ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.77
Committed: Wed Dec 12 04:53:58 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
CVS Tags: rel-1_81
Changes since 1.76: +29 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.77 <meta name="created" content="Wed Dec 12 05:53:55 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.77 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a>
33     <ul><li><a href="#The_special_problem_of_disappearing_">The special problem of disappearing file descriptors</a></li>
34     </ul>
35     </li>
36 root 1.43 <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a></li>
37     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a></li>
38     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a></li>
39     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a></li>
40 root 1.48 <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a></li>
41 root 1.43 <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a></li>
42     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a></li>
43     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a></li>
44 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
45 root 1.1 </ul>
46     </li>
47     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
48 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
49     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
50 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
51 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
52     <ul><li><a href="#FILESETS">FILESETS</a>
53     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
54     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
55     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
56     </ul>
57     </li>
58     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
59     <li><a href="#EXAMPLES">EXAMPLES</a></li>
60     </ul>
61     </li>
62 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
63 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
64     </li>
65     </ul><hr />
66     <!-- INDEX END -->
67    
68 root 1.55 <h1 id="NAME">NAME</h1>
69 root 1.1 <div id="NAME_CONTENT">
70     <p>libev - a high performance full-featured event loop written in C</p>
71    
72     </div>
73 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
74 root 1.1 <div id="SYNOPSIS_CONTENT">
75 root 1.54 <pre> #include &lt;ev.h&gt;
76    
77     </pre>
78    
79     </div>
80 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
81 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
82     <pre> #include &lt;ev.h&gt;
83 root 1.53
84     ev_io stdin_watcher;
85     ev_timer timeout_watcher;
86    
87     /* called when data readable on stdin */
88     static void
89     stdin_cb (EV_P_ struct ev_io *w, int revents)
90     {
91     /* puts (&quot;stdin ready&quot;); */
92     ev_io_stop (EV_A_ w); /* just a syntax example */
93     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
94     }
95    
96     static void
97     timeout_cb (EV_P_ struct ev_timer *w, int revents)
98     {
99     /* puts (&quot;timeout&quot;); */
100     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
101     }
102    
103     int
104     main (void)
105     {
106     struct ev_loop *loop = ev_default_loop (0);
107    
108     /* initialise an io watcher, then start it */
109     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
110     ev_io_start (loop, &amp;stdin_watcher);
111    
112     /* simple non-repeating 5.5 second timeout */
113     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
114     ev_timer_start (loop, &amp;timeout_watcher);
115    
116     /* loop till timeout or data ready */
117     ev_loop (loop, 0);
118    
119     return 0;
120     }
121 root 1.1
122     </pre>
123    
124     </div>
125 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
126 root 1.1 <div id="DESCRIPTION_CONTENT">
127 root 1.66 <p>The newest version of this document is also available as a html-formatted
128     web page you might find easier to navigate when reading it for the first
129     time: <a href="http://cvs.schmorp.de/libev/ev.html">http://cvs.schmorp.de/libev/ev.html</a>.</p>
130 root 1.1 <p>Libev is an event loop: you register interest in certain events (such as a
131     file descriptor being readable or a timeout occuring), and it will manage
132 root 1.4 these event sources and provide your program with events.</p>
133 root 1.1 <p>To do this, it must take more or less complete control over your process
134     (or thread) by executing the <i>event loop</i> handler, and will then
135     communicate events via a callback mechanism.</p>
136     <p>You register interest in certain events by registering so-called <i>event
137     watchers</i>, which are relatively small C structures you initialise with the
138     details of the event, and then hand it over to libev by <i>starting</i> the
139     watcher.</p>
140    
141     </div>
142 root 1.55 <h1 id="FEATURES">FEATURES</h1>
143 root 1.1 <div id="FEATURES_CONTENT">
144 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
145     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
146     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
147     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
148     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
149     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
150     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
151 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
152     file watchers (<code>ev_stat</code>) and even limited support for fork events
153     (<code>ev_fork</code>).</p>
154     <p>It also is quite fast (see this
155     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
156     for example).</p>
157 root 1.1
158     </div>
159 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
160 root 1.1 <div id="CONVENTIONS_CONTENT">
161 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
162     be described, which supports multiple event loops. For more info about
163     various configuration options please have a look at <strong>EMBED</strong> section in
164     this manual. If libev was configured without support for multiple event
165     loops, then all functions taking an initial argument of name <code>loop</code>
166     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
167 root 1.1
168     </div>
169 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
170 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
171 root 1.2 <p>Libev represents time as a single floating point number, representing the
172     (fractional) number of seconds since the (POSIX) epoch (somewhere near
173     the beginning of 1970, details are complicated, don't ask). This type is
174 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
175 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
176     it, you should treat it as such.</p>
177    
178 root 1.18 </div>
179 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
180 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
181 root 1.21 <p>These functions can be called anytime, even before initialising the
182     library in any way.</p>
183 root 1.1 <dl>
184     <dt>ev_tstamp ev_time ()</dt>
185     <dd>
186 root 1.28 <p>Returns the current time as libev would use it. Please note that the
187     <code>ev_now</code> function is usually faster and also often returns the timestamp
188     you actually want to know.</p>
189 root 1.1 </dd>
190     <dt>int ev_version_major ()</dt>
191     <dt>int ev_version_minor ()</dt>
192     <dd>
193 root 1.76 <p>You can find out the major and minor ABI version numbers of the library
194 root 1.1 you linked against by calling the functions <code>ev_version_major</code> and
195     <code>ev_version_minor</code>. If you want, you can compare against the global
196     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
197     version of the library your program was compiled against.</p>
198 root 1.76 <p>These version numbers refer to the ABI version of the library, not the
199     release version.</p>
200 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
201 root 1.75 as this indicates an incompatible change. Minor versions are usually
202 root 1.1 compatible to older versions, so a larger minor version alone is usually
203     not a problem.</p>
204 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
205     version.</p>
206 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
207     ev_version_major () == EV_VERSION_MAJOR
208     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
209    
210     </pre>
211 root 1.1 </dd>
212 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
213     <dd>
214     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
215     value) compiled into this binary of libev (independent of their
216     availability on the system you are running on). See <code>ev_default_loop</code> for
217     a description of the set values.</p>
218 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
219     a must have and can we have a torrent of it please!!!11</p>
220     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
221     ev_supported_backends () &amp; EVBACKEND_EPOLL));
222    
223     </pre>
224 root 1.32 </dd>
225     <dt>unsigned int ev_recommended_backends ()</dt>
226     <dd>
227     <p>Return the set of all backends compiled into this binary of libev and also
228     recommended for this platform. This set is often smaller than the one
229     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
230     most BSDs and will not be autodetected unless you explicitly request it
231     (assuming you know what you are doing). This is the set of backends that
232 root 1.34 libev will probe for if you specify no backends explicitly.</p>
233 root 1.32 </dd>
234 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
235     <dd>
236     <p>Returns the set of backends that are embeddable in other event loops. This
237     is the theoretical, all-platform, value. To find which backends
238     might be supported on the current system, you would need to look at
239     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
240     recommended ones.</p>
241     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
242     </dd>
243 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
244 root 1.1 <dd>
245 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
246     semantics is identical - to the realloc C function). It is used to
247     allocate and free memory (no surprises here). If it returns zero when
248     memory needs to be allocated, the library might abort or take some
249     potentially destructive action. The default is your system realloc
250     function.</p>
251 root 1.1 <p>You could override this function in high-availability programs to, say,
252     free some memory if it cannot allocate memory, to use a special allocator,
253     or even to sleep a while and retry until some memory is available.</p>
254 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
255     retries).</p>
256 root 1.35 <pre> static void *
257 root 1.52 persistent_realloc (void *ptr, size_t size)
258 root 1.35 {
259     for (;;)
260     {
261     void *newptr = realloc (ptr, size);
262    
263     if (newptr)
264     return newptr;
265    
266     sleep (60);
267     }
268     }
269    
270     ...
271     ev_set_allocator (persistent_realloc);
272    
273     </pre>
274 root 1.1 </dd>
275     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
276     <dd>
277     <p>Set the callback function to call on a retryable syscall error (such
278     as failed select, poll, epoll_wait). The message is a printable string
279     indicating the system call or subsystem causing the problem. If this
280     callback is set, then libev will expect it to remedy the sitution, no
281 root 1.7 matter what, when it returns. That is, libev will generally retry the
282 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
283     (such as abort).</p>
284 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
285 root 1.35 <pre> static void
286     fatal_error (const char *msg)
287     {
288     perror (msg);
289     abort ();
290     }
291    
292     ...
293     ev_set_syserr_cb (fatal_error);
294    
295     </pre>
296 root 1.1 </dd>
297     </dl>
298    
299     </div>
300 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
301 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
302     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
303     types of such loops, the <i>default</i> loop, which supports signals and child
304     events, and dynamically created loops which do not.</p>
305     <p>If you use threads, a common model is to run the default event loop
306 root 1.18 in your main thread (or in a separate thread) and for each thread you
307 root 1.7 create, you also create another event loop. Libev itself does no locking
308     whatsoever, so if you mix calls to the same event loop in different
309     threads, make sure you lock (this is usually a bad idea, though, even if
310 root 1.9 done correctly, because it's hideous and inefficient).</p>
311 root 1.1 <dl>
312     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
313     <dd>
314     <p>This will initialise the default event loop if it hasn't been initialised
315     yet and return it. If the default loop could not be initialised, returns
316     false. If it already was initialised it simply returns it (and ignores the
317 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
318 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
319     function.</p>
320     <p>The flags argument can be used to specify special behaviour or specific
321 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
322     <p>The following flags are supported:</p>
323 root 1.1 <p>
324     <dl>
325 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
326 root 1.1 <dd>
327 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
328 root 1.1 thing, believe me).</p>
329     </dd>
330 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
331 root 1.1 <dd>
332 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
333     or setgid) then libev will <i>not</i> look at the environment variable
334     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
335     override the flags completely if it is found in the environment. This is
336     useful to try out specific backends to test their performance, or to work
337     around bugs.</p>
338 root 1.1 </dd>
339 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
340     <dd>
341     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
342     a fork, you can also make libev check for a fork in each iteration by
343     enabling this flag.</p>
344     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
345     and thus this might slow down your event loop if you do a lot of loop
346 root 1.64 iterations and little real work, but is usually not noticeable (on my
347 root 1.62 Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
348     without a syscall and thus <i>very</i> fast, but my Linux system also has
349     <code>pthread_atfork</code> which is even faster).</p>
350     <p>The big advantage of this flag is that you can forget about fork (and
351     forget about forgetting to tell libev about forking) when you use this
352     flag.</p>
353     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
354     environment variable.</p>
355     </dd>
356 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
357 root 1.29 <dd>
358     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
359     libev tries to roll its own fd_set with no limits on the number of fds,
360     but if that fails, expect a fairly low limit on the number of fds when
361     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
362     the fastest backend for a low number of fds.</p>
363     </dd>
364 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
365 root 1.29 <dd>
366     <p>And this is your standard poll(2) backend. It's more complicated than
367     select, but handles sparse fds better and has no artificial limit on the
368     number of fds you can use (except it will slow down considerably with a
369     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
370     </dd>
371 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
372 root 1.29 <dd>
373     <p>For few fds, this backend is a bit little slower than poll and select,
374     but it scales phenomenally better. While poll and select usually scale like
375     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
376     either O(1) or O(active_fds).</p>
377     <p>While stopping and starting an I/O watcher in the same iteration will
378     result in some caching, there is still a syscall per such incident
379     (because the fd could point to a different file description now), so its
380     best to avoid that. Also, dup()ed file descriptors might not work very
381     well if you register events for both fds.</p>
382 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
383     need to use non-blocking I/O or other means to avoid blocking when no data
384     (or space) is available.</p>
385 root 1.29 </dd>
386 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
387 root 1.29 <dd>
388     <p>Kqueue deserves special mention, as at the time of this writing, it
389     was broken on all BSDs except NetBSD (usually it doesn't work with
390     anything but sockets and pipes, except on Darwin, where of course its
391 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
392     unless you explicitly specify it explicitly in the flags (i.e. using
393     <code>EVBACKEND_KQUEUE</code>).</p>
394 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
395     kernel is more efficient (which says nothing about its actual speed, of
396     course). While starting and stopping an I/O watcher does not cause an
397     extra syscall as with epoll, it still adds up to four event changes per
398     incident, so its best to avoid that.</p>
399     </dd>
400 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
401 root 1.29 <dd>
402     <p>This is not implemented yet (and might never be).</p>
403     </dd>
404 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
405 root 1.29 <dd>
406     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
407     it's really slow, but it still scales very well (O(active_fds)).</p>
408 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
409     notifications, so you need to use non-blocking I/O or other means to avoid
410     blocking when no data (or space) is available.</p>
411 root 1.29 </dd>
412 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
413 root 1.29 <dd>
414 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
415     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
416 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
417 root 1.1 </dd>
418     </dl>
419     </p>
420 root 1.29 <p>If one or more of these are ored into the flags value, then only these
421     backends will be tried (in the reverse order as given here). If none are
422     specified, most compiled-in backend will be tried, usually in reverse
423     order of their flag values :)</p>
424 root 1.34 <p>The most typical usage is like this:</p>
425     <pre> if (!ev_default_loop (0))
426     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
427    
428     </pre>
429     <p>Restrict libev to the select and poll backends, and do not allow
430     environment settings to be taken into account:</p>
431     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
432    
433     </pre>
434     <p>Use whatever libev has to offer, but make sure that kqueue is used if
435     available (warning, breaks stuff, best use only with your own private
436     event loop and only if you know the OS supports your types of fds):</p>
437     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
438    
439     </pre>
440 root 1.1 </dd>
441     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
442     <dd>
443     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
444     always distinct from the default loop. Unlike the default loop, it cannot
445     handle signal and child watchers, and attempts to do so will be greeted by
446     undefined behaviour (or a failed assertion if assertions are enabled).</p>
447 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
448 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
449     if (!epoller)
450     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
451    
452     </pre>
453 root 1.1 </dd>
454     <dt>ev_default_destroy ()</dt>
455     <dd>
456     <p>Destroys the default loop again (frees all memory and kernel state
457 root 1.38 etc.). None of the active event watchers will be stopped in the normal
458     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
459     responsibility to either stop all watchers cleanly yoursef <i>before</i>
460     calling this function, or cope with the fact afterwards (which is usually
461     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
462     for example).</p>
463 root 1.1 </dd>
464     <dt>ev_loop_destroy (loop)</dt>
465     <dd>
466     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
467     earlier call to <code>ev_loop_new</code>.</p>
468     </dd>
469     <dt>ev_default_fork ()</dt>
470     <dd>
471     <p>This function reinitialises the kernel state for backends that have
472     one. Despite the name, you can call it anytime, but it makes most sense
473     after forking, in either the parent or child process (or both, but that
474     again makes little sense).</p>
475 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
476     only if you want to use the event library in both processes. If you just
477     fork+exec, you don't have to call it.</p>
478 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
479 root 1.1 it just in case after a fork. To make this easy, the function will fit in
480     quite nicely into a call to <code>pthread_atfork</code>:</p>
481     <pre> pthread_atfork (0, 0, ev_default_fork);
482    
483     </pre>
484 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
485     without calling this function, so if you force one of those backends you
486     do not need to care.</p>
487 root 1.1 </dd>
488     <dt>ev_loop_fork (loop)</dt>
489     <dd>
490     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
491     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
492     after fork, and how you do this is entirely your own problem.</p>
493     </dd>
494 root 1.64 <dt>unsigned int ev_loop_count (loop)</dt>
495     <dd>
496     <p>Returns the count of loop iterations for the loop, which is identical to
497     the number of times libev did poll for new events. It starts at <code>0</code> and
498     happily wraps around with enough iterations.</p>
499     <p>This value can sometimes be useful as a generation counter of sorts (it
500     &quot;ticks&quot; the number of loop iterations), as it roughly corresponds with
501     <code>ev_prepare</code> and <code>ev_check</code> calls.</p>
502     </dd>
503 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
504 root 1.1 <dd>
505 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
506 root 1.1 use.</p>
507     </dd>
508 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
509 root 1.1 <dd>
510     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
511 root 1.35 received events and started processing them. This timestamp does not
512     change as long as callbacks are being processed, and this is also the base
513     time used for relative timers. You can treat it as the timestamp of the
514     event occuring (or more correctly, libev finding out about it).</p>
515 root 1.1 </dd>
516     <dt>ev_loop (loop, int flags)</dt>
517     <dd>
518     <p>Finally, this is it, the event handler. This function usually is called
519     after you initialised all your watchers and you want to start handling
520     events.</p>
521 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
522     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
523 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
524     relying on all watchers to be stopped when deciding when a program has
525     finished (especially in interactive programs), but having a program that
526     automatically loops as long as it has to and no longer by virtue of
527     relying on its watchers stopping correctly is a thing of beauty.</p>
528 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
529     those events and any outstanding ones, but will not block your process in
530 root 1.9 case there are no events and will return after one iteration of the loop.</p>
531 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
532     neccessary) and will handle those and any outstanding ones. It will block
533 root 1.9 your process until at least one new event arrives, and will return after
534 root 1.34 one iteration of the loop. This is useful if you are waiting for some
535     external event in conjunction with something not expressible using other
536     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
537     usually a better approach for this kind of thing.</p>
538     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
539 root 1.73 <pre> - Before the first iteration, call any pending watchers.
540     * If there are no active watchers (reference count is zero), return.
541     - Queue all prepare watchers and then call all outstanding watchers.
542 root 1.34 - If we have been forked, recreate the kernel state.
543     - Update the kernel state with all outstanding changes.
544     - Update the &quot;event loop time&quot;.
545     - Calculate for how long to block.
546     - Block the process, waiting for any events.
547     - Queue all outstanding I/O (fd) events.
548     - Update the &quot;event loop time&quot; and do time jump handling.
549     - Queue all outstanding timers.
550     - Queue all outstanding periodics.
551     - If no events are pending now, queue all idle watchers.
552     - Queue all check watchers.
553     - Call all queued watchers in reverse order (i.e. check watchers first).
554     Signals and child watchers are implemented as I/O watchers, and will
555     be handled here by queueing them when their watcher gets executed.
556     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
557     were used, return, otherwise continue with step *.
558 root 1.28
559     </pre>
560 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
561 root 1.35 anymore.</p>
562     <pre> ... queue jobs here, make sure they register event watchers as long
563     ... as they still have work to do (even an idle watcher will do..)
564     ev_loop (my_loop, 0);
565     ... jobs done. yeah!
566    
567     </pre>
568 root 1.1 </dd>
569     <dt>ev_unloop (loop, how)</dt>
570     <dd>
571 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
572     has processed all outstanding events). The <code>how</code> argument must be either
573 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
574 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
575 root 1.1 </dd>
576     <dt>ev_ref (loop)</dt>
577     <dt>ev_unref (loop)</dt>
578     <dd>
579 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
580     loop: Every watcher keeps one reference, and as long as the reference
581     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
582     a watcher you never unregister that should not keep <code>ev_loop</code> from
583     returning, ev_unref() after starting, and ev_ref() before stopping it. For
584     example, libev itself uses this for its internal signal pipe: It is not
585     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
586     no event watchers registered by it are active. It is also an excellent
587     way to do this for generic recurring timers or from within third-party
588     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
589 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
590 root 1.35 running when nothing else is active.</p>
591 root 1.54 <pre> struct ev_signal exitsig;
592 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
593 root 1.54 ev_signal_start (loop, &amp;exitsig);
594     evf_unref (loop);
595 root 1.35
596     </pre>
597 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
598     <pre> ev_ref (loop);
599     ev_signal_stop (loop, &amp;exitsig);
600 root 1.35
601     </pre>
602 root 1.1 </dd>
603     </dl>
604    
605 root 1.43
606    
607    
608    
609 root 1.1 </div>
610 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
611 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
612     <p>A watcher is a structure that you create and register to record your
613     interest in some event. For instance, if you want to wait for STDIN to
614 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
615 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
616     {
617     ev_io_stop (w);
618     ev_unloop (loop, EVUNLOOP_ALL);
619     }
620    
621     struct ev_loop *loop = ev_default_loop (0);
622     struct ev_io stdin_watcher;
623     ev_init (&amp;stdin_watcher, my_cb);
624     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
625     ev_io_start (loop, &amp;stdin_watcher);
626     ev_loop (loop, 0);
627    
628     </pre>
629     <p>As you can see, you are responsible for allocating the memory for your
630     watcher structures (and it is usually a bad idea to do this on the stack,
631     although this can sometimes be quite valid).</p>
632     <p>Each watcher structure must be initialised by a call to <code>ev_init
633     (watcher *, callback)</code>, which expects a callback to be provided. This
634     callback gets invoked each time the event occurs (or, in the case of io
635     watchers, each time the event loop detects that the file descriptor given
636     is readable and/or writable).</p>
637     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
638     with arguments specific to this watcher type. There is also a macro
639     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
640     (watcher *, callback, ...)</code>.</p>
641     <p>To make the watcher actually watch out for events, you have to start it
642     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
643     *)</code>), and you can stop watching for events at any time by calling the
644     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
645     <p>As long as your watcher is active (has been started but not stopped) you
646     must not touch the values stored in it. Most specifically you must never
647 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
648 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
649     registered watcher structure as second, and a bitset of received events as
650     third argument.</p>
651 root 1.14 <p>The received events usually include a single bit per event type received
652 root 1.1 (you can receive multiple events at the same time). The possible bit masks
653     are:</p>
654     <dl>
655 root 1.10 <dt><code>EV_READ</code></dt>
656     <dt><code>EV_WRITE</code></dt>
657 root 1.1 <dd>
658 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
659 root 1.1 writable.</p>
660     </dd>
661 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
662 root 1.1 <dd>
663 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
664 root 1.1 </dd>
665 root 1.10 <dt><code>EV_PERIODIC</code></dt>
666 root 1.1 <dd>
667 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
668 root 1.1 </dd>
669 root 1.10 <dt><code>EV_SIGNAL</code></dt>
670 root 1.1 <dd>
671 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
672 root 1.1 </dd>
673 root 1.10 <dt><code>EV_CHILD</code></dt>
674 root 1.1 <dd>
675 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
676 root 1.1 </dd>
677 root 1.48 <dt><code>EV_STAT</code></dt>
678     <dd>
679     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
680     </dd>
681 root 1.10 <dt><code>EV_IDLE</code></dt>
682 root 1.1 <dd>
683 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
684 root 1.1 </dd>
685 root 1.10 <dt><code>EV_PREPARE</code></dt>
686     <dt><code>EV_CHECK</code></dt>
687 root 1.1 <dd>
688 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
689     to gather new events, and all <code>ev_check</code> watchers are invoked just after
690 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
691     received events. Callbacks of both watcher types can start and stop as
692     many watchers as they want, and all of them will be taken into account
693 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
694 root 1.1 <code>ev_loop</code> from blocking).</p>
695     </dd>
696 root 1.50 <dt><code>EV_EMBED</code></dt>
697     <dd>
698     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
699     </dd>
700     <dt><code>EV_FORK</code></dt>
701     <dd>
702     <p>The event loop has been resumed in the child process after fork (see
703     <code>ev_fork</code>).</p>
704     </dd>
705 root 1.10 <dt><code>EV_ERROR</code></dt>
706 root 1.1 <dd>
707     <p>An unspecified error has occured, the watcher has been stopped. This might
708     happen because the watcher could not be properly started because libev
709     ran out of memory, a file descriptor was found to be closed or any other
710     problem. You best act on it by reporting the problem and somehow coping
711     with the watcher being stopped.</p>
712     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
713     for example it might indicate that a fd is readable or writable, and if
714     your callbacks is well-written it can just attempt the operation and cope
715     with the error from read() or write(). This will not work in multithreaded
716     programs, though, so beware.</p>
717     </dd>
718     </dl>
719    
720     </div>
721 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
722     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
723 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
724     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
725     <dl>
726     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
727     <dd>
728     <p>This macro initialises the generic portion of a watcher. The contents
729     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
730     the generic parts of the watcher are initialised, you <i>need</i> to call
731     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
732     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
733     which rolls both calls into one.</p>
734     <p>You can reinitialise a watcher at any time as long as it has been stopped
735     (or never started) and there are no pending events outstanding.</p>
736 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
737 root 1.37 int revents)</code>.</p>
738     </dd>
739     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
740     <dd>
741     <p>This macro initialises the type-specific parts of a watcher. You need to
742     call <code>ev_init</code> at least once before you call this macro, but you can
743     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
744     macro on a watcher that is active (it can be pending, however, which is a
745     difference to the <code>ev_init</code> macro).</p>
746     <p>Although some watcher types do not have type-specific arguments
747     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
748     </dd>
749     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
750     <dd>
751     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
752     calls into a single call. This is the most convinient method to initialise
753     a watcher. The same limitations apply, of course.</p>
754     </dd>
755     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
756     <dd>
757     <p>Starts (activates) the given watcher. Only active watchers will receive
758     events. If the watcher is already active nothing will happen.</p>
759     </dd>
760     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
761     <dd>
762     <p>Stops the given watcher again (if active) and clears the pending
763     status. It is possible that stopped watchers are pending (for example,
764     non-repeating timers are being stopped when they become pending), but
765     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
766     you want to free or reuse the memory used by the watcher it is therefore a
767     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
768     </dd>
769     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
770     <dd>
771     <p>Returns a true value iff the watcher is active (i.e. it has been started
772     and not yet been stopped). As long as a watcher is active you must not modify
773     it.</p>
774     </dd>
775     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
776     <dd>
777     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
778     events but its callback has not yet been invoked). As long as a watcher
779     is pending (but not active) you must not call an init function on it (but
780 root 1.70 <code>ev_TYPE_set</code> is safe), you must not change its priority, and you must
781     make sure the watcher is available to libev (e.g. you cannot <code>free ()</code>
782     it).</p>
783 root 1.37 </dd>
784 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
785 root 1.37 <dd>
786     <p>Returns the callback currently set on the watcher.</p>
787     </dd>
788     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
789     <dd>
790     <p>Change the callback. You can change the callback at virtually any time
791     (modulo threads).</p>
792     </dd>
793 root 1.64 <dt>ev_set_priority (ev_TYPE *watcher, priority)</dt>
794     <dt>int ev_priority (ev_TYPE *watcher)</dt>
795     <dd>
796     <p>Set and query the priority of the watcher. The priority is a small
797     integer between <code>EV_MAXPRI</code> (default: <code>2</code>) and <code>EV_MINPRI</code>
798     (default: <code>-2</code>). Pending watchers with higher priority will be invoked
799     before watchers with lower priority, but priority will not keep watchers
800     from being executed (except for <code>ev_idle</code> watchers).</p>
801     <p>This means that priorities are <i>only</i> used for ordering callback
802     invocation after new events have been received. This is useful, for
803     example, to reduce latency after idling, or more often, to bind two
804     watchers on the same event and make sure one is called first.</p>
805     <p>If you need to suppress invocation when higher priority events are pending
806     you need to look at <code>ev_idle</code> watchers, which provide this functionality.</p>
807 root 1.70 <p>You <i>must not</i> change the priority of a watcher as long as it is active or
808     pending.</p>
809 root 1.64 <p>The default priority used by watchers when no priority has been set is
810     always <code>0</code>, which is supposed to not be too high and not be too low :).</p>
811     <p>Setting a priority outside the range of <code>EV_MINPRI</code> to <code>EV_MAXPRI</code> is
812     fine, as long as you do not mind that the priority value you query might
813     or might not have been adjusted to be within valid range.</p>
814     </dd>
815 root 1.70 <dt>ev_invoke (loop, ev_TYPE *watcher, int revents)</dt>
816     <dd>
817     <p>Invoke the <code>watcher</code> with the given <code>loop</code> and <code>revents</code>. Neither
818     <code>loop</code> nor <code>revents</code> need to be valid as long as the watcher callback
819     can deal with that fact.</p>
820     </dd>
821     <dt>int ev_clear_pending (loop, ev_TYPE *watcher)</dt>
822     <dd>
823     <p>If the watcher is pending, this function returns clears its pending status
824     and returns its <code>revents</code> bitset (as if its callback was invoked). If the
825     watcher isn't pending it does nothing and returns <code>0</code>.</p>
826     </dd>
827 root 1.37 </dl>
828    
829    
830    
831    
832    
833     </div>
834 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
835     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
836     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
837 root 1.14 and read at any time, libev will completely ignore it. This can be used
838 root 1.1 to associate arbitrary data with your watcher. If you need more data and
839     don't want to allocate memory and store a pointer to it in that data
840     member, you can also &quot;subclass&quot; the watcher type and provide your own
841     data:</p>
842     <pre> struct my_io
843     {
844     struct ev_io io;
845     int otherfd;
846     void *somedata;
847     struct whatever *mostinteresting;
848     }
849    
850     </pre>
851     <p>And since your callback will be called with a pointer to the watcher, you
852     can cast it back to your own type:</p>
853     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
854     {
855     struct my_io *w = (struct my_io *)w_;
856     ...
857     }
858    
859     </pre>
860 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
861     instead have been omitted.</p>
862     <p>Another common scenario is having some data structure with multiple
863     watchers:</p>
864     <pre> struct my_biggy
865     {
866     int some_data;
867     ev_timer t1;
868     ev_timer t2;
869     }
870 root 1.1
871 root 1.56 </pre>
872     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
873     you need to use <code>offsetof</code>:</p>
874     <pre> #include &lt;stddef.h&gt;
875 root 1.1
876 root 1.56 static void
877     t1_cb (EV_P_ struct ev_timer *w, int revents)
878     {
879     struct my_biggy big = (struct my_biggy *
880     (((char *)w) - offsetof (struct my_biggy, t1));
881     }
882    
883     static void
884     t2_cb (EV_P_ struct ev_timer *w, int revents)
885     {
886     struct my_biggy big = (struct my_biggy *
887     (((char *)w) - offsetof (struct my_biggy, t2));
888     }
889 root 1.1
890    
891    
892 root 1.56
893     </pre>
894    
895 root 1.1 </div>
896 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
897 root 1.1 <div id="WATCHER_TYPES_CONTENT">
898     <p>This section describes each watcher in detail, but will not repeat
899 root 1.48 information given in the last section. Any initialisation/set macros,
900     functions and members specific to the watcher type are explained.</p>
901     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
902     while the watcher is active, you can look at the member and expect some
903     sensible content, but you must not modify it (you can modify it while the
904     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
905     means you can expect it to have some sensible content while the watcher
906     is active, but you can also modify it. Modifying it may not do something
907     sensible or take immediate effect (or do anything at all), but libev will
908     not crash or malfunction in any way.</p>
909 root 1.1
910 root 1.35
911    
912    
913    
914 root 1.1 </div>
915 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
916 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
917 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
918 root 1.43 in each iteration of the event loop, or, more precisely, when reading
919     would not block the process and writing would at least be able to write
920     some data. This behaviour is called level-triggering because you keep
921     receiving events as long as the condition persists. Remember you can stop
922     the watcher if you don't want to act on the event and neither want to
923     receive future events.</p>
924 root 1.25 <p>In general you can register as many read and/or write event watchers per
925 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
926     descriptors to non-blocking mode is also usually a good idea (but not
927     required if you know what you are doing).</p>
928     <p>You have to be careful with dup'ed file descriptors, though. Some backends
929     (the linux epoll backend is a notable example) cannot handle dup'ed file
930     descriptors correctly if you register interest in two or more fds pointing
931 root 1.43 to the same underlying file/socket/etc. description (that is, they share
932 root 1.26 the same underlying &quot;file open&quot;).</p>
933 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
934 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
935     <code>EVBACKEND_POLL</code>).</p>
936 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
937     receive &quot;spurious&quot; readyness notifications, that is your callback might
938     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
939     because there is no data. Not only are some backends known to create a
940     lot of those (for example solaris ports), it is very easy to get into
941     this situation even with a relatively standard program structure. Thus
942     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
943     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
944     <p>If you cannot run the fd in non-blocking mode (for example you should not
945     play around with an Xlib connection), then you have to seperately re-test
946 root 1.65 whether a file descriptor is really ready with a known-to-be good interface
947 root 1.43 such as poll (fortunately in our Xlib example, Xlib already does this on
948     its own, so its quite safe to use).</p>
949 root 1.77
950     </div>
951     <h3 id="The_special_problem_of_disappearing_">The special problem of disappearing file descriptors</h3>
952     <div id="The_special_problem_of_disappearing_-2">
953     <p>Some backends (e.g kqueue, epoll) need to be told about closing a file
954     descriptor (either by calling <code>close</code> explicitly or by any other means,
955     such as <code>dup</code>). The reason is that you register interest in some file
956     descriptor, but when it goes away, the operating system will silently drop
957     this interest. If another file descriptor with the same number then is
958     registered with libev, there is no efficient way to see that this is, in
959     fact, a different file descriptor.</p>
960     <p>To avoid having to explicitly tell libev about such cases, libev follows
961     the following policy: Each time <code>ev_io_set</code> is being called, libev
962     will assume that this is potentially a new file descriptor, otherwise
963     it is assumed that the file descriptor stays the same. That means that
964     you <i>have</i> to call <code>ev_io_set</code> (or <code>ev_io_init</code>) when you change the
965     descriptor even if the file descriptor number itself did not change.</p>
966     <p>This is how one would do it normally anyway, the important point is that
967     the libev application should not optimise around libev but should leave
968     optimisations to libev.</p>
969    
970    
971    
972    
973 root 1.1 <dl>
974     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
975     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
976     <dd>
977 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
978     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
979     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
980 root 1.1 </dd>
981 root 1.48 <dt>int fd [read-only]</dt>
982     <dd>
983     <p>The file descriptor being watched.</p>
984     </dd>
985     <dt>int events [read-only]</dt>
986     <dd>
987     <p>The events being watched.</p>
988     </dd>
989 root 1.1 </dl>
990 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
991 root 1.35 readable, but only once. Since it is likely line-buffered, you could
992 root 1.54 attempt to read a whole line in the callback.</p>
993 root 1.35 <pre> static void
994     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
995     {
996     ev_io_stop (loop, w);
997     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
998     }
999    
1000     ...
1001     struct ev_loop *loop = ev_default_init (0);
1002     struct ev_io stdin_readable;
1003     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
1004     ev_io_start (loop, &amp;stdin_readable);
1005     ev_loop (loop, 0);
1006    
1007    
1008    
1009    
1010     </pre>
1011 root 1.1
1012     </div>
1013 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
1014 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
1015 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
1016     given time, and optionally repeating in regular intervals after that.</p>
1017     <p>The timers are based on real time, that is, if you register an event that
1018 root 1.25 times out after an hour and you reset your system clock to last years
1019 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
1020 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
1021 root 1.1 monotonic clock option helps a lot here).</p>
1022 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
1023     time. This is usually the right thing as this timestamp refers to the time
1024 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
1025     you suspect event processing to be delayed and you <i>need</i> to base the timeout
1026 root 1.25 on the current time, use something like this to adjust for this:</p>
1027 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
1028    
1029     </pre>
1030 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
1031     but if multiple timers become ready during the same loop iteration then
1032     order of execution is undefined.</p>
1033 root 1.1 <dl>
1034     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
1035     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
1036     <dd>
1037     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
1038     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
1039     timer will automatically be configured to trigger again <code>repeat</code> seconds
1040     later, again, and again, until stopped manually.</p>
1041     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
1042     configure a timer to trigger every 10 seconds, then it will trigger at
1043     exactly 10 second intervals. If, however, your program cannot keep up with
1044 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
1045 root 1.1 timer will not fire more than once per event loop iteration.</p>
1046     </dd>
1047     <dt>ev_timer_again (loop)</dt>
1048     <dd>
1049     <p>This will act as if the timer timed out and restart it again if it is
1050     repeating. The exact semantics are:</p>
1051 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
1052     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
1053     <p>If the timer is repeating, either start it if necessary (with the
1054     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
1055 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
1056 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
1057     timeout, that is, you want to be called when there have been, say, 60
1058     seconds of inactivity on the socket. The easiest way to do this is to
1059     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
1060 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
1061     you go into an idle state where you do not expect data to travel on the
1062 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
1063     automatically restart it if need be.</p>
1064     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
1065     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
1066 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
1067     ev_timer_again (loop, timer);
1068     ...
1069     timer-&gt;again = 17.;
1070     ev_timer_again (loop, timer);
1071     ...
1072     timer-&gt;again = 10.;
1073     ev_timer_again (loop, timer);
1074    
1075     </pre>
1076 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1077     you want to modify its timeout value.</p>
1078 root 1.48 </dd>
1079     <dt>ev_tstamp repeat [read-write]</dt>
1080     <dd>
1081     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1082     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1083     which is also when any modifications are taken into account.</p>
1084 root 1.1 </dd>
1085     </dl>
1086 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1087 root 1.35 <pre> static void
1088     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1089     {
1090     .. one minute over, w is actually stopped right here
1091     }
1092    
1093     struct ev_timer mytimer;
1094     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1095     ev_timer_start (loop, &amp;mytimer);
1096    
1097     </pre>
1098 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1099 root 1.35 inactivity.</p>
1100     <pre> static void
1101     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1102     {
1103     .. ten seconds without any activity
1104     }
1105    
1106     struct ev_timer mytimer;
1107     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1108     ev_timer_again (&amp;mytimer); /* start timer */
1109     ev_loop (loop, 0);
1110    
1111     // and in some piece of code that gets executed on any &quot;activity&quot;:
1112     // reset the timeout to start ticking again at 10 seconds
1113     ev_timer_again (&amp;mytimer);
1114    
1115    
1116    
1117    
1118     </pre>
1119 root 1.1
1120     </div>
1121 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1122 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1123 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1124     (and unfortunately a bit complex).</p>
1125 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1126 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1127     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1128 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1129     + 10.</code>) and then reset your system clock to the last year, then it will
1130 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1131 root 1.74 roughly 10 seconds later).</p>
1132 root 1.1 <p>They can also be used to implement vastly more complex timers, such as
1133 root 1.74 triggering an event on each midnight, local time or other, complicated,
1134     rules.</p>
1135 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1136     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1137     during the same loop iteration then order of execution is undefined.</p>
1138 root 1.1 <dl>
1139     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1140     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1141     <dd>
1142     <p>Lots of arguments, lets sort it out... There are basically three modes of
1143     operation, and we will explain them from simplest to complex:</p>
1144     <p>
1145     <dl>
1146 root 1.74 <dt>* absolute timer (at = time, interval = reschedule_cb = 0)</dt>
1147 root 1.1 <dd>
1148     <p>In this configuration the watcher triggers an event at the wallclock time
1149     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1150     that is, if it is to be run at January 1st 2011 then it will run when the
1151     system time reaches or surpasses this time.</p>
1152     </dd>
1153 root 1.74 <dt>* non-repeating interval timer (at = offset, interval &gt; 0, reschedule_cb = 0)</dt>
1154 root 1.1 <dd>
1155     <p>In this mode the watcher will always be scheduled to time out at the next
1156 root 1.74 <code>at + N * interval</code> time (for some integer N, which can also be negative)
1157     and then repeat, regardless of any time jumps.</p>
1158 root 1.1 <p>This can be used to create timers that do not drift with respect to system
1159     time:</p>
1160     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1161    
1162     </pre>
1163     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1164     but only that the the callback will be called when the system time shows a
1165 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1166 root 1.1 by 3600.</p>
1167     <p>Another way to think about it (for the mathematically inclined) is that
1168 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1169 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1170 root 1.74 <p>For numerical stability it is preferable that the <code>at</code> value is near
1171     <code>ev_now ()</code> (the current time), but there is no range requirement for
1172     this value.</p>
1173 root 1.1 </dd>
1174 root 1.74 <dt>* manual reschedule mode (at and interval ignored, reschedule_cb = callback)</dt>
1175 root 1.1 <dd>
1176     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1177     ignored. Instead, each time the periodic watcher gets scheduled, the
1178     reschedule callback will be called with the watcher as first, and the
1179     current time as second argument.</p>
1180 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1181     ever, or make any event loop modifications</i>. If you need to stop it,
1182     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1183 root 1.74 starting an <code>ev_prepare</code> watcher, which is legal).</p>
1184 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1185     ev_tstamp now)</code>, e.g.:</p>
1186 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1187     {
1188     return now + 60.;
1189     }
1190    
1191     </pre>
1192     <p>It must return the next time to trigger, based on the passed time value
1193     (that is, the lowest time value larger than to the second argument). It
1194     will usually be called just before the callback will be triggered, but
1195     might be called at other times, too.</p>
1196 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1197 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1198 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1199     triggers on each midnight, local time. To do this, you would calculate the
1200 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1201     you do this is, again, up to you (but it is not trivial, which is the main
1202     reason I omitted it as an example).</p>
1203 root 1.1 </dd>
1204     </dl>
1205     </p>
1206     </dd>
1207     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1208     <dd>
1209     <p>Simply stops and restarts the periodic watcher again. This is only useful
1210     when you changed some parameters or the reschedule callback would return
1211     a different time than the last time it was called (e.g. in a crond like
1212     program when the crontabs have changed).</p>
1213     </dd>
1214 root 1.74 <dt>ev_tstamp offset [read-write]</dt>
1215     <dd>
1216     <p>When repeating, this contains the offset value, otherwise this is the
1217     absolute point in time (the <code>at</code> value passed to <code>ev_periodic_set</code>).</p>
1218     <p>Can be modified any time, but changes only take effect when the periodic
1219     timer fires or <code>ev_periodic_again</code> is being called.</p>
1220     </dd>
1221 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1222     <dd>
1223     <p>The current interval value. Can be modified any time, but changes only
1224     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1225     called.</p>
1226     </dd>
1227     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1228     <dd>
1229     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1230     switched off. Can be changed any time, but changes only take effect when
1231     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1232     </dd>
1233 root 1.1 </dl>
1234 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1235 root 1.35 system clock is divisible by 3600. The callback invocation times have
1236     potentially a lot of jittering, but good long-term stability.</p>
1237     <pre> static void
1238     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1239     {
1240     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1241     }
1242    
1243     struct ev_periodic hourly_tick;
1244     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1245     ev_periodic_start (loop, &amp;hourly_tick);
1246    
1247     </pre>
1248 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1249 root 1.35 <pre> #include &lt;math.h&gt;
1250    
1251     static ev_tstamp
1252     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1253     {
1254     return fmod (now, 3600.) + 3600.;
1255     }
1256    
1257     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1258    
1259     </pre>
1260 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1261 root 1.35 <pre> struct ev_periodic hourly_tick;
1262     ev_periodic_init (&amp;hourly_tick, clock_cb,
1263     fmod (ev_now (loop), 3600.), 3600., 0);
1264     ev_periodic_start (loop, &amp;hourly_tick);
1265    
1266    
1267    
1268    
1269     </pre>
1270 root 1.1
1271     </div>
1272 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1273 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1274 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1275     signal one or more times. Even though signals are very asynchronous, libev
1276 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1277 root 1.1 normal event processing, like any other event.</p>
1278 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1279 root 1.1 first watcher gets started will libev actually register a signal watcher
1280     with the kernel (thus it coexists with your own signal handlers as long
1281     as you don't register any with libev). Similarly, when the last signal
1282     watcher for a signal is stopped libev will reset the signal handler to
1283     SIG_DFL (regardless of what it was set to before).</p>
1284     <dl>
1285     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1286     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1287     <dd>
1288     <p>Configures the watcher to trigger on the given signal number (usually one
1289     of the <code>SIGxxx</code> constants).</p>
1290     </dd>
1291 root 1.48 <dt>int signum [read-only]</dt>
1292     <dd>
1293     <p>The signal the watcher watches out for.</p>
1294     </dd>
1295 root 1.1 </dl>
1296    
1297 root 1.36
1298    
1299    
1300    
1301 root 1.1 </div>
1302 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1303     <div id="code_ev_child_code_watch_out_for_pro-2">
1304 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1305     some child status changes (most typically when a child of yours dies).</p>
1306     <dl>
1307     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1308     <dt>ev_child_set (ev_child *, int pid)</dt>
1309     <dd>
1310     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1311     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1312     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1313 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1314     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1315     process causing the status change.</p>
1316 root 1.1 </dd>
1317 root 1.48 <dt>int pid [read-only]</dt>
1318     <dd>
1319     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1320     </dd>
1321     <dt>int rpid [read-write]</dt>
1322     <dd>
1323     <p>The process id that detected a status change.</p>
1324     </dd>
1325     <dt>int rstatus [read-write]</dt>
1326     <dd>
1327     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1328     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1329     </dd>
1330 root 1.1 </dl>
1331 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1332 root 1.35 <pre> static void
1333     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1334     {
1335     ev_unloop (loop, EVUNLOOP_ALL);
1336     }
1337    
1338     struct ev_signal signal_watcher;
1339     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1340     ev_signal_start (loop, &amp;sigint_cb);
1341    
1342    
1343    
1344    
1345     </pre>
1346 root 1.1
1347     </div>
1348 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1349     <div id="code_ev_stat_code_did_the_file_attri-2">
1350     <p>This watches a filesystem path for attribute changes. That is, it calls
1351     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1352     compared to the last time, invoking the callback if it did.</p>
1353     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1354     not exist&quot; is a status change like any other. The condition &quot;path does
1355     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1356     otherwise always forced to be at least one) and all the other fields of
1357     the stat buffer having unspecified contents.</p>
1358 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1359     relative and your working directory changes, the behaviour is undefined.</p>
1360 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1361 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1362 root 1.48 can specify a recommended polling interval for this case. If you specify
1363     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1364     unspecified default</i> value will be used (which you can expect to be around
1365     five seconds, although this might change dynamically). Libev will also
1366     impose a minimum interval which is currently around <code>0.1</code>, but thats
1367     usually overkill.</p>
1368     <p>This watcher type is not meant for massive numbers of stat watchers,
1369     as even with OS-supported change notifications, this can be
1370     resource-intensive.</p>
1371 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1372     implemented (implementing kqueue support is left as an exercise for the
1373     reader). Inotify will be used to give hints only and should not change the
1374     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1375     to fall back to regular polling again even with inotify, but changes are
1376     usually detected immediately, and if the file exists there will be no
1377     polling.</p>
1378 root 1.48 <dl>
1379     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1380     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1381     <dd>
1382     <p>Configures the watcher to wait for status changes of the given
1383     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1384     be detected and should normally be specified as <code>0</code> to let libev choose
1385     a suitable value. The memory pointed to by <code>path</code> must point to the same
1386     path for as long as the watcher is active.</p>
1387     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1388     relative to the attributes at the time the watcher was started (or the
1389     last change was detected).</p>
1390     </dd>
1391     <dt>ev_stat_stat (ev_stat *)</dt>
1392     <dd>
1393     <p>Updates the stat buffer immediately with new values. If you change the
1394     watched path in your callback, you could call this fucntion to avoid
1395     detecting this change (while introducing a race condition). Can also be
1396     useful simply to find out the new values.</p>
1397     </dd>
1398     <dt>ev_statdata attr [read-only]</dt>
1399     <dd>
1400     <p>The most-recently detected attributes of the file. Although the type is of
1401     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1402     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1403     was some error while <code>stat</code>ing the file.</p>
1404     </dd>
1405     <dt>ev_statdata prev [read-only]</dt>
1406     <dd>
1407     <p>The previous attributes of the file. The callback gets invoked whenever
1408     <code>prev</code> != <code>attr</code>.</p>
1409     </dd>
1410     <dt>ev_tstamp interval [read-only]</dt>
1411     <dd>
1412     <p>The specified interval.</p>
1413     </dd>
1414     <dt>const char *path [read-only]</dt>
1415     <dd>
1416     <p>The filesystem path that is being watched.</p>
1417     </dd>
1418     </dl>
1419     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1420     <pre> static void
1421     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1422     {
1423     /* /etc/passwd changed in some way */
1424     if (w-&gt;attr.st_nlink)
1425     {
1426     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1427     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1428     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1429     }
1430     else
1431     /* you shalt not abuse printf for puts */
1432     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1433     &quot;if this is windows, they already arrived\n&quot;);
1434     }
1435    
1436     ...
1437     ev_stat passwd;
1438    
1439     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1440     ev_stat_start (loop, &amp;passwd);
1441    
1442    
1443    
1444    
1445     </pre>
1446    
1447     </div>
1448 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1449 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1450 root 1.64 <p>Idle watchers trigger events when no other events of the same or higher
1451     priority are pending (prepare, check and other idle watchers do not
1452     count).</p>
1453     <p>That is, as long as your process is busy handling sockets or timeouts
1454     (or even signals, imagine) of the same or higher priority it will not be
1455     triggered. But when your process is idle (or only lower-priority watchers
1456     are pending), the idle watchers are being called once per event loop
1457     iteration - until stopped, that is, or your process receives more events
1458     and becomes busy again with higher priority stuff.</p>
1459 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1460     active, the process will not block when waiting for new events.</p>
1461     <p>Apart from keeping your process non-blocking (which is a useful
1462     effect on its own sometimes), idle watchers are a good place to do
1463     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1464     event loop has handled all outstanding events.</p>
1465     <dl>
1466     <dt>ev_idle_init (ev_signal *, callback)</dt>
1467     <dd>
1468     <p>Initialises and configures the idle watcher - it has no parameters of any
1469     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1470     believe me.</p>
1471     </dd>
1472     </dl>
1473 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1474     callback, free it. Also, use no error checking, as usual.</p>
1475 root 1.35 <pre> static void
1476     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1477     {
1478     free (w);
1479     // now do something you wanted to do when the program has
1480     // no longer asnything immediate to do.
1481     }
1482    
1483     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1484     ev_idle_init (idle_watcher, idle_cb);
1485     ev_idle_start (loop, idle_cb);
1486    
1487    
1488    
1489    
1490     </pre>
1491 root 1.1
1492     </div>
1493 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1494 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1495 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1496 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1497 root 1.14 afterwards.</p>
1498 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1499     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1500     watchers. Other loops than the current one are fine, however. The
1501     rationale behind this is that you do not need to check for recursion in
1502     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1503     <code>ev_check</code> so if you have one watcher of each kind they will always be
1504     called in pairs bracketing the blocking call.</p>
1505 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1506     their use is somewhat advanced. This could be used, for example, to track
1507     variable changes, implement your own watchers, integrate net-snmp or a
1508 root 1.46 coroutine library and lots more. They are also occasionally useful if
1509     you cache some data and want to flush it before blocking (for example,
1510     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1511     watcher).</p>
1512 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1513 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1514     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1515     provide just this functionality). Then, in the check watcher you check for
1516     any events that occured (by checking the pending status of all watchers
1517     and stopping them) and call back into the library. The I/O and timer
1518 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1519 root 1.14 because you never know, you know?).</p>
1520     <p>As another example, the Perl Coro module uses these hooks to integrate
1521 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1522     during each prepare and only letting the process block if no coroutines
1523 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1524     with priority higher than or equal to the event loop and one coroutine
1525     of lower priority, but only once, using idle watchers to keep the event
1526     loop from blocking if lower-priority coroutines are active, thus mapping
1527     low-priority coroutines to idle/background tasks).</p>
1528 root 1.73 <p>It is recommended to give <code>ev_check</code> watchers highest (<code>EV_MAXPRI</code>)
1529     priority, to ensure that they are being run before any other watchers
1530     after the poll. Also, <code>ev_check</code> watchers (and <code>ev_prepare</code> watchers,
1531     too) should not activate (&quot;feed&quot;) events into libev. While libev fully
1532     supports this, they will be called before other <code>ev_check</code> watchers did
1533     their job. As <code>ev_check</code> watchers are often used to embed other event
1534     loops those other event loops might be in an unusable state until their
1535     <code>ev_check</code> watcher ran (always remind yourself to coexist peacefully with
1536     others).</p>
1537 root 1.1 <dl>
1538     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1539     <dt>ev_check_init (ev_check *, callback)</dt>
1540     <dd>
1541     <p>Initialises and configures the prepare or check watcher - they have no
1542     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1543 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1544 root 1.1 </dd>
1545     </dl>
1546 root 1.72 <p>There are a number of principal ways to embed other event loops or modules
1547     into libev. Here are some ideas on how to include libadns into libev
1548     (there is a Perl module named <code>EV::ADNS</code> that does this, which you could
1549     use for an actually working example. Another Perl module named <code>EV::Glib</code>
1550     embeds a Glib main context into libev, and finally, <code>Glib::EV</code> embeds EV
1551     into the Glib event loop).</p>
1552     <p>Method 1: Add IO watchers and a timeout watcher in a prepare handler,
1553     and in a check watcher, destroy them and call into libadns. What follows
1554     is pseudo-code only of course. This requires you to either use a low
1555     priority for the check watcher or use <code>ev_clear_pending</code> explicitly, as
1556     the callbacks for the IO/timeout watchers might not have been called yet.</p>
1557 root 1.46 <pre> static ev_io iow [nfd];
1558     static ev_timer tw;
1559    
1560     static void
1561     io_cb (ev_loop *loop, ev_io *w, int revents)
1562     {
1563     }
1564    
1565     // create io watchers for each fd and a timer before blocking
1566     static void
1567     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1568     {
1569 root 1.64 int timeout = 3600000;
1570     struct pollfd fds [nfd];
1571 root 1.46 // actual code will need to loop here and realloc etc.
1572     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1573    
1574     /* the callback is illegal, but won't be called as we stop during check */
1575     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1576     ev_timer_start (loop, &amp;tw);
1577    
1578 root 1.72 // create one ev_io per pollfd
1579 root 1.46 for (int i = 0; i &lt; nfd; ++i)
1580     {
1581     ev_io_init (iow + i, io_cb, fds [i].fd,
1582     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1583     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1584    
1585     fds [i].revents = 0;
1586     ev_io_start (loop, iow + i);
1587     }
1588     }
1589    
1590     // stop all watchers after blocking
1591     static void
1592     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1593     {
1594     ev_timer_stop (loop, &amp;tw);
1595    
1596     for (int i = 0; i &lt; nfd; ++i)
1597 root 1.72 {
1598     // set the relevant poll flags
1599     // could also call adns_processreadable etc. here
1600     struct pollfd *fd = fds + i;
1601     int revents = ev_clear_pending (iow + i);
1602     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1603     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1604    
1605     // now stop the watcher
1606     ev_io_stop (loop, iow + i);
1607     }
1608 root 1.46
1609     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1610     }
1611 root 1.35
1612 root 1.72 </pre>
1613     <p>Method 2: This would be just like method 1, but you run <code>adns_afterpoll</code>
1614     in the prepare watcher and would dispose of the check watcher.</p>
1615     <p>Method 3: If the module to be embedded supports explicit event
1616     notification (adns does), you can also make use of the actual watcher
1617     callbacks, and only destroy/create the watchers in the prepare watcher.</p>
1618     <pre> static void
1619     timer_cb (EV_P_ ev_timer *w, int revents)
1620     {
1621     adns_state ads = (adns_state)w-&gt;data;
1622     update_now (EV_A);
1623    
1624     adns_processtimeouts (ads, &amp;tv_now);
1625     }
1626    
1627     static void
1628     io_cb (EV_P_ ev_io *w, int revents)
1629     {
1630     adns_state ads = (adns_state)w-&gt;data;
1631     update_now (EV_A);
1632    
1633     if (revents &amp; EV_READ ) adns_processreadable (ads, w-&gt;fd, &amp;tv_now);
1634     if (revents &amp; EV_WRITE) adns_processwriteable (ads, w-&gt;fd, &amp;tv_now);
1635     }
1636    
1637     // do not ever call adns_afterpoll
1638    
1639     </pre>
1640     <p>Method 4: Do not use a prepare or check watcher because the module you
1641     want to embed is too inflexible to support it. Instead, youc na override
1642     their poll function. The drawback with this solution is that the main
1643     loop is now no longer controllable by EV. The <code>Glib::EV</code> module does
1644     this.</p>
1645     <pre> static gint
1646     event_poll_func (GPollFD *fds, guint nfds, gint timeout)
1647     {
1648     int got_events = 0;
1649    
1650     for (n = 0; n &lt; nfds; ++n)
1651     // create/start io watcher that sets the relevant bits in fds[n] and increment got_events
1652    
1653     if (timeout &gt;= 0)
1654     // create/start timer
1655    
1656     // poll
1657     ev_loop (EV_A_ 0);
1658    
1659     // stop timer again
1660     if (timeout &gt;= 0)
1661     ev_timer_stop (EV_A_ &amp;to);
1662    
1663     // stop io watchers again - their callbacks should have set
1664     for (n = 0; n &lt; nfds; ++n)
1665     ev_io_stop (EV_A_ iow [n]);
1666    
1667     return got_events;
1668     }
1669    
1670 root 1.35
1671    
1672    
1673 root 1.46 </pre>
1674 root 1.1
1675     </div>
1676 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1677 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1678     <p>This is a rather advanced watcher type that lets you embed one event loop
1679 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1680     loop, other types of watchers might be handled in a delayed or incorrect
1681     fashion and must not be used).</p>
1682 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1683     prioritise I/O.</p>
1684     <p>As an example for a bug workaround, the kqueue backend might only support
1685     sockets on some platform, so it is unusable as generic backend, but you
1686     still want to make use of it because you have many sockets and it scales
1687     so nicely. In this case, you would create a kqueue-based loop and embed it
1688     into your default loop (which might use e.g. poll). Overall operation will
1689     be a bit slower because first libev has to poll and then call kevent, but
1690     at least you can use both at what they are best.</p>
1691     <p>As for prioritising I/O: rarely you have the case where some fds have
1692     to be watched and handled very quickly (with low latency), and even
1693     priorities and idle watchers might have too much overhead. In this case
1694     you would put all the high priority stuff in one loop and all the rest in
1695     a second one, and embed the second one in the first.</p>
1696 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1697     there might be events pending in the embedded loop. The callback must then
1698     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1699     their callbacks (you could also start an idle watcher to give the embedded
1700     loop strictly lower priority for example). You can also set the callback
1701     to <code>0</code>, in which case the embed watcher will automatically execute the
1702     embedded loop sweep.</p>
1703 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1704     callback will be invoked whenever some events have been handled. You can
1705     set the callback to <code>0</code> to avoid having to specify one if you are not
1706     interested in that.</p>
1707     <p>Also, there have not currently been made special provisions for forking:
1708     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1709     but you will also have to stop and restart any <code>ev_embed</code> watchers
1710     yourself.</p>
1711     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1712     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1713     portable one.</p>
1714     <p>So when you want to use this feature you will always have to be prepared
1715     that you cannot get an embeddable loop. The recommended way to get around
1716     this is to have a separate variables for your embeddable loop, try to
1717     create it, and if that fails, use the normal loop for everything:</p>
1718     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1719     struct ev_loop *loop_lo = 0;
1720     struct ev_embed embed;
1721    
1722     // see if there is a chance of getting one that works
1723     // (remember that a flags value of 0 means autodetection)
1724     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1725     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1726     : 0;
1727    
1728     // if we got one, then embed it, otherwise default to loop_hi
1729     if (loop_lo)
1730     {
1731     ev_embed_init (&amp;embed, 0, loop_lo);
1732     ev_embed_start (loop_hi, &amp;embed);
1733     }
1734     else
1735     loop_lo = loop_hi;
1736    
1737     </pre>
1738     <dl>
1739 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1740     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1741 root 1.36 <dd>
1742 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1743     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1744     invoked automatically, otherwise it is the responsibility of the callback
1745     to invoke it (it will continue to be called until the sweep has been done,
1746     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1747     </dd>
1748     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1749     <dd>
1750     <p>Make a single, non-blocking sweep over the embedded loop. This works
1751     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1752     apropriate way for embedded loops.</p>
1753 root 1.36 </dd>
1754 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1755     <dd>
1756     <p>The embedded event loop.</p>
1757     </dd>
1758 root 1.36 </dl>
1759    
1760    
1761    
1762    
1763    
1764     </div>
1765 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1766     <div id="code_ev_fork_code_the_audacity_to_re-2">
1767     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1768     whoever is a good citizen cared to tell libev about it by calling
1769     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1770     event loop blocks next and before <code>ev_check</code> watchers are being called,
1771     and only in the child after the fork. If whoever good citizen calling
1772     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1773     handlers will be invoked, too, of course.</p>
1774     <dl>
1775     <dt>ev_fork_init (ev_signal *, callback)</dt>
1776     <dd>
1777     <p>Initialises and configures the fork watcher - it has no parameters of any
1778     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1779     believe me.</p>
1780     </dd>
1781     </dl>
1782    
1783    
1784    
1785    
1786    
1787     </div>
1788 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1789 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1790 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1791 root 1.1 <dl>
1792     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1793     <dd>
1794     <p>This function combines a simple timer and an I/O watcher, calls your
1795     callback on whichever event happens first and automatically stop both
1796     watchers. This is useful if you want to wait for a single event on an fd
1797 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1798 root 1.1 more watchers yourself.</p>
1799 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1800     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1801     <code>events</code> set will be craeted and started.</p>
1802 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1803 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1804     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1805     dubious value.</p>
1806     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1807 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1808 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1809     value passed to <code>ev_once</code>:</p>
1810 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1811     {
1812     if (revents &amp; EV_TIMEOUT)
1813 root 1.14 /* doh, nothing entered */;
1814 root 1.1 else if (revents &amp; EV_READ)
1815 root 1.14 /* stdin might have data for us, joy! */;
1816 root 1.1 }
1817    
1818 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1819 root 1.1
1820     </pre>
1821     </dd>
1822 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1823 root 1.1 <dd>
1824     <p>Feeds the given event set into the event loop, as if the specified event
1825 root 1.14 had happened for the specified watcher (which must be a pointer to an
1826     initialised but not necessarily started event watcher).</p>
1827 root 1.1 </dd>
1828 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1829 root 1.1 <dd>
1830 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1831     the given events it.</p>
1832 root 1.1 </dd>
1833 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1834 root 1.1 <dd>
1835 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1836     loop!).</p>
1837 root 1.1 </dd>
1838     </dl>
1839    
1840 root 1.35
1841    
1842    
1843    
1844 root 1.1 </div>
1845 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1846 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1847 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1848     emulate the internals of libevent, so here are some usage hints:</p>
1849     <dl>
1850     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1851     <dt>* The following members are fully supported: ev_base, ev_callback,
1852     ev_arg, ev_fd, ev_res, ev_events.</dt>
1853     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1854     maintained by libev, it does not work exactly the same way as in libevent (consider
1855     it a private API).</dt>
1856     <dt>* Priorities are not currently supported. Initialising priorities
1857     will fail and all watchers will have the same priority, even though there
1858     is an ev_pri field.</dt>
1859     <dt>* Other members are not supported.</dt>
1860     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1861     to use the libev header file and library.</dt>
1862     </dl>
1863 root 1.23
1864     </div>
1865 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1866 root 1.23 <div id="C_SUPPORT_CONTENT">
1867 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1868     you to use some convinience methods to start/stop watchers and also change
1869     the callback model to a model using method callbacks on objects.</p>
1870     <p>To use it,</p>
1871     <pre> #include &lt;ev++.h&gt;
1872    
1873     </pre>
1874 root 1.68 <p>This automatically includes <cite>ev.h</cite> and puts all of its definitions (many
1875     of them macros) into the global namespace. All C++ specific things are
1876     put into the <code>ev</code> namespace. It should support all the same embedding
1877     options as <cite>ev.h</cite>, most notably <code>EV_MULTIPLICITY</code>.</p>
1878 root 1.69 <p>Care has been taken to keep the overhead low. The only data member the C++
1879     classes add (compared to plain C-style watchers) is the event loop pointer
1880     that the watcher is associated with (or no additional members at all if
1881     you disable <code>EV_MULTIPLICITY</code> when embedding libev).</p>
1882     <p>Currently, functions, and static and non-static member functions can be
1883 root 1.68 used as callbacks. Other types should be easy to add as long as they only
1884     need one additional pointer for context. If you need support for other
1885     types of functors please contact the author (preferably after implementing
1886     it).</p>
1887 root 1.39 <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1888     <dl>
1889     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1890     <dd>
1891     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1892     macros from <cite>ev.h</cite>.</p>
1893     </dd>
1894     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1895     <dd>
1896     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1897     </dd>
1898     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1899     <dd>
1900     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1901     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1902     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1903     defines by many implementations.</p>
1904     <p>All of those classes have these methods:</p>
1905     <p>
1906     <dl>
1907 root 1.68 <dt>ev::TYPE::TYPE ()</dt>
1908     <dt>ev::TYPE::TYPE (struct ev_loop *)</dt>
1909 root 1.39 <dt>ev::TYPE::~TYPE</dt>
1910     <dd>
1911 root 1.68 <p>The constructor (optionally) takes an event loop to associate the watcher
1912     with. If it is omitted, it will use <code>EV_DEFAULT</code>.</p>
1913     <p>The constructor calls <code>ev_init</code> for you, which means you have to call the
1914     <code>set</code> method before starting it.</p>
1915     <p>It will not set a callback, however: You have to call the templated <code>set</code>
1916     method to set a callback before you can start the watcher.</p>
1917     <p>(The reason why you have to use a method is a limitation in C++ which does
1918     not allow explicit template arguments for constructors).</p>
1919 root 1.39 <p>The destructor automatically stops the watcher if it is active.</p>
1920     </dd>
1921 root 1.68 <dt>w-&gt;set&lt;class, &amp;class::method&gt; (object *)</dt>
1922     <dd>
1923     <p>This method sets the callback method to call. The method has to have a
1924     signature of <code>void (*)(ev_TYPE &amp;, int)</code>, it receives the watcher as
1925     first argument and the <code>revents</code> as second. The object must be given as
1926     parameter and is stored in the <code>data</code> member of the watcher.</p>
1927     <p>This method synthesizes efficient thunking code to call your method from
1928     the C callback that libev requires. If your compiler can inline your
1929     callback (i.e. it is visible to it at the place of the <code>set</code> call and
1930     your compiler is good :), then the method will be fully inlined into the
1931     thunking function, making it as fast as a direct C callback.</p>
1932     <p>Example: simple class declaration and watcher initialisation</p>
1933     <pre> struct myclass
1934     {
1935     void io_cb (ev::io &amp;w, int revents) { }
1936     }
1937    
1938     myclass obj;
1939     ev::io iow;
1940     iow.set &lt;myclass, &amp;myclass::io_cb&gt; (&amp;obj);
1941    
1942     </pre>
1943     </dd>
1944 root 1.70 <dt>w-&gt;set&lt;function&gt; (void *data = 0)</dt>
1945 root 1.68 <dd>
1946     <p>Also sets a callback, but uses a static method or plain function as
1947     callback. The optional <code>data</code> argument will be stored in the watcher's
1948     <code>data</code> member and is free for you to use.</p>
1949 root 1.70 <p>The prototype of the <code>function</code> must be <code>void (*)(ev::TYPE &amp;w, int)</code>.</p>
1950 root 1.68 <p>See the method-<code>set</code> above for more details.</p>
1951 root 1.70 <p>Example:</p>
1952     <pre> static void io_cb (ev::io &amp;w, int revents) { }
1953     iow.set &lt;io_cb&gt; ();
1954    
1955     </pre>
1956 root 1.68 </dd>
1957 root 1.39 <dt>w-&gt;set (struct ev_loop *)</dt>
1958     <dd>
1959     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
1960     do this when the watcher is inactive (and not pending either).</p>
1961     </dd>
1962     <dt>w-&gt;set ([args])</dt>
1963     <dd>
1964     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
1965 root 1.68 called at least once. Unlike the C counterpart, an active watcher gets
1966     automatically stopped and restarted when reconfiguring it with this
1967     method.</p>
1968 root 1.39 </dd>
1969     <dt>w-&gt;start ()</dt>
1970     <dd>
1971 root 1.68 <p>Starts the watcher. Note that there is no <code>loop</code> argument, as the
1972     constructor already stores the event loop.</p>
1973 root 1.39 </dd>
1974     <dt>w-&gt;stop ()</dt>
1975     <dd>
1976     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
1977     </dd>
1978     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
1979     <dd>
1980     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
1981     <code>ev_TYPE_again</code> function.</p>
1982     </dd>
1983     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
1984     <dd>
1985     <p>Invokes <code>ev_embed_sweep</code>.</p>
1986     </dd>
1987 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
1988     <dd>
1989     <p>Invokes <code>ev_stat_stat</code>.</p>
1990     </dd>
1991 root 1.39 </dl>
1992     </p>
1993     </dd>
1994     </dl>
1995     <p>Example: Define a class with an IO and idle watcher, start one of them in
1996     the constructor.</p>
1997     <pre> class myclass
1998     {
1999     ev_io io; void io_cb (ev::io &amp;w, int revents);
2000     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
2001    
2002     myclass ();
2003     }
2004    
2005     myclass::myclass (int fd)
2006     {
2007 root 1.68 io .set &lt;myclass, &amp;myclass::io_cb &gt; (this);
2008     idle.set &lt;myclass, &amp;myclass::idle_cb&gt; (this);
2009    
2010 root 1.39 io.start (fd, ev::READ);
2011     }
2012    
2013 root 1.50
2014    
2015    
2016     </pre>
2017    
2018     </div>
2019 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
2020 root 1.50 <div id="MACRO_MAGIC_CONTENT">
2021     <p>Libev can be compiled with a variety of options, the most fundemantal is
2022 root 1.65 <code>EV_MULTIPLICITY</code>. This option determines whether (most) functions and
2023 root 1.50 callbacks have an initial <code>struct ev_loop *</code> argument.</p>
2024     <p>To make it easier to write programs that cope with either variant, the
2025     following macros are defined:</p>
2026     <dl>
2027     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
2028     <dd>
2029     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
2030     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
2031     <code>EV_A_</code> is used when other arguments are following. Example:</p>
2032     <pre> ev_unref (EV_A);
2033     ev_timer_add (EV_A_ watcher);
2034     ev_loop (EV_A_ 0);
2035    
2036     </pre>
2037     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
2038     which is often provided by the following macro.</p>
2039     </dd>
2040     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
2041     <dd>
2042     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
2043     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
2044     <code>EV_P_</code> is used when other parameters are following. Example:</p>
2045     <pre> // this is how ev_unref is being declared
2046     static void ev_unref (EV_P);
2047    
2048     // this is how you can declare your typical callback
2049     static void cb (EV_P_ ev_timer *w, int revents)
2050    
2051     </pre>
2052     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
2053     suitable for use with <code>EV_A</code>.</p>
2054     </dd>
2055     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
2056     <dd>
2057     <p>Similar to the other two macros, this gives you the value of the default
2058     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
2059     </dd>
2060     </dl>
2061 root 1.63 <p>Example: Declare and initialise a check watcher, utilising the above
2062 root 1.65 macros so it will work regardless of whether multiple loops are supported
2063 root 1.63 or not.</p>
2064 root 1.50 <pre> static void
2065     check_cb (EV_P_ ev_timer *w, int revents)
2066     {
2067     ev_check_stop (EV_A_ w);
2068     }
2069    
2070     ev_check check;
2071     ev_check_init (&amp;check, check_cb);
2072     ev_check_start (EV_DEFAULT_ &amp;check);
2073     ev_loop (EV_DEFAULT_ 0);
2074    
2075 root 1.39 </pre>
2076 root 1.23
2077     </div>
2078 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
2079 root 1.40 <div id="EMBEDDING_CONTENT">
2080     <p>Libev can (and often is) directly embedded into host
2081     applications. Examples of applications that embed it include the Deliantra
2082     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
2083     and rxvt-unicode.</p>
2084     <p>The goal is to enable you to just copy the neecssary files into your
2085     source directory without having to change even a single line in them, so
2086     you can easily upgrade by simply copying (or having a checked-out copy of
2087     libev somewhere in your source tree).</p>
2088    
2089     </div>
2090     <h2 id="FILESETS">FILESETS</h2>
2091     <div id="FILESETS_CONTENT">
2092     <p>Depending on what features you need you need to include one or more sets of files
2093     in your app.</p>
2094    
2095     </div>
2096     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
2097     <div id="CORE_EVENT_LOOP_CONTENT">
2098     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
2099     configuration (no autoconf):</p>
2100     <pre> #define EV_STANDALONE 1
2101     #include &quot;ev.c&quot;
2102    
2103     </pre>
2104     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
2105     single C source file only to provide the function implementations. To use
2106     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
2107     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
2108     where you can put other configuration options):</p>
2109     <pre> #define EV_STANDALONE 1
2110     #include &quot;ev.h&quot;
2111    
2112     </pre>
2113     <p>Both header files and implementation files can be compiled with a C++
2114     compiler (at least, thats a stated goal, and breakage will be treated
2115     as a bug).</p>
2116     <p>You need the following files in your source tree, or in a directory
2117     in your include path (e.g. in libev/ when using -Ilibev):</p>
2118     <pre> ev.h
2119     ev.c
2120     ev_vars.h
2121     ev_wrap.h
2122    
2123     ev_win32.c required on win32 platforms only
2124    
2125 root 1.63 ev_select.c only when select backend is enabled (which is enabled by default)
2126 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
2127     ev_epoll.c only when the epoll backend is enabled (disabled by default)
2128     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
2129     ev_port.c only when the solaris port backend is enabled (disabled by default)
2130    
2131     </pre>
2132     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
2133 root 1.44 to compile this single file.</p>
2134 root 1.40
2135     </div>
2136     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
2137     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
2138     <p>To include the libevent compatibility API, also include:</p>
2139     <pre> #include &quot;event.c&quot;
2140    
2141     </pre>
2142     <p>in the file including <cite>ev.c</cite>, and:</p>
2143     <pre> #include &quot;event.h&quot;
2144    
2145     </pre>
2146     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
2147     <p>You need the following additional files for this:</p>
2148     <pre> event.h
2149     event.c
2150    
2151     </pre>
2152    
2153     </div>
2154     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
2155     <div id="AUTOCONF_SUPPORT_CONTENT">
2156     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
2157     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
2158 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
2159     include <cite>config.h</cite> and configure itself accordingly.</p>
2160 root 1.40 <p>For this of course you need the m4 file:</p>
2161     <pre> libev.m4
2162    
2163     </pre>
2164    
2165     </div>
2166     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
2167     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
2168     <p>Libev can be configured via a variety of preprocessor symbols you have to define
2169     before including any of its files. The default is not to build for multiplicity
2170     and only include the select backend.</p>
2171     <dl>
2172     <dt>EV_STANDALONE</dt>
2173     <dd>
2174     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
2175     keeps libev from including <cite>config.h</cite>, and it also defines dummy
2176     implementations for some libevent functions (such as logging, which is not
2177     supported). It will also not define any of the structs usually found in
2178     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
2179     </dd>
2180     <dt>EV_USE_MONOTONIC</dt>
2181     <dd>
2182     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2183     monotonic clock option at both compiletime and runtime. Otherwise no use
2184     of the monotonic clock option will be attempted. If you enable this, you
2185     usually have to link against librt or something similar. Enabling it when
2186     the functionality isn't available is safe, though, althoguh you have
2187     to make sure you link against any libraries where the <code>clock_gettime</code>
2188     function is hiding in (often <cite>-lrt</cite>).</p>
2189     </dd>
2190     <dt>EV_USE_REALTIME</dt>
2191     <dd>
2192     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2193     realtime clock option at compiletime (and assume its availability at
2194     runtime if successful). Otherwise no use of the realtime clock option will
2195     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
2196     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
2197     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
2198     </dd>
2199     <dt>EV_USE_SELECT</dt>
2200     <dd>
2201     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
2202     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
2203     other method takes over, select will be it. Otherwise the select backend
2204     will not be compiled in.</p>
2205     </dd>
2206     <dt>EV_SELECT_USE_FD_SET</dt>
2207     <dd>
2208     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
2209     structure. This is useful if libev doesn't compile due to a missing
2210     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
2211     exotic systems. This usually limits the range of file descriptors to some
2212     low limit such as 1024 or might have other limitations (winsocket only
2213     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
2214     influence the size of the <code>fd_set</code> used.</p>
2215     </dd>
2216     <dt>EV_SELECT_IS_WINSOCKET</dt>
2217     <dd>
2218     <p>When defined to <code>1</code>, the select backend will assume that
2219     select/socket/connect etc. don't understand file descriptors but
2220     wants osf handles on win32 (this is the case when the select to
2221     be used is the winsock select). This means that it will call
2222     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2223     it is assumed that all these functions actually work on fds, even
2224     on win32. Should not be defined on non-win32 platforms.</p>
2225     </dd>
2226     <dt>EV_USE_POLL</dt>
2227     <dd>
2228     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2229     backend. Otherwise it will be enabled on non-win32 platforms. It
2230     takes precedence over select.</p>
2231     </dd>
2232     <dt>EV_USE_EPOLL</dt>
2233     <dd>
2234     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2235     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2236     otherwise another method will be used as fallback. This is the
2237     preferred backend for GNU/Linux systems.</p>
2238     </dd>
2239     <dt>EV_USE_KQUEUE</dt>
2240     <dd>
2241     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2242     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2243     otherwise another method will be used as fallback. This is the preferred
2244     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2245     supports some types of fds correctly (the only platform we found that
2246     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2247     not be used unless explicitly requested. The best way to use it is to find
2248 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2249 root 1.40 kqueue loop.</p>
2250     </dd>
2251     <dt>EV_USE_PORT</dt>
2252     <dd>
2253     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2254     10 port style backend. Its availability will be detected at runtime,
2255     otherwise another method will be used as fallback. This is the preferred
2256     backend for Solaris 10 systems.</p>
2257     </dd>
2258     <dt>EV_USE_DEVPOLL</dt>
2259     <dd>
2260     <p>reserved for future expansion, works like the USE symbols above.</p>
2261     </dd>
2262 root 1.57 <dt>EV_USE_INOTIFY</dt>
2263     <dd>
2264     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2265     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2266     be detected at runtime.</p>
2267     </dd>
2268 root 1.40 <dt>EV_H</dt>
2269     <dd>
2270     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2271     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2272     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2273     </dd>
2274     <dt>EV_CONFIG_H</dt>
2275     <dd>
2276     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2277     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2278     <code>EV_H</code>, above.</p>
2279     </dd>
2280     <dt>EV_EVENT_H</dt>
2281     <dd>
2282     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2283     of how the <cite>event.h</cite> header can be found.</p>
2284     </dd>
2285     <dt>EV_PROTOTYPES</dt>
2286     <dd>
2287     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2288     prototypes, but still define all the structs and other symbols. This is
2289     occasionally useful if you want to provide your own wrapper functions
2290     around libev functions.</p>
2291     </dd>
2292     <dt>EV_MULTIPLICITY</dt>
2293     <dd>
2294     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2295     will have the <code>struct ev_loop *</code> as first argument, and you can create
2296     additional independent event loops. Otherwise there will be no support
2297     for multiple event loops and there is no first event loop pointer
2298     argument. Instead, all functions act on the single default loop.</p>
2299     </dd>
2300 root 1.66 <dt>EV_MINPRI</dt>
2301     <dt>EV_MAXPRI</dt>
2302     <dd>
2303     <p>The range of allowed priorities. <code>EV_MINPRI</code> must be smaller or equal to
2304     <code>EV_MAXPRI</code>, but otherwise there are no non-obvious limitations. You can
2305     provide for more priorities by overriding those symbols (usually defined
2306     to be <code>-2</code> and <code>2</code>, respectively).</p>
2307     <p>When doing priority-based operations, libev usually has to linearly search
2308     all the priorities, so having many of them (hundreds) uses a lot of space
2309     and time, so using the defaults of five priorities (-2 .. +2) is usually
2310     fine.</p>
2311     <p>If your embedding app does not need any priorities, defining these both to
2312     <code>0</code> will save some memory and cpu.</p>
2313     </dd>
2314 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2315     <dd>
2316     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2317     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2318     code.</p>
2319     </dd>
2320 root 1.64 <dt>EV_IDLE_ENABLE</dt>
2321     <dd>
2322     <p>If undefined or defined to be <code>1</code>, then idle watchers are supported. If
2323     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2324     code.</p>
2325     </dd>
2326 root 1.48 <dt>EV_EMBED_ENABLE</dt>
2327     <dd>
2328     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2329     defined to be <code>0</code>, then they are not.</p>
2330     </dd>
2331     <dt>EV_STAT_ENABLE</dt>
2332     <dd>
2333     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2334     defined to be <code>0</code>, then they are not.</p>
2335     </dd>
2336 root 1.50 <dt>EV_FORK_ENABLE</dt>
2337     <dd>
2338     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2339     defined to be <code>0</code>, then they are not.</p>
2340     </dd>
2341 root 1.48 <dt>EV_MINIMAL</dt>
2342 root 1.40 <dd>
2343 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2344     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2345     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2346 root 1.40 </dd>
2347 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2348     <dd>
2349     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2350     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2351     than enough. If you need to manage thousands of children you might want to
2352 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2353     </dd>
2354     <dt>EV_INOTIFY_HASHSIZE</dt>
2355     <dd>
2356     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2357     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2358     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2359     watchers you might want to increase this value (<i>must</i> be a power of
2360     two).</p>
2361 root 1.51 </dd>
2362 root 1.40 <dt>EV_COMMON</dt>
2363     <dd>
2364     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2365     this macro to a something else you can include more and other types of
2366     members. You have to define it each time you include one of the files,
2367     though, and it must be identical each time.</p>
2368     <p>For example, the perl EV module uses something like this:</p>
2369     <pre> #define EV_COMMON \
2370     SV *self; /* contains this struct */ \
2371     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2372    
2373     </pre>
2374     </dd>
2375 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2376     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2377     <dt>ev_set_cb (ev, cb)</dt>
2378 root 1.40 <dd>
2379     <p>Can be used to change the callback member declaration in each watcher,
2380     and the way callbacks are invoked and set. Must expand to a struct member
2381     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2382     their default definitions. One possible use for overriding these is to
2383 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2384     method calls instead of plain function calls in C++.</p>
2385 root 1.40
2386     </div>
2387     <h2 id="EXAMPLES">EXAMPLES</h2>
2388     <div id="EXAMPLES_CONTENT">
2389     <p>For a real-world example of a program the includes libev
2390     verbatim, you can have a look at the EV perl module
2391     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2392     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2393     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2394     will be compiled. It is pretty complex because it provides its own header
2395     file.</p>
2396     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2397 root 1.63 that everybody includes and which overrides some configure choices:</p>
2398     <pre> #define EV_MINIMAL 1
2399     #define EV_USE_POLL 0
2400 root 1.41 #define EV_MULTIPLICITY 0
2401 root 1.63 #define EV_PERIODIC_ENABLE 0
2402     #define EV_STAT_ENABLE 0
2403     #define EV_FORK_ENABLE 0
2404 root 1.41 #define EV_CONFIG_H &lt;config.h&gt;
2405 root 1.63 #define EV_MINPRI 0
2406     #define EV_MAXPRI 0
2407 root 1.40
2408 root 1.41 #include &quot;ev++.h&quot;
2409 root 1.40
2410     </pre>
2411     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2412 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2413     #include &quot;ev.c&quot;
2414 root 1.40
2415 root 1.47
2416    
2417    
2418 root 1.40 </pre>
2419    
2420     </div>
2421 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2422 root 1.47 <div id="COMPLEXITIES_CONTENT">
2423     <p>In this section the complexities of (many of) the algorithms used inside
2424     libev will be explained. For complexity discussions about backends see the
2425     documentation for <code>ev_default_init</code>.</p>
2426 root 1.67 <p>All of the following are about amortised time: If an array needs to be
2427     extended, libev needs to realloc and move the whole array, but this
2428     happens asymptotically never with higher number of elements, so O(1) might
2429     mean it might do a lengthy realloc operation in rare cases, but on average
2430     it is much faster and asymptotically approaches constant time.</p>
2431 root 1.47 <p>
2432     <dl>
2433     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2434 root 1.66 <dd>
2435     <p>This means that, when you have a watcher that triggers in one hour and
2436     there are 100 watchers that would trigger before that then inserting will
2437     have to skip those 100 watchers.</p>
2438     </dd>
2439 root 1.47 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2440 root 1.66 <dd>
2441     <p>That means that for changing a timer costs less than removing/adding them
2442     as only the relative motion in the event queue has to be paid for.</p>
2443     </dd>
2444 root 1.47 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2445 root 1.66 <dd>
2446 root 1.67 <p>These just add the watcher into an array or at the head of a list.
2447     =item Stopping check/prepare/idle watchers: O(1)</p>
2448 root 1.66 </dd>
2449 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2450 root 1.66 <dd>
2451     <p>These watchers are stored in lists then need to be walked to find the
2452     correct watcher to remove. The lists are usually short (you don't usually
2453     have many watchers waiting for the same fd or signal).</p>
2454     </dd>
2455 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2456     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2457 root 1.66 <dd>
2458     <p>A change means an I/O watcher gets started or stopped, which requires
2459     libev to recalculate its status (and possibly tell the kernel).</p>
2460     </dd>
2461 root 1.47 <dt>Activating one watcher: O(1)</dt>
2462 root 1.66 <dt>Priority handling: O(number_of_priorities)</dt>
2463     <dd>
2464     <p>Priorities are implemented by allocating some space for each
2465     priority. When doing priority-based operations, libev usually has to
2466     linearly search all the priorities.</p>
2467     </dd>
2468 root 1.47 </dl>
2469     </p>
2470    
2471    
2472    
2473    
2474    
2475     </div>
2476 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2477 root 1.1 <div id="AUTHOR_CONTENT">
2478 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2479 root 1.1
2480     </div>
2481     </div></body>
2482     </html>