1.40 </dd>
2320 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2321     <dd>
2322     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2323     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2324     than enough. If you need to manage thousands of children you might want to
2325 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2326     </dd>
2327     <dt>EV_INOTIFY_HASHSIZE</dt>
2328     <dd>
2329     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2330     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2331     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2332     watchers you might want to increase this value (<i>must</i> be a power of
2333     two).</p>
2334 root 1.51 </dd>
2335 root 1.40 <dt>EV_COMMON</dt>
2336     <dd>
2337     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2338     this macro to a something else you can include more and other types of
2339     members. You have to define it each time you include one of the files,
2340     though, and it must be identical each time.</p>
2341     <p>For example, the perl EV module uses something like this:</p>
2342     <pre> #define EV_COMMON \
2343     SV *self; /* contains this struct */ \
2344     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2345    
2346     </pre>
2347     </dd>
2348 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2349     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2350     <dt>ev_set_cb (ev, cb)</dt>
2351 root 1.40 <dd>
2352     <p>Can be used to change the callback member declaration in each watcher,
2353     and the way callbacks are invoked and set. Must expand to a struct member
2354     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2355     their default definitions. One possible use for overriding these is to
2356 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2357     method calls instead of plain function calls in C++.</p>
2358 root 1.40
2359     </div>
2360     <h2 id="EXAMPLES">EXAMPLES</h2>
2361     <div id="EXAMPLES_CONTENT">
2362     <p>For a real-world example of a program the includes libev
2363     verbatim, you can have a look at the EV perl module
2364     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2365     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2366     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2367     will be compiled. It is pretty complex because it provides its own header
2368     file.</p>
2369     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2370 root 1.63 that everybody includes and which overrides some configure choices:</p>
2371     <pre> #define EV_MINIMAL 1
2372     #define EV_USE_POLL 0
2373 root 1.41 #define EV_MULTIPLICITY 0
2374 root 1.63 #define EV_PERIODIC_ENABLE 0
2375     #define EV_STAT_ENABLE 0
2376     #define EV_FORK_ENABLE 0
2377 root 1.41 #define EV_CONFIG_H &lt;config.h&gt;
2378 root 1.63 #define EV_MINPRI 0
2379     #define EV_MAXPRI 0
2380 root 1.40
2381 root 1.41 #include &quot;ev++.h&quot;
2382 root 1.40
2383     </pre>
2384     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2385 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2386     #include &quot;ev.c&quot;
2387 root 1.40
2388 root 1.47
2389    
2390    
2391 root 1.40 </pre>
2392    
2393     </div>
2394 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2395 root 1.47 <div id="COMPLEXITIES_CONTENT">
2396     <p>In this section the complexities of (many of) the algorithms used inside
2397     libev will be explained. For complexity discussions about backends see the
2398     documentation for <code>ev_default_init</code>.</p>
2399 root 1.67 <p>All of the following are about amortised time: If an array needs to be
2400     extended, libev needs to realloc and move the whole array, but this
2401     happens asymptotically never with higher number of elements, so O(1) might
2402     mean it might do a lengthy realloc operation in rare cases, but on average
2403     it is much faster and asymptotically approaches constant time.</p>
2404 root 1.47 <p>
2405     <dl>
2406     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2407 root 1.66 <dd>
2408     <p>This means that, when you have a watcher that triggers in one hour and
2409     there are 100 watchers that would trigger before that then inserting will
2410     have to skip those 100 watchers.</p>
2411     </dd>
2412 root 1.47 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2413 root 1.66 <dd>
2414     <p>That means that for changing a timer costs less than removing/adding them
2415     as only the relative motion in the event queue has to be paid for.</p>
2416     </dd>
2417 root 1.47 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2418 root 1.66 <dd>
2419 root 1.67 <p>These just add the watcher into an array or at the head of a list.
2420     =item Stopping check/prepare/idle watchers: O(1)</p>
2421 root 1.66 </dd>
2422 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2423 root 1.66 <dd>
2424     <p>These watchers are stored in lists then need to be walked to find the
2425     correct watcher to remove. The lists are usually short (you don't usually
2426     have many watchers waiting for the same fd or signal).</p>
2427     </dd>
2428 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2429     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2430 root 1.66 <dd>
2431     <p>A change means an I/O watcher gets started or stopped, which requires
2432     libev to recalculate its status (and possibly tell the kernel).</p>
2433     </dd>
2434 root 1.47 <dt>Activating one watcher: O(1)</dt>
2435 root 1.66 <dt>Priority handling: O(number_of_priorities)</dt>
2436     <dd>
2437     <p>Priorities are implemented by allocating some space for each
2438     priority. When doing priority-based operations, libev usually has to
2439     linearly search all the priorities.</p>
2440     </dd>
2441 root 1.47 </dl>
2442     </p>
2443    
2444    
2445    
2446    
2447    
2448     </div>
2449 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2450 root 1.1 <div id="AUTHOR_CONTENT">
2451 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2452 root 1.1
2453     </div>
2454     </div></body>
2455     </html>