ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.78
Committed: Wed Dec 12 17:55:06 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.77: +70 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.78 <meta name="created" content="Wed Dec 12 18:55:04 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.77 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a>
33     <ul><li><a href="#The_special_problem_of_disappearing_">The special problem of disappearing file descriptors</a></li>
34 root 1.78 <li><a href="#Watcher_Specific_Functions">Watcher-Specific Functions</a></li>
35     </ul>
36     </li>
37     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a>
38     <ul><li><a href="#Watcher_Specific_Functions_and_Data_">Watcher-Specific Functions and Data Members</a></li>
39     </ul>
40     </li>
41     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a>
42     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-3">Watcher-Specific Functions and Data Members</a></li>
43     </ul>
44     </li>
45     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a>
46     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-4">Watcher-Specific Functions and Data Members</a></li>
47     </ul>
48     </li>
49     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a>
50     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-5">Watcher-Specific Functions and Data Members</a></li>
51     </ul>
52     </li>
53     <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a>
54     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-6">Watcher-Specific Functions and Data Members</a></li>
55     </ul>
56     </li>
57     <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a>
58     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-7">Watcher-Specific Functions and Data Members</a></li>
59     </ul>
60     </li>
61     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a>
62     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-8">Watcher-Specific Functions and Data Members</a></li>
63     </ul>
64     </li>
65     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a>
66     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-9">Watcher-Specific Functions and Data Members</a></li>
67 root 1.77 </ul>
68     </li>
69 root 1.50 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a></li>
70 root 1.1 </ul>
71     </li>
72     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
73 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
74     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
75 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
76 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
77     <ul><li><a href="#FILESETS">FILESETS</a>
78     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
79     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
80     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
81     </ul>
82     </li>
83     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
84     <li><a href="#EXAMPLES">EXAMPLES</a></li>
85     </ul>
86     </li>
87 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
88 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
89     </li>
90     </ul><hr />
91     <!-- INDEX END -->
92    
93 root 1.55 <h1 id="NAME">NAME</h1>
94 root 1.1 <div id="NAME_CONTENT">
95     <p>libev - a high performance full-featured event loop written in C</p>
96    
97     </div>
98 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
99 root 1.1 <div id="SYNOPSIS_CONTENT">
100 root 1.54 <pre> #include &lt;ev.h&gt;
101    
102     </pre>
103    
104     </div>
105 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
106 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
107     <pre> #include &lt;ev.h&gt;
108 root 1.53
109     ev_io stdin_watcher;
110     ev_timer timeout_watcher;
111    
112     /* called when data readable on stdin */
113     static void
114     stdin_cb (EV_P_ struct ev_io *w, int revents)
115     {
116     /* puts (&quot;stdin ready&quot;); */
117     ev_io_stop (EV_A_ w); /* just a syntax example */
118     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
119     }
120    
121     static void
122     timeout_cb (EV_P_ struct ev_timer *w, int revents)
123     {
124     /* puts (&quot;timeout&quot;); */
125     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
126     }
127    
128     int
129     main (void)
130     {
131     struct ev_loop *loop = ev_default_loop (0);
132    
133     /* initialise an io watcher, then start it */
134     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
135     ev_io_start (loop, &amp;stdin_watcher);
136    
137     /* simple non-repeating 5.5 second timeout */
138     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
139     ev_timer_start (loop, &amp;timeout_watcher);
140    
141     /* loop till timeout or data ready */
142     ev_loop (loop, 0);
143    
144     return 0;
145     }
146 root 1.1
147     </pre>
148    
149     </div>
150 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
151 root 1.1 <div id="DESCRIPTION_CONTENT">
152 root 1.66 <p>The newest version of this document is also available as a html-formatted
153     web page you might find easier to navigate when reading it for the first
154     time: <a href="http://cvs.schmorp.de/libev/ev.html">http://cvs.schmorp.de/libev/ev.html</a>.</p>
155 root 1.1 <p>Libev is an event loop: you register interest in certain events (such as a
156     file descriptor being readable or a timeout occuring), and it will manage
157 root 1.4 these event sources and provide your program with events.</p>
158 root 1.1 <p>To do this, it must take more or less complete control over your process
159     (or thread) by executing the <i>event loop</i> handler, and will then
160     communicate events via a callback mechanism.</p>
161     <p>You register interest in certain events by registering so-called <i>event
162     watchers</i>, which are relatively small C structures you initialise with the
163     details of the event, and then hand it over to libev by <i>starting</i> the
164     watcher.</p>
165    
166     </div>
167 root 1.55 <h1 id="FEATURES">FEATURES</h1>
168 root 1.1 <div id="FEATURES_CONTENT">
169 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
170     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
171     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
172     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
173     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
174     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
175     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
176 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
177     file watchers (<code>ev_stat</code>) and even limited support for fork events
178     (<code>ev_fork</code>).</p>
179     <p>It also is quite fast (see this
180     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
181     for example).</p>
182 root 1.1
183     </div>
184 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
185 root 1.1 <div id="CONVENTIONS_CONTENT">
186 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
187     be described, which supports multiple event loops. For more info about
188     various configuration options please have a look at <strong>EMBED</strong> section in
189     this manual. If libev was configured without support for multiple event
190     loops, then all functions taking an initial argument of name <code>loop</code>
191     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
192 root 1.1
193     </div>
194 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
195 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
196 root 1.2 <p>Libev represents time as a single floating point number, representing the
197     (fractional) number of seconds since the (POSIX) epoch (somewhere near
198     the beginning of 1970, details are complicated, don't ask). This type is
199 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
200 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
201     it, you should treat it as such.</p>
202    
203 root 1.18 </div>
204 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
205 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
206 root 1.21 <p>These functions can be called anytime, even before initialising the
207     library in any way.</p>
208 root 1.1 <dl>
209     <dt>ev_tstamp ev_time ()</dt>
210     <dd>
211 root 1.28 <p>Returns the current time as libev would use it. Please note that the
212     <code>ev_now</code> function is usually faster and also often returns the timestamp
213     you actually want to know.</p>
214 root 1.1 </dd>
215     <dt>int ev_version_major ()</dt>
216     <dt>int ev_version_minor ()</dt>
217     <dd>
218 root 1.76 <p>You can find out the major and minor ABI version numbers of the library
219 root 1.1 you linked against by calling the functions <code>ev_version_major</code> and
220     <code>ev_version_minor</code>. If you want, you can compare against the global
221     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
222     version of the library your program was compiled against.</p>
223 root 1.76 <p>These version numbers refer to the ABI version of the library, not the
224     release version.</p>
225 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
226 root 1.75 as this indicates an incompatible change. Minor versions are usually
227 root 1.1 compatible to older versions, so a larger minor version alone is usually
228     not a problem.</p>
229 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
230     version.</p>
231 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
232     ev_version_major () == EV_VERSION_MAJOR
233     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
234    
235     </pre>
236 root 1.1 </dd>
237 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
238     <dd>
239     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
240     value) compiled into this binary of libev (independent of their
241     availability on the system you are running on). See <code>ev_default_loop</code> for
242     a description of the set values.</p>
243 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
244     a must have and can we have a torrent of it please!!!11</p>
245     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
246     ev_supported_backends () &amp; EVBACKEND_EPOLL));
247    
248     </pre>
249 root 1.32 </dd>
250     <dt>unsigned int ev_recommended_backends ()</dt>
251     <dd>
252     <p>Return the set of all backends compiled into this binary of libev and also
253     recommended for this platform. This set is often smaller than the one
254     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
255     most BSDs and will not be autodetected unless you explicitly request it
256     (assuming you know what you are doing). This is the set of backends that
257 root 1.34 libev will probe for if you specify no backends explicitly.</p>
258 root 1.32 </dd>
259 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
260     <dd>
261     <p>Returns the set of backends that are embeddable in other event loops. This
262     is the theoretical, all-platform, value. To find which backends
263     might be supported on the current system, you would need to look at
264     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
265     recommended ones.</p>
266     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
267     </dd>
268 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
269 root 1.1 <dd>
270 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
271     semantics is identical - to the realloc C function). It is used to
272     allocate and free memory (no surprises here). If it returns zero when
273     memory needs to be allocated, the library might abort or take some
274     potentially destructive action. The default is your system realloc
275     function.</p>
276 root 1.1 <p>You could override this function in high-availability programs to, say,
277     free some memory if it cannot allocate memory, to use a special allocator,
278     or even to sleep a while and retry until some memory is available.</p>
279 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
280     retries).</p>
281 root 1.35 <pre> static void *
282 root 1.52 persistent_realloc (void *ptr, size_t size)
283 root 1.35 {
284     for (;;)
285     {
286     void *newptr = realloc (ptr, size);
287    
288     if (newptr)
289     return newptr;
290    
291     sleep (60);
292     }
293     }
294    
295     ...
296     ev_set_allocator (persistent_realloc);
297    
298     </pre>
299 root 1.1 </dd>
300     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
301     <dd>
302     <p>Set the callback function to call on a retryable syscall error (such
303     as failed select, poll, epoll_wait). The message is a printable string
304     indicating the system call or subsystem causing the problem. If this
305     callback is set, then libev will expect it to remedy the sitution, no
306 root 1.7 matter what, when it returns. That is, libev will generally retry the
307 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
308     (such as abort).</p>
309 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
310 root 1.35 <pre> static void
311     fatal_error (const char *msg)
312     {
313     perror (msg);
314     abort ();
315     }
316    
317     ...
318     ev_set_syserr_cb (fatal_error);
319    
320     </pre>
321 root 1.1 </dd>
322     </dl>
323    
324     </div>
325 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
326 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
327     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
328     types of such loops, the <i>default</i> loop, which supports signals and child
329     events, and dynamically created loops which do not.</p>
330     <p>If you use threads, a common model is to run the default event loop
331 root 1.18 in your main thread (or in a separate thread) and for each thread you
332 root 1.7 create, you also create another event loop. Libev itself does no locking
333     whatsoever, so if you mix calls to the same event loop in different
334     threads, make sure you lock (this is usually a bad idea, though, even if
335 root 1.9 done correctly, because it's hideous and inefficient).</p>
336 root 1.1 <dl>
337     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
338     <dd>
339     <p>This will initialise the default event loop if it hasn't been initialised
340     yet and return it. If the default loop could not be initialised, returns
341     false. If it already was initialised it simply returns it (and ignores the
342 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
343 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
344     function.</p>
345     <p>The flags argument can be used to specify special behaviour or specific
346 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
347     <p>The following flags are supported:</p>
348 root 1.1 <p>
349     <dl>
350 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
351 root 1.1 <dd>
352 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
353 root 1.1 thing, believe me).</p>
354     </dd>
355 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
356 root 1.1 <dd>
357 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
358     or setgid) then libev will <i>not</i> look at the environment variable
359     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
360     override the flags completely if it is found in the environment. This is
361     useful to try out specific backends to test their performance, or to work
362     around bugs.</p>
363 root 1.1 </dd>
364 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
365     <dd>
366     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
367     a fork, you can also make libev check for a fork in each iteration by
368     enabling this flag.</p>
369     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
370     and thus this might slow down your event loop if you do a lot of loop
371 root 1.64 iterations and little real work, but is usually not noticeable (on my
372 root 1.62 Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
373     without a syscall and thus <i>very</i> fast, but my Linux system also has
374     <code>pthread_atfork</code> which is even faster).</p>
375     <p>The big advantage of this flag is that you can forget about fork (and
376     forget about forgetting to tell libev about forking) when you use this
377     flag.</p>
378     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
379     environment variable.</p>
380     </dd>
381 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
382 root 1.29 <dd>
383     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
384     libev tries to roll its own fd_set with no limits on the number of fds,
385     but if that fails, expect a fairly low limit on the number of fds when
386     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
387     the fastest backend for a low number of fds.</p>
388     </dd>
389 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
390 root 1.29 <dd>
391     <p>And this is your standard poll(2) backend. It's more complicated than
392     select, but handles sparse fds better and has no artificial limit on the
393     number of fds you can use (except it will slow down considerably with a
394     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
395     </dd>
396 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
397 root 1.29 <dd>
398     <p>For few fds, this backend is a bit little slower than poll and select,
399     but it scales phenomenally better. While poll and select usually scale like
400     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
401     either O(1) or O(active_fds).</p>
402     <p>While stopping and starting an I/O watcher in the same iteration will
403     result in some caching, there is still a syscall per such incident
404     (because the fd could point to a different file description now), so its
405     best to avoid that. Also, dup()ed file descriptors might not work very
406     well if you register events for both fds.</p>
407 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
408     need to use non-blocking I/O or other means to avoid blocking when no data
409     (or space) is available.</p>
410 root 1.29 </dd>
411 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
412 root 1.29 <dd>
413     <p>Kqueue deserves special mention, as at the time of this writing, it
414     was broken on all BSDs except NetBSD (usually it doesn't work with
415     anything but sockets and pipes, except on Darwin, where of course its
416 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
417     unless you explicitly specify it explicitly in the flags (i.e. using
418     <code>EVBACKEND_KQUEUE</code>).</p>
419 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
420     kernel is more efficient (which says nothing about its actual speed, of
421     course). While starting and stopping an I/O watcher does not cause an
422     extra syscall as with epoll, it still adds up to four event changes per
423     incident, so its best to avoid that.</p>
424     </dd>
425 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
426 root 1.29 <dd>
427     <p>This is not implemented yet (and might never be).</p>
428     </dd>
429 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
430 root 1.29 <dd>
431     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
432     it's really slow, but it still scales very well (O(active_fds)).</p>
433 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
434     notifications, so you need to use non-blocking I/O or other means to avoid
435     blocking when no data (or space) is available.</p>
436 root 1.29 </dd>
437 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
438 root 1.29 <dd>
439 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
440     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
441 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
442 root 1.1 </dd>
443     </dl>
444     </p>
445 root 1.29 <p>If one or more of these are ored into the flags value, then only these
446     backends will be tried (in the reverse order as given here). If none are
447     specified, most compiled-in backend will be tried, usually in reverse
448     order of their flag values :)</p>
449 root 1.34 <p>The most typical usage is like this:</p>
450     <pre> if (!ev_default_loop (0))
451     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
452    
453     </pre>
454     <p>Restrict libev to the select and poll backends, and do not allow
455     environment settings to be taken into account:</p>
456     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
457    
458     </pre>
459     <p>Use whatever libev has to offer, but make sure that kqueue is used if
460     available (warning, breaks stuff, best use only with your own private
461     event loop and only if you know the OS supports your types of fds):</p>
462     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
463    
464     </pre>
465 root 1.1 </dd>
466     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
467     <dd>
468     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
469     always distinct from the default loop. Unlike the default loop, it cannot
470     handle signal and child watchers, and attempts to do so will be greeted by
471     undefined behaviour (or a failed assertion if assertions are enabled).</p>
472 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
473 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
474     if (!epoller)
475     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
476    
477     </pre>
478 root 1.1 </dd>
479     <dt>ev_default_destroy ()</dt>
480     <dd>
481     <p>Destroys the default loop again (frees all memory and kernel state
482 root 1.38 etc.). None of the active event watchers will be stopped in the normal
483     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
484     responsibility to either stop all watchers cleanly yoursef <i>before</i>
485     calling this function, or cope with the fact afterwards (which is usually
486     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
487     for example).</p>
488 root 1.1 </dd>
489     <dt>ev_loop_destroy (loop)</dt>
490     <dd>
491     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
492     earlier call to <code>ev_loop_new</code>.</p>
493     </dd>
494     <dt>ev_default_fork ()</dt>
495     <dd>
496     <p>This function reinitialises the kernel state for backends that have
497     one. Despite the name, you can call it anytime, but it makes most sense
498     after forking, in either the parent or child process (or both, but that
499     again makes little sense).</p>
500 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
501     only if you want to use the event library in both processes. If you just
502     fork+exec, you don't have to call it.</p>
503 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
504 root 1.1 it just in case after a fork. To make this easy, the function will fit in
505     quite nicely into a call to <code>pthread_atfork</code>:</p>
506     <pre> pthread_atfork (0, 0, ev_default_fork);
507    
508     </pre>
509 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
510     without calling this function, so if you force one of those backends you
511     do not need to care.</p>
512 root 1.1 </dd>
513     <dt>ev_loop_fork (loop)</dt>
514     <dd>
515     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
516     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
517     after fork, and how you do this is entirely your own problem.</p>
518     </dd>
519 root 1.64 <dt>unsigned int ev_loop_count (loop)</dt>
520     <dd>
521     <p>Returns the count of loop iterations for the loop, which is identical to
522     the number of times libev did poll for new events. It starts at <code>0</code> and
523     happily wraps around with enough iterations.</p>
524     <p>This value can sometimes be useful as a generation counter of sorts (it
525     &quot;ticks&quot; the number of loop iterations), as it roughly corresponds with
526     <code>ev_prepare</code> and <code>ev_check</code> calls.</p>
527     </dd>
528 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
529 root 1.1 <dd>
530 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
531 root 1.1 use.</p>
532     </dd>
533 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
534 root 1.1 <dd>
535     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
536 root 1.35 received events and started processing them. This timestamp does not
537     change as long as callbacks are being processed, and this is also the base
538     time used for relative timers. You can treat it as the timestamp of the
539     event occuring (or more correctly, libev finding out about it).</p>
540 root 1.1 </dd>
541     <dt>ev_loop (loop, int flags)</dt>
542     <dd>
543     <p>Finally, this is it, the event handler. This function usually is called
544     after you initialised all your watchers and you want to start handling
545     events.</p>
546 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
547     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
548 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
549     relying on all watchers to be stopped when deciding when a program has
550     finished (especially in interactive programs), but having a program that
551     automatically loops as long as it has to and no longer by virtue of
552     relying on its watchers stopping correctly is a thing of beauty.</p>
553 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
554     those events and any outstanding ones, but will not block your process in
555 root 1.9 case there are no events and will return after one iteration of the loop.</p>
556 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
557     neccessary) and will handle those and any outstanding ones. It will block
558 root 1.9 your process until at least one new event arrives, and will return after
559 root 1.34 one iteration of the loop. This is useful if you are waiting for some
560     external event in conjunction with something not expressible using other
561     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
562     usually a better approach for this kind of thing.</p>
563     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
564 root 1.73 <pre> - Before the first iteration, call any pending watchers.
565     * If there are no active watchers (reference count is zero), return.
566     - Queue all prepare watchers and then call all outstanding watchers.
567 root 1.34 - If we have been forked, recreate the kernel state.
568     - Update the kernel state with all outstanding changes.
569     - Update the &quot;event loop time&quot;.
570     - Calculate for how long to block.
571     - Block the process, waiting for any events.
572     - Queue all outstanding I/O (fd) events.
573     - Update the &quot;event loop time&quot; and do time jump handling.
574     - Queue all outstanding timers.
575     - Queue all outstanding periodics.
576     - If no events are pending now, queue all idle watchers.
577     - Queue all check watchers.
578     - Call all queued watchers in reverse order (i.e. check watchers first).
579     Signals and child watchers are implemented as I/O watchers, and will
580     be handled here by queueing them when their watcher gets executed.
581     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
582     were used, return, otherwise continue with step *.
583 root 1.28
584     </pre>
585 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
586 root 1.35 anymore.</p>
587     <pre> ... queue jobs here, make sure they register event watchers as long
588     ... as they still have work to do (even an idle watcher will do..)
589     ev_loop (my_loop, 0);
590     ... jobs done. yeah!
591    
592     </pre>
593 root 1.1 </dd>
594     <dt>ev_unloop (loop, how)</dt>
595     <dd>
596 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
597     has processed all outstanding events). The <code>how</code> argument must be either
598 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
599 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
600 root 1.1 </dd>
601     <dt>ev_ref (loop)</dt>
602     <dt>ev_unref (loop)</dt>
603     <dd>
604 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
605     loop: Every watcher keeps one reference, and as long as the reference
606     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
607     a watcher you never unregister that should not keep <code>ev_loop</code> from
608     returning, ev_unref() after starting, and ev_ref() before stopping it. For
609     example, libev itself uses this for its internal signal pipe: It is not
610     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
611     no event watchers registered by it are active. It is also an excellent
612     way to do this for generic recurring timers or from within third-party
613     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
614 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
615 root 1.35 running when nothing else is active.</p>
616 root 1.54 <pre> struct ev_signal exitsig;
617 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
618 root 1.54 ev_signal_start (loop, &amp;exitsig);
619     evf_unref (loop);
620 root 1.35
621     </pre>
622 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
623     <pre> ev_ref (loop);
624     ev_signal_stop (loop, &amp;exitsig);
625 root 1.35
626     </pre>
627 root 1.1 </dd>
628     </dl>
629    
630 root 1.43
631    
632    
633    
634 root 1.1 </div>
635 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
636 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
637     <p>A watcher is a structure that you create and register to record your
638     interest in some event. For instance, if you want to wait for STDIN to
639 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
640 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
641     {
642     ev_io_stop (w);
643     ev_unloop (loop, EVUNLOOP_ALL);
644     }
645    
646     struct ev_loop *loop = ev_default_loop (0);
647     struct ev_io stdin_watcher;
648     ev_init (&amp;stdin_watcher, my_cb);
649     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
650     ev_io_start (loop, &amp;stdin_watcher);
651     ev_loop (loop, 0);
652    
653     </pre>
654     <p>As you can see, you are responsible for allocating the memory for your
655     watcher structures (and it is usually a bad idea to do this on the stack,
656     although this can sometimes be quite valid).</p>
657     <p>Each watcher structure must be initialised by a call to <code>ev_init
658     (watcher *, callback)</code>, which expects a callback to be provided. This
659     callback gets invoked each time the event occurs (or, in the case of io
660     watchers, each time the event loop detects that the file descriptor given
661     is readable and/or writable).</p>
662     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
663     with arguments specific to this watcher type. There is also a macro
664     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
665     (watcher *, callback, ...)</code>.</p>
666     <p>To make the watcher actually watch out for events, you have to start it
667     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
668     *)</code>), and you can stop watching for events at any time by calling the
669     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
670     <p>As long as your watcher is active (has been started but not stopped) you
671     must not touch the values stored in it. Most specifically you must never
672 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
673 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
674     registered watcher structure as second, and a bitset of received events as
675     third argument.</p>
676 root 1.14 <p>The received events usually include a single bit per event type received
677 root 1.1 (you can receive multiple events at the same time). The possible bit masks
678     are:</p>
679     <dl>
680 root 1.10 <dt><code>EV_READ</code></dt>
681     <dt><code>EV_WRITE</code></dt>
682 root 1.1 <dd>
683 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
684 root 1.1 writable.</p>
685     </dd>
686 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
687 root 1.1 <dd>
688 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
689 root 1.1 </dd>
690 root 1.10 <dt><code>EV_PERIODIC</code></dt>
691 root 1.1 <dd>
692 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
693 root 1.1 </dd>
694 root 1.10 <dt><code>EV_SIGNAL</code></dt>
695 root 1.1 <dd>
696 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
697 root 1.1 </dd>
698 root 1.10 <dt><code>EV_CHILD</code></dt>
699 root 1.1 <dd>
700 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
701 root 1.1 </dd>
702 root 1.48 <dt><code>EV_STAT</code></dt>
703     <dd>
704     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
705     </dd>
706 root 1.10 <dt><code>EV_IDLE</code></dt>
707 root 1.1 <dd>
708 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
709 root 1.1 </dd>
710 root 1.10 <dt><code>EV_PREPARE</code></dt>
711     <dt><code>EV_CHECK</code></dt>
712 root 1.1 <dd>
713 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
714     to gather new events, and all <code>ev_check</code> watchers are invoked just after
715 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
716     received events. Callbacks of both watcher types can start and stop as
717     many watchers as they want, and all of them will be taken into account
718 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
719 root 1.1 <code>ev_loop</code> from blocking).</p>
720     </dd>
721 root 1.50 <dt><code>EV_EMBED</code></dt>
722     <dd>
723     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
724     </dd>
725     <dt><code>EV_FORK</code></dt>
726     <dd>
727     <p>The event loop has been resumed in the child process after fork (see
728     <code>ev_fork</code>).</p>
729     </dd>
730 root 1.10 <dt><code>EV_ERROR</code></dt>
731 root 1.1 <dd>
732     <p>An unspecified error has occured, the watcher has been stopped. This might
733     happen because the watcher could not be properly started because libev
734     ran out of memory, a file descriptor was found to be closed or any other
735     problem. You best act on it by reporting the problem and somehow coping
736     with the watcher being stopped.</p>
737     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
738     for example it might indicate that a fd is readable or writable, and if
739     your callbacks is well-written it can just attempt the operation and cope
740     with the error from read() or write(). This will not work in multithreaded
741     programs, though, so beware.</p>
742     </dd>
743     </dl>
744    
745     </div>
746 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
747     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
748 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
749     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
750     <dl>
751     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
752     <dd>
753     <p>This macro initialises the generic portion of a watcher. The contents
754     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
755     the generic parts of the watcher are initialised, you <i>need</i> to call
756     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
757     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
758     which rolls both calls into one.</p>
759     <p>You can reinitialise a watcher at any time as long as it has been stopped
760     (or never started) and there are no pending events outstanding.</p>
761 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
762 root 1.37 int revents)</code>.</p>
763     </dd>
764     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
765     <dd>
766     <p>This macro initialises the type-specific parts of a watcher. You need to
767     call <code>ev_init</code> at least once before you call this macro, but you can
768     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
769     macro on a watcher that is active (it can be pending, however, which is a
770     difference to the <code>ev_init</code> macro).</p>
771     <p>Although some watcher types do not have type-specific arguments
772     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
773     </dd>
774     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
775     <dd>
776     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
777     calls into a single call. This is the most convinient method to initialise
778     a watcher. The same limitations apply, of course.</p>
779     </dd>
780     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
781     <dd>
782     <p>Starts (activates) the given watcher. Only active watchers will receive
783     events. If the watcher is already active nothing will happen.</p>
784     </dd>
785     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
786     <dd>
787     <p>Stops the given watcher again (if active) and clears the pending
788     status. It is possible that stopped watchers are pending (for example,
789     non-repeating timers are being stopped when they become pending), but
790     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
791     you want to free or reuse the memory used by the watcher it is therefore a
792     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
793     </dd>
794     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
795     <dd>
796     <p>Returns a true value iff the watcher is active (i.e. it has been started
797     and not yet been stopped). As long as a watcher is active you must not modify
798     it.</p>
799     </dd>
800     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
801     <dd>
802     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
803     events but its callback has not yet been invoked). As long as a watcher
804     is pending (but not active) you must not call an init function on it (but
805 root 1.70 <code>ev_TYPE_set</code> is safe), you must not change its priority, and you must
806     make sure the watcher is available to libev (e.g. you cannot <code>free ()</code>
807     it).</p>
808 root 1.37 </dd>
809 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
810 root 1.37 <dd>
811     <p>Returns the callback currently set on the watcher.</p>
812     </dd>
813     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
814     <dd>
815     <p>Change the callback. You can change the callback at virtually any time
816     (modulo threads).</p>
817     </dd>
818 root 1.64 <dt>ev_set_priority (ev_TYPE *watcher, priority)</dt>
819     <dt>int ev_priority (ev_TYPE *watcher)</dt>
820     <dd>
821     <p>Set and query the priority of the watcher. The priority is a small
822     integer between <code>EV_MAXPRI</code> (default: <code>2</code>) and <code>EV_MINPRI</code>
823     (default: <code>-2</code>). Pending watchers with higher priority will be invoked
824     before watchers with lower priority, but priority will not keep watchers
825     from being executed (except for <code>ev_idle</code> watchers).</p>
826     <p>This means that priorities are <i>only</i> used for ordering callback
827     invocation after new events have been received. This is useful, for
828     example, to reduce latency after idling, or more often, to bind two
829     watchers on the same event and make sure one is called first.</p>
830     <p>If you need to suppress invocation when higher priority events are pending
831     you need to look at <code>ev_idle</code> watchers, which provide this functionality.</p>
832 root 1.70 <p>You <i>must not</i> change the priority of a watcher as long as it is active or
833     pending.</p>
834 root 1.64 <p>The default priority used by watchers when no priority has been set is
835     always <code>0</code>, which is supposed to not be too high and not be too low :).</p>
836     <p>Setting a priority outside the range of <code>EV_MINPRI</code> to <code>EV_MAXPRI</code> is
837     fine, as long as you do not mind that the priority value you query might
838     or might not have been adjusted to be within valid range.</p>
839     </dd>
840 root 1.70 <dt>ev_invoke (loop, ev_TYPE *watcher, int revents)</dt>
841     <dd>
842     <p>Invoke the <code>watcher</code> with the given <code>loop</code> and <code>revents</code>. Neither
843     <code>loop</code> nor <code>revents</code> need to be valid as long as the watcher callback
844     can deal with that fact.</p>
845     </dd>
846     <dt>int ev_clear_pending (loop, ev_TYPE *watcher)</dt>
847     <dd>
848     <p>If the watcher is pending, this function returns clears its pending status
849     and returns its <code>revents</code> bitset (as if its callback was invoked). If the
850     watcher isn't pending it does nothing and returns <code>0</code>.</p>
851     </dd>
852 root 1.37 </dl>
853    
854    
855    
856    
857    
858     </div>
859 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
860     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
861     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
862 root 1.14 and read at any time, libev will completely ignore it. This can be used
863 root 1.1 to associate arbitrary data with your watcher. If you need more data and
864     don't want to allocate memory and store a pointer to it in that data
865     member, you can also &quot;subclass&quot; the watcher type and provide your own
866     data:</p>
867     <pre> struct my_io
868     {
869     struct ev_io io;
870     int otherfd;
871     void *somedata;
872     struct whatever *mostinteresting;
873     }
874    
875     </pre>
876     <p>And since your callback will be called with a pointer to the watcher, you
877     can cast it back to your own type:</p>
878     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
879     {
880     struct my_io *w = (struct my_io *)w_;
881     ...
882     }
883    
884     </pre>
885 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
886     instead have been omitted.</p>
887     <p>Another common scenario is having some data structure with multiple
888     watchers:</p>
889     <pre> struct my_biggy
890     {
891     int some_data;
892     ev_timer t1;
893     ev_timer t2;
894     }
895 root 1.1
896 root 1.56 </pre>
897     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
898     you need to use <code>offsetof</code>:</p>
899     <pre> #include &lt;stddef.h&gt;
900 root 1.1
901 root 1.56 static void
902     t1_cb (EV_P_ struct ev_timer *w, int revents)
903     {
904     struct my_biggy big = (struct my_biggy *
905     (((char *)w) - offsetof (struct my_biggy, t1));
906     }
907    
908     static void
909     t2_cb (EV_P_ struct ev_timer *w, int revents)
910     {
911     struct my_biggy big = (struct my_biggy *
912     (((char *)w) - offsetof (struct my_biggy, t2));
913     }
914 root 1.1
915    
916    
917 root 1.56
918     </pre>
919    
920 root 1.1 </div>
921 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
922 root 1.1 <div id="WATCHER_TYPES_CONTENT">
923     <p>This section describes each watcher in detail, but will not repeat
924 root 1.48 information given in the last section. Any initialisation/set macros,
925     functions and members specific to the watcher type are explained.</p>
926     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
927     while the watcher is active, you can look at the member and expect some
928     sensible content, but you must not modify it (you can modify it while the
929     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
930     means you can expect it to have some sensible content while the watcher
931     is active, but you can also modify it. Modifying it may not do something
932     sensible or take immediate effect (or do anything at all), but libev will
933     not crash or malfunction in any way.</p>
934 root 1.1
935 root 1.35
936    
937    
938    
939 root 1.1 </div>
940 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
941 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
942 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
943 root 1.43 in each iteration of the event loop, or, more precisely, when reading
944     would not block the process and writing would at least be able to write
945     some data. This behaviour is called level-triggering because you keep
946     receiving events as long as the condition persists. Remember you can stop
947     the watcher if you don't want to act on the event and neither want to
948     receive future events.</p>
949 root 1.25 <p>In general you can register as many read and/or write event watchers per
950 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
951     descriptors to non-blocking mode is also usually a good idea (but not
952     required if you know what you are doing).</p>
953     <p>You have to be careful with dup'ed file descriptors, though. Some backends
954     (the linux epoll backend is a notable example) cannot handle dup'ed file
955     descriptors correctly if you register interest in two or more fds pointing
956 root 1.43 to the same underlying file/socket/etc. description (that is, they share
957 root 1.26 the same underlying &quot;file open&quot;).</p>
958 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
959 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
960     <code>EVBACKEND_POLL</code>).</p>
961 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
962     receive &quot;spurious&quot; readyness notifications, that is your callback might
963     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
964     because there is no data. Not only are some backends known to create a
965     lot of those (for example solaris ports), it is very easy to get into
966     this situation even with a relatively standard program structure. Thus
967     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
968     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
969     <p>If you cannot run the fd in non-blocking mode (for example you should not
970     play around with an Xlib connection), then you have to seperately re-test
971 root 1.65 whether a file descriptor is really ready with a known-to-be good interface
972 root 1.43 such as poll (fortunately in our Xlib example, Xlib already does this on
973     its own, so its quite safe to use).</p>
974 root 1.77
975     </div>
976     <h3 id="The_special_problem_of_disappearing_">The special problem of disappearing file descriptors</h3>
977     <div id="The_special_problem_of_disappearing_-2">
978     <p>Some backends (e.g kqueue, epoll) need to be told about closing a file
979     descriptor (either by calling <code>close</code> explicitly or by any other means,
980     such as <code>dup</code>). The reason is that you register interest in some file
981     descriptor, but when it goes away, the operating system will silently drop
982     this interest. If another file descriptor with the same number then is
983     registered with libev, there is no efficient way to see that this is, in
984     fact, a different file descriptor.</p>
985     <p>To avoid having to explicitly tell libev about such cases, libev follows
986     the following policy: Each time <code>ev_io_set</code> is being called, libev
987     will assume that this is potentially a new file descriptor, otherwise
988     it is assumed that the file descriptor stays the same. That means that
989     you <i>have</i> to call <code>ev_io_set</code> (or <code>ev_io_init</code>) when you change the
990     descriptor even if the file descriptor number itself did not change.</p>
991     <p>This is how one would do it normally anyway, the important point is that
992     the libev application should not optimise around libev but should leave
993     optimisations to libev.</p>
994    
995    
996    
997    
998 root 1.78
999     </div>
1000     <h3 id="Watcher_Specific_Functions">Watcher-Specific Functions</h3>
1001     <div id="Watcher_Specific_Functions_CONTENT">
1002 root 1.1 <dl>
1003     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
1004     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
1005     <dd>
1006 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
1007     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
1008     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
1009 root 1.1 </dd>
1010 root 1.48 <dt>int fd [read-only]</dt>
1011     <dd>
1012     <p>The file descriptor being watched.</p>
1013     </dd>
1014     <dt>int events [read-only]</dt>
1015     <dd>
1016     <p>The events being watched.</p>
1017     </dd>
1018 root 1.1 </dl>
1019 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
1020 root 1.35 readable, but only once. Since it is likely line-buffered, you could
1021 root 1.54 attempt to read a whole line in the callback.</p>
1022 root 1.35 <pre> static void
1023     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1024     {
1025     ev_io_stop (loop, w);
1026     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
1027     }
1028    
1029     ...
1030     struct ev_loop *loop = ev_default_init (0);
1031     struct ev_io stdin_readable;
1032     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
1033     ev_io_start (loop, &amp;stdin_readable);
1034     ev_loop (loop, 0);
1035    
1036    
1037    
1038    
1039     </pre>
1040 root 1.1
1041     </div>
1042 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
1043 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
1044 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
1045     given time, and optionally repeating in regular intervals after that.</p>
1046     <p>The timers are based on real time, that is, if you register an event that
1047 root 1.25 times out after an hour and you reset your system clock to last years
1048 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
1049 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
1050 root 1.1 monotonic clock option helps a lot here).</p>
1051 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
1052     time. This is usually the right thing as this timestamp refers to the time
1053 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
1054     you suspect event processing to be delayed and you <i>need</i> to base the timeout
1055 root 1.25 on the current time, use something like this to adjust for this:</p>
1056 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
1057    
1058     </pre>
1059 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
1060     but if multiple timers become ready during the same loop iteration then
1061     order of execution is undefined.</p>
1062 root 1.78
1063     </div>
1064     <h3 id="Watcher_Specific_Functions_and_Data_">Watcher-Specific Functions and Data Members</h3>
1065     <div id="Watcher_Specific_Functions_and_Data_-2">
1066 root 1.1 <dl>
1067     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
1068     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
1069     <dd>
1070     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
1071     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
1072     timer will automatically be configured to trigger again <code>repeat</code> seconds
1073     later, again, and again, until stopped manually.</p>
1074     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
1075     configure a timer to trigger every 10 seconds, then it will trigger at
1076     exactly 10 second intervals. If, however, your program cannot keep up with
1077 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
1078 root 1.1 timer will not fire more than once per event loop iteration.</p>
1079     </dd>
1080     <dt>ev_timer_again (loop)</dt>
1081     <dd>
1082     <p>This will act as if the timer timed out and restart it again if it is
1083     repeating. The exact semantics are:</p>
1084 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
1085     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
1086     <p>If the timer is repeating, either start it if necessary (with the
1087     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
1088 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
1089 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
1090     timeout, that is, you want to be called when there have been, say, 60
1091     seconds of inactivity on the socket. The easiest way to do this is to
1092     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
1093 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
1094     you go into an idle state where you do not expect data to travel on the
1095 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
1096     automatically restart it if need be.</p>
1097     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
1098     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
1099 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
1100     ev_timer_again (loop, timer);
1101     ...
1102     timer-&gt;again = 17.;
1103     ev_timer_again (loop, timer);
1104     ...
1105     timer-&gt;again = 10.;
1106     ev_timer_again (loop, timer);
1107    
1108     </pre>
1109 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1110     you want to modify its timeout value.</p>
1111 root 1.48 </dd>
1112     <dt>ev_tstamp repeat [read-write]</dt>
1113     <dd>
1114     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1115     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1116     which is also when any modifications are taken into account.</p>
1117 root 1.1 </dd>
1118     </dl>
1119 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1120 root 1.35 <pre> static void
1121     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1122     {
1123     .. one minute over, w is actually stopped right here
1124     }
1125    
1126     struct ev_timer mytimer;
1127     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1128     ev_timer_start (loop, &amp;mytimer);
1129    
1130     </pre>
1131 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1132 root 1.35 inactivity.</p>
1133     <pre> static void
1134     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1135     {
1136     .. ten seconds without any activity
1137     }
1138    
1139     struct ev_timer mytimer;
1140     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1141     ev_timer_again (&amp;mytimer); /* start timer */
1142     ev_loop (loop, 0);
1143    
1144     // and in some piece of code that gets executed on any &quot;activity&quot;:
1145     // reset the timeout to start ticking again at 10 seconds
1146     ev_timer_again (&amp;mytimer);
1147    
1148    
1149    
1150    
1151     </pre>
1152 root 1.1
1153     </div>
1154 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1155 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1156 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1157     (and unfortunately a bit complex).</p>
1158 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1159 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1160     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1161 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1162     + 10.</code>) and then reset your system clock to the last year, then it will
1163 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1164 root 1.74 roughly 10 seconds later).</p>
1165 root 1.1 <p>They can also be used to implement vastly more complex timers, such as
1166 root 1.74 triggering an event on each midnight, local time or other, complicated,
1167     rules.</p>
1168 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1169     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1170     during the same loop iteration then order of execution is undefined.</p>
1171 root 1.78
1172     </div>
1173     <h3 id="Watcher_Specific_Functions_and_Data_-3">Watcher-Specific Functions and Data Members</h3>
1174     <div id="Watcher_Specific_Functions_and_Data_-2">
1175 root 1.1 <dl>
1176     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1177     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1178     <dd>
1179     <p>Lots of arguments, lets sort it out... There are basically three modes of
1180     operation, and we will explain them from simplest to complex:</p>
1181     <p>
1182     <dl>
1183 root 1.74 <dt>* absolute timer (at = time, interval = reschedule_cb = 0)</dt>
1184 root 1.1 <dd>
1185     <p>In this configuration the watcher triggers an event at the wallclock time
1186     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1187     that is, if it is to be run at January 1st 2011 then it will run when the
1188     system time reaches or surpasses this time.</p>
1189     </dd>
1190 root 1.74 <dt>* non-repeating interval timer (at = offset, interval &gt; 0, reschedule_cb = 0)</dt>
1191 root 1.1 <dd>
1192     <p>In this mode the watcher will always be scheduled to time out at the next
1193 root 1.74 <code>at + N * interval</code> time (for some integer N, which can also be negative)
1194     and then repeat, regardless of any time jumps.</p>
1195 root 1.1 <p>This can be used to create timers that do not drift with respect to system
1196     time:</p>
1197     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1198    
1199     </pre>
1200     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1201     but only that the the callback will be called when the system time shows a
1202 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1203 root 1.1 by 3600.</p>
1204     <p>Another way to think about it (for the mathematically inclined) is that
1205 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1206 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1207 root 1.74 <p>For numerical stability it is preferable that the <code>at</code> value is near
1208     <code>ev_now ()</code> (the current time), but there is no range requirement for
1209     this value.</p>
1210 root 1.1 </dd>
1211 root 1.74 <dt>* manual reschedule mode (at and interval ignored, reschedule_cb = callback)</dt>
1212 root 1.1 <dd>
1213     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1214     ignored. Instead, each time the periodic watcher gets scheduled, the
1215     reschedule callback will be called with the watcher as first, and the
1216     current time as second argument.</p>
1217 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1218     ever, or make any event loop modifications</i>. If you need to stop it,
1219     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1220 root 1.74 starting an <code>ev_prepare</code> watcher, which is legal).</p>
1221 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1222     ev_tstamp now)</code>, e.g.:</p>
1223 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1224     {
1225     return now + 60.;
1226     }
1227    
1228     </pre>
1229     <p>It must return the next time to trigger, based on the passed time value
1230     (that is, the lowest time value larger than to the second argument). It
1231     will usually be called just before the callback will be triggered, but
1232     might be called at other times, too.</p>
1233 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1234 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1235 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1236     triggers on each midnight, local time. To do this, you would calculate the
1237 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1238     you do this is, again, up to you (but it is not trivial, which is the main
1239     reason I omitted it as an example).</p>
1240 root 1.1 </dd>
1241     </dl>
1242     </p>
1243     </dd>
1244     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1245     <dd>
1246     <p>Simply stops and restarts the periodic watcher again. This is only useful
1247     when you changed some parameters or the reschedule callback would return
1248     a different time than the last time it was called (e.g. in a crond like
1249     program when the crontabs have changed).</p>
1250     </dd>
1251 root 1.74 <dt>ev_tstamp offset [read-write]</dt>
1252     <dd>
1253     <p>When repeating, this contains the offset value, otherwise this is the
1254     absolute point in time (the <code>at</code> value passed to <code>ev_periodic_set</code>).</p>
1255     <p>Can be modified any time, but changes only take effect when the periodic
1256     timer fires or <code>ev_periodic_again</code> is being called.</p>
1257     </dd>
1258 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1259     <dd>
1260     <p>The current interval value. Can be modified any time, but changes only
1261     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1262     called.</p>
1263     </dd>
1264     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1265     <dd>
1266     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1267     switched off. Can be changed any time, but changes only take effect when
1268     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1269     </dd>
1270 root 1.1 </dl>
1271 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1272 root 1.35 system clock is divisible by 3600. The callback invocation times have
1273     potentially a lot of jittering, but good long-term stability.</p>
1274     <pre> static void
1275     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1276     {
1277     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1278     }
1279    
1280     struct ev_periodic hourly_tick;
1281     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1282     ev_periodic_start (loop, &amp;hourly_tick);
1283    
1284     </pre>
1285 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1286 root 1.35 <pre> #include &lt;math.h&gt;
1287    
1288     static ev_tstamp
1289     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1290     {
1291     return fmod (now, 3600.) + 3600.;
1292     }
1293    
1294     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1295    
1296     </pre>
1297 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1298 root 1.35 <pre> struct ev_periodic hourly_tick;
1299     ev_periodic_init (&amp;hourly_tick, clock_cb,
1300     fmod (ev_now (loop), 3600.), 3600., 0);
1301     ev_periodic_start (loop, &amp;hourly_tick);
1302    
1303    
1304    
1305    
1306     </pre>
1307 root 1.1
1308     </div>
1309 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1310 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1311 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1312     signal one or more times. Even though signals are very asynchronous, libev
1313 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1314 root 1.1 normal event processing, like any other event.</p>
1315 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1316 root 1.1 first watcher gets started will libev actually register a signal watcher
1317     with the kernel (thus it coexists with your own signal handlers as long
1318     as you don't register any with libev). Similarly, when the last signal
1319     watcher for a signal is stopped libev will reset the signal handler to
1320     SIG_DFL (regardless of what it was set to before).</p>
1321 root 1.78
1322     </div>
1323     <h3 id="Watcher_Specific_Functions_and_Data_-4">Watcher-Specific Functions and Data Members</h3>
1324     <div id="Watcher_Specific_Functions_and_Data_-2-2">
1325 root 1.1 <dl>
1326     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1327     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1328     <dd>
1329     <p>Configures the watcher to trigger on the given signal number (usually one
1330     of the <code>SIGxxx</code> constants).</p>
1331     </dd>
1332 root 1.48 <dt>int signum [read-only]</dt>
1333     <dd>
1334     <p>The signal the watcher watches out for.</p>
1335     </dd>
1336 root 1.1 </dl>
1337    
1338 root 1.36
1339    
1340    
1341    
1342 root 1.1 </div>
1343 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1344     <div id="code_ev_child_code_watch_out_for_pro-2">
1345 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1346     some child status changes (most typically when a child of yours dies).</p>
1347 root 1.78
1348     </div>
1349     <h3 id="Watcher_Specific_Functions_and_Data_-5">Watcher-Specific Functions and Data Members</h3>
1350     <div id="Watcher_Specific_Functions_and_Data_-2-3">
1351 root 1.1 <dl>
1352     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1353     <dt>ev_child_set (ev_child *, int pid)</dt>
1354     <dd>
1355     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1356     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1357     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1358 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1359     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1360     process causing the status change.</p>
1361 root 1.1 </dd>
1362 root 1.48 <dt>int pid [read-only]</dt>
1363     <dd>
1364     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1365     </dd>
1366     <dt>int rpid [read-write]</dt>
1367     <dd>
1368     <p>The process id that detected a status change.</p>
1369     </dd>
1370     <dt>int rstatus [read-write]</dt>
1371     <dd>
1372     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1373     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1374     </dd>
1375 root 1.1 </dl>
1376 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1377 root 1.35 <pre> static void
1378     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1379     {
1380     ev_unloop (loop, EVUNLOOP_ALL);
1381     }
1382    
1383     struct ev_signal signal_watcher;
1384     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1385     ev_signal_start (loop, &amp;sigint_cb);
1386    
1387    
1388    
1389    
1390     </pre>
1391 root 1.1
1392     </div>
1393 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1394     <div id="code_ev_stat_code_did_the_file_attri-2">
1395     <p>This watches a filesystem path for attribute changes. That is, it calls
1396     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1397     compared to the last time, invoking the callback if it did.</p>
1398     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1399     not exist&quot; is a status change like any other. The condition &quot;path does
1400     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1401     otherwise always forced to be at least one) and all the other fields of
1402     the stat buffer having unspecified contents.</p>
1403 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1404     relative and your working directory changes, the behaviour is undefined.</p>
1405 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1406 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1407 root 1.48 can specify a recommended polling interval for this case. If you specify
1408     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1409     unspecified default</i> value will be used (which you can expect to be around
1410     five seconds, although this might change dynamically). Libev will also
1411     impose a minimum interval which is currently around <code>0.1</code>, but thats
1412     usually overkill.</p>
1413     <p>This watcher type is not meant for massive numbers of stat watchers,
1414     as even with OS-supported change notifications, this can be
1415     resource-intensive.</p>
1416 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1417     implemented (implementing kqueue support is left as an exercise for the
1418     reader). Inotify will be used to give hints only and should not change the
1419     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1420     to fall back to regular polling again even with inotify, but changes are
1421     usually detected immediately, and if the file exists there will be no
1422     polling.</p>
1423 root 1.78
1424     </div>
1425     <h3 id="Watcher_Specific_Functions_and_Data_-6">Watcher-Specific Functions and Data Members</h3>
1426     <div id="Watcher_Specific_Functions_and_Data_-2-4">
1427 root 1.48 <dl>
1428     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1429     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1430     <dd>
1431     <p>Configures the watcher to wait for status changes of the given
1432     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1433     be detected and should normally be specified as <code>0</code> to let libev choose
1434     a suitable value. The memory pointed to by <code>path</code> must point to the same
1435     path for as long as the watcher is active.</p>
1436     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1437     relative to the attributes at the time the watcher was started (or the
1438     last change was detected).</p>
1439     </dd>
1440     <dt>ev_stat_stat (ev_stat *)</dt>
1441     <dd>
1442     <p>Updates the stat buffer immediately with new values. If you change the
1443     watched path in your callback, you could call this fucntion to avoid
1444     detecting this change (while introducing a race condition). Can also be
1445     useful simply to find out the new values.</p>
1446     </dd>
1447     <dt>ev_statdata attr [read-only]</dt>
1448     <dd>
1449     <p>The most-recently detected attributes of the file. Although the type is of
1450     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1451     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1452     was some error while <code>stat</code>ing the file.</p>
1453     </dd>
1454     <dt>ev_statdata prev [read-only]</dt>
1455     <dd>
1456     <p>The previous attributes of the file. The callback gets invoked whenever
1457     <code>prev</code> != <code>attr</code>.</p>
1458     </dd>
1459     <dt>ev_tstamp interval [read-only]</dt>
1460     <dd>
1461     <p>The specified interval.</p>
1462     </dd>
1463     <dt>const char *path [read-only]</dt>
1464     <dd>
1465     <p>The filesystem path that is being watched.</p>
1466     </dd>
1467     </dl>
1468     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1469     <pre> static void
1470     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1471     {
1472     /* /etc/passwd changed in some way */
1473     if (w-&gt;attr.st_nlink)
1474     {
1475     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1476     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1477     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1478     }
1479     else
1480     /* you shalt not abuse printf for puts */
1481     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1482     &quot;if this is windows, they already arrived\n&quot;);
1483     }
1484    
1485     ...
1486     ev_stat passwd;
1487    
1488     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1489     ev_stat_start (loop, &amp;passwd);
1490    
1491    
1492    
1493    
1494     </pre>
1495    
1496     </div>
1497 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1498 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1499 root 1.64 <p>Idle watchers trigger events when no other events of the same or higher
1500     priority are pending (prepare, check and other idle watchers do not
1501     count).</p>
1502     <p>That is, as long as your process is busy handling sockets or timeouts
1503     (or even signals, imagine) of the same or higher priority it will not be
1504     triggered. But when your process is idle (or only lower-priority watchers
1505     are pending), the idle watchers are being called once per event loop
1506     iteration - until stopped, that is, or your process receives more events
1507     and becomes busy again with higher priority stuff.</p>
1508 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1509     active, the process will not block when waiting for new events.</p>
1510     <p>Apart from keeping your process non-blocking (which is a useful
1511     effect on its own sometimes), idle watchers are a good place to do
1512     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1513     event loop has handled all outstanding events.</p>
1514 root 1.78
1515     </div>
1516     <h3 id="Watcher_Specific_Functions_and_Data_-7">Watcher-Specific Functions and Data Members</h3>
1517     <div id="Watcher_Specific_Functions_and_Data_-2-5">
1518 root 1.1 <dl>
1519     <dt>ev_idle_init (ev_signal *, callback)</dt>
1520     <dd>
1521     <p>Initialises and configures the idle watcher - it has no parameters of any
1522     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1523     believe me.</p>
1524     </dd>
1525     </dl>
1526 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1527     callback, free it. Also, use no error checking, as usual.</p>
1528 root 1.35 <pre> static void
1529     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1530     {
1531     free (w);
1532     // now do something you wanted to do when the program has
1533     // no longer asnything immediate to do.
1534     }
1535    
1536     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1537     ev_idle_init (idle_watcher, idle_cb);
1538     ev_idle_start (loop, idle_cb);
1539    
1540    
1541    
1542    
1543     </pre>
1544 root 1.1
1545     </div>
1546 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1547 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1548 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1549 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1550 root 1.14 afterwards.</p>
1551 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1552     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1553     watchers. Other loops than the current one are fine, however. The
1554     rationale behind this is that you do not need to check for recursion in
1555     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1556     <code>ev_check</code> so if you have one watcher of each kind they will always be
1557     called in pairs bracketing the blocking call.</p>
1558 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1559     their use is somewhat advanced. This could be used, for example, to track
1560     variable changes, implement your own watchers, integrate net-snmp or a
1561 root 1.46 coroutine library and lots more. They are also occasionally useful if
1562     you cache some data and want to flush it before blocking (for example,
1563     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1564     watcher).</p>
1565 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1566 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1567     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1568     provide just this functionality). Then, in the check watcher you check for
1569     any events that occured (by checking the pending status of all watchers
1570     and stopping them) and call back into the library. The I/O and timer
1571 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1572 root 1.14 because you never know, you know?).</p>
1573     <p>As another example, the Perl Coro module uses these hooks to integrate
1574 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1575     during each prepare and only letting the process block if no coroutines
1576 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1577     with priority higher than or equal to the event loop and one coroutine
1578     of lower priority, but only once, using idle watchers to keep the event
1579     loop from blocking if lower-priority coroutines are active, thus mapping
1580     low-priority coroutines to idle/background tasks).</p>
1581 root 1.73 <p>It is recommended to give <code>ev_check</code> watchers highest (<code>EV_MAXPRI</code>)
1582     priority, to ensure that they are being run before any other watchers
1583     after the poll. Also, <code>ev_check</code> watchers (and <code>ev_prepare</code> watchers,
1584     too) should not activate (&quot;feed&quot;) events into libev. While libev fully
1585     supports this, they will be called before other <code>ev_check</code> watchers did
1586     their job. As <code>ev_check</code> watchers are often used to embed other event
1587     loops those other event loops might be in an unusable state until their
1588     <code>ev_check</code> watcher ran (always remind yourself to coexist peacefully with
1589     others).</p>
1590 root 1.78
1591     </div>
1592     <h3 id="Watcher_Specific_Functions_and_Data_-8">Watcher-Specific Functions and Data Members</h3>
1593     <div id="Watcher_Specific_Functions_and_Data_-2-6">
1594 root 1.1 <dl>
1595     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1596     <dt>ev_check_init (ev_check *, callback)</dt>
1597     <dd>
1598     <p>Initialises and configures the prepare or check watcher - they have no
1599     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1600 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1601 root 1.1 </dd>
1602     </dl>
1603 root 1.72 <p>There are a number of principal ways to embed other event loops or modules
1604     into libev. Here are some ideas on how to include libadns into libev
1605     (there is a Perl module named <code>EV::ADNS</code> that does this, which you could
1606     use for an actually working example. Another Perl module named <code>EV::Glib</code>
1607     embeds a Glib main context into libev, and finally, <code>Glib::EV</code> embeds EV
1608     into the Glib event loop).</p>
1609     <p>Method 1: Add IO watchers and a timeout watcher in a prepare handler,
1610     and in a check watcher, destroy them and call into libadns. What follows
1611     is pseudo-code only of course. This requires you to either use a low
1612     priority for the check watcher or use <code>ev_clear_pending</code> explicitly, as
1613     the callbacks for the IO/timeout watchers might not have been called yet.</p>
1614 root 1.46 <pre> static ev_io iow [nfd];
1615     static ev_timer tw;
1616    
1617     static void
1618     io_cb (ev_loop *loop, ev_io *w, int revents)
1619     {
1620     }
1621    
1622     // create io watchers for each fd and a timer before blocking
1623     static void
1624     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1625     {
1626 root 1.64 int timeout = 3600000;
1627     struct pollfd fds [nfd];
1628 root 1.46 // actual code will need to loop here and realloc etc.
1629     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1630    
1631     /* the callback is illegal, but won't be called as we stop during check */
1632     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1633     ev_timer_start (loop, &amp;tw);
1634    
1635 root 1.72 // create one ev_io per pollfd
1636 root 1.46 for (int i = 0; i &lt; nfd; ++i)
1637     {
1638     ev_io_init (iow + i, io_cb, fds [i].fd,
1639     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1640     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1641    
1642     fds [i].revents = 0;
1643     ev_io_start (loop, iow + i);
1644     }
1645     }
1646    
1647     // stop all watchers after blocking
1648     static void
1649     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1650     {
1651     ev_timer_stop (loop, &amp;tw);
1652    
1653     for (int i = 0; i &lt; nfd; ++i)
1654 root 1.72 {
1655     // set the relevant poll flags
1656     // could also call adns_processreadable etc. here
1657     struct pollfd *fd = fds + i;
1658     int revents = ev_clear_pending (iow + i);
1659     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1660     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1661    
1662     // now stop the watcher
1663     ev_io_stop (loop, iow + i);
1664     }
1665 root 1.46
1666     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1667     }
1668 root 1.35
1669 root 1.72 </pre>
1670     <p>Method 2: This would be just like method 1, but you run <code>adns_afterpoll</code>
1671     in the prepare watcher and would dispose of the check watcher.</p>
1672     <p>Method 3: If the module to be embedded supports explicit event
1673     notification (adns does), you can also make use of the actual watcher
1674     callbacks, and only destroy/create the watchers in the prepare watcher.</p>
1675     <pre> static void
1676     timer_cb (EV_P_ ev_timer *w, int revents)
1677     {
1678     adns_state ads = (adns_state)w-&gt;data;
1679     update_now (EV_A);
1680    
1681     adns_processtimeouts (ads, &amp;tv_now);
1682     }
1683    
1684     static void
1685     io_cb (EV_P_ ev_io *w, int revents)
1686     {
1687     adns_state ads = (adns_state)w-&gt;data;
1688     update_now (EV_A);
1689    
1690     if (revents &amp; EV_READ ) adns_processreadable (ads, w-&gt;fd, &amp;tv_now);
1691     if (revents &amp; EV_WRITE) adns_processwriteable (ads, w-&gt;fd, &amp;tv_now);
1692     }
1693    
1694     // do not ever call adns_afterpoll
1695    
1696     </pre>
1697     <p>Method 4: Do not use a prepare or check watcher because the module you
1698     want to embed is too inflexible to support it. Instead, youc na override
1699     their poll function. The drawback with this solution is that the main
1700     loop is now no longer controllable by EV. The <code>Glib::EV</code> module does
1701     this.</p>
1702     <pre> static gint
1703     event_poll_func (GPollFD *fds, guint nfds, gint timeout)
1704     {
1705     int got_events = 0;
1706    
1707     for (n = 0; n &lt; nfds; ++n)
1708     // create/start io watcher that sets the relevant bits in fds[n] and increment got_events
1709    
1710     if (timeout &gt;= 0)
1711     // create/start timer
1712    
1713     // poll
1714     ev_loop (EV_A_ 0);
1715    
1716     // stop timer again
1717     if (timeout &gt;= 0)
1718     ev_timer_stop (EV_A_ &amp;to);
1719    
1720     // stop io watchers again - their callbacks should have set
1721     for (n = 0; n &lt; nfds; ++n)
1722     ev_io_stop (EV_A_ iow [n]);
1723    
1724     return got_events;
1725     }
1726    
1727 root 1.35
1728    
1729    
1730 root 1.46 </pre>
1731 root 1.1
1732     </div>
1733 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1734 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1735     <p>This is a rather advanced watcher type that lets you embed one event loop
1736 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1737     loop, other types of watchers might be handled in a delayed or incorrect
1738     fashion and must not be used).</p>
1739 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1740     prioritise I/O.</p>
1741     <p>As an example for a bug workaround, the kqueue backend might only support
1742     sockets on some platform, so it is unusable as generic backend, but you
1743     still want to make use of it because you have many sockets and it scales
1744     so nicely. In this case, you would create a kqueue-based loop and embed it
1745     into your default loop (which might use e.g. poll). Overall operation will
1746     be a bit slower because first libev has to poll and then call kevent, but
1747     at least you can use both at what they are best.</p>
1748     <p>As for prioritising I/O: rarely you have the case where some fds have
1749     to be watched and handled very quickly (with low latency), and even
1750     priorities and idle watchers might have too much overhead. In this case
1751     you would put all the high priority stuff in one loop and all the rest in
1752     a second one, and embed the second one in the first.</p>
1753 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1754     there might be events pending in the embedded loop. The callback must then
1755     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1756     their callbacks (you could also start an idle watcher to give the embedded
1757     loop strictly lower priority for example). You can also set the callback
1758     to <code>0</code>, in which case the embed watcher will automatically execute the
1759     embedded loop sweep.</p>
1760 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1761     callback will be invoked whenever some events have been handled. You can
1762     set the callback to <code>0</code> to avoid having to specify one if you are not
1763     interested in that.</p>
1764     <p>Also, there have not currently been made special provisions for forking:
1765     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1766     but you will also have to stop and restart any <code>ev_embed</code> watchers
1767     yourself.</p>
1768     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1769     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1770     portable one.</p>
1771     <p>So when you want to use this feature you will always have to be prepared
1772     that you cannot get an embeddable loop. The recommended way to get around
1773     this is to have a separate variables for your embeddable loop, try to
1774     create it, and if that fails, use the normal loop for everything:</p>
1775     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1776     struct ev_loop *loop_lo = 0;
1777     struct ev_embed embed;
1778    
1779     // see if there is a chance of getting one that works
1780     // (remember that a flags value of 0 means autodetection)
1781     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1782     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1783     : 0;
1784    
1785     // if we got one, then embed it, otherwise default to loop_hi
1786     if (loop_lo)
1787     {
1788     ev_embed_init (&amp;embed, 0, loop_lo);
1789     ev_embed_start (loop_hi, &amp;embed);
1790     }
1791     else
1792     loop_lo = loop_hi;
1793    
1794     </pre>
1795 root 1.78
1796     </div>
1797     <h3 id="Watcher_Specific_Functions_and_Data_-9">Watcher-Specific Functions and Data Members</h3>
1798     <div id="Watcher_Specific_Functions_and_Data_-2-7">
1799 root 1.36 <dl>
1800 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1801     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1802 root 1.36 <dd>
1803 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1804     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1805     invoked automatically, otherwise it is the responsibility of the callback
1806     to invoke it (it will continue to be called until the sweep has been done,
1807     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1808     </dd>
1809     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1810     <dd>
1811     <p>Make a single, non-blocking sweep over the embedded loop. This works
1812     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1813     apropriate way for embedded loops.</p>
1814 root 1.36 </dd>
1815 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1816     <dd>
1817     <p>The embedded event loop.</p>
1818     </dd>
1819 root 1.36 </dl>
1820    
1821    
1822    
1823    
1824    
1825     </div>
1826 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1827     <div id="code_ev_fork_code_the_audacity_to_re-2">
1828     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1829     whoever is a good citizen cared to tell libev about it by calling
1830     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1831     event loop blocks next and before <code>ev_check</code> watchers are being called,
1832     and only in the child after the fork. If whoever good citizen calling
1833     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1834     handlers will be invoked, too, of course.</p>
1835     <dl>
1836     <dt>ev_fork_init (ev_signal *, callback)</dt>
1837     <dd>
1838     <p>Initialises and configures the fork watcher - it has no parameters of any
1839     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1840     believe me.</p>
1841     </dd>
1842     </dl>
1843    
1844    
1845    
1846    
1847    
1848     </div>
1849 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1850 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1851 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1852 root 1.1 <dl>
1853     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1854     <dd>
1855     <p>This function combines a simple timer and an I/O watcher, calls your
1856     callback on whichever event happens first and automatically stop both
1857     watchers. This is useful if you want to wait for a single event on an fd
1858 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1859 root 1.1 more watchers yourself.</p>
1860 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1861     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1862     <code>events</code> set will be craeted and started.</p>
1863 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1864 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1865     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1866     dubious value.</p>
1867     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1868 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1869 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1870     value passed to <code>ev_once</code>:</p>
1871 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1872     {
1873     if (revents &amp; EV_TIMEOUT)
1874 root 1.14 /* doh, nothing entered */;
1875 root 1.1 else if (revents &amp; EV_READ)
1876 root 1.14 /* stdin might have data for us, joy! */;
1877 root 1.1 }
1878    
1879 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1880 root 1.1
1881     </pre>
1882     </dd>
1883 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1884 root 1.1 <dd>
1885     <p>Feeds the given event set into the event loop, as if the specified event
1886 root 1.14 had happened for the specified watcher (which must be a pointer to an
1887     initialised but not necessarily started event watcher).</p>
1888 root 1.1 </dd>
1889 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1890 root 1.1 <dd>
1891 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1892     the given events it.</p>
1893 root 1.1 </dd>
1894 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1895 root 1.1 <dd>
1896 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1897     loop!).</p>
1898 root 1.1 </dd>
1899     </dl>
1900    
1901 root 1.35
1902    
1903    
1904    
1905 root 1.1 </div>
1906 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1907 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1908 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1909     emulate the internals of libevent, so here are some usage hints:</p>
1910     <dl>
1911     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1912     <dt>* The following members are fully supported: ev_base, ev_callback,
1913     ev_arg, ev_fd, ev_res, ev_events.</dt>
1914     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1915     maintained by libev, it does not work exactly the same way as in libevent (consider
1916     it a private API).</dt>
1917     <dt>* Priorities are not currently supported. Initialising priorities
1918     will fail and all watchers will have the same priority, even though there
1919     is an ev_pri field.</dt>
1920     <dt>* Other members are not supported.</dt>
1921     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1922     to use the libev header file and library.</dt>
1923     </dl>
1924 root 1.23
1925     </div>
1926 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1927 root 1.23 <div id="C_SUPPORT_CONTENT">
1928 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1929     you to use some convinience methods to start/stop watchers and also change
1930     the callback model to a model using method callbacks on objects.</p>
1931     <p>To use it,</p>
1932     <pre> #include &lt;ev++.h&gt;
1933    
1934     </pre>
1935 root 1.68 <p>This automatically includes <cite>ev.h</cite> and puts all of its definitions (many
1936     of them macros) into the global namespace. All C++ specific things are
1937     put into the <code>ev</code> namespace. It should support all the same embedding
1938     options as <cite>ev.h</cite>, most notably <code>EV_MULTIPLICITY</code>.</p>
1939 root 1.69 <p>Care has been taken to keep the overhead low. The only data member the C++
1940     classes add (compared to plain C-style watchers) is the event loop pointer
1941     that the watcher is associated with (or no additional members at all if
1942     you disable <code>EV_MULTIPLICITY</code> when embedding libev).</p>
1943     <p>Currently, functions, and static and non-static member functions can be
1944 root 1.68 used as callbacks. Other types should be easy to add as long as they only
1945     need one additional pointer for context. If you need support for other
1946     types of functors please contact the author (preferably after implementing
1947     it).</p>
1948 root 1.39 <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1949     <dl>
1950     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1951     <dd>
1952     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1953     macros from <cite>ev.h</cite>.</p>
1954     </dd>
1955     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1956     <dd>
1957     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1958     </dd>
1959     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1960     <dd>
1961     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1962     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1963     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1964     defines by many implementations.</p>
1965     <p>All of those classes have these methods:</p>
1966     <p>
1967     <dl>
1968 root 1.68 <dt>ev::TYPE::TYPE ()</dt>
1969     <dt>ev::TYPE::TYPE (struct ev_loop *)</dt>
1970 root 1.39 <dt>ev::TYPE::~TYPE</dt>
1971     <dd>
1972 root 1.68 <p>The constructor (optionally) takes an event loop to associate the watcher
1973     with. If it is omitted, it will use <code>EV_DEFAULT</code>.</p>
1974     <p>The constructor calls <code>ev_init</code> for you, which means you have to call the
1975     <code>set</code> method before starting it.</p>
1976     <p>It will not set a callback, however: You have to call the templated <code>set</code>
1977     method to set a callback before you can start the watcher.</p>
1978     <p>(The reason why you have to use a method is a limitation in C++ which does
1979     not allow explicit template arguments for constructors).</p>
1980 root 1.39 <p>The destructor automatically stops the watcher if it is active.</p>
1981     </dd>
1982 root 1.68 <dt>w-&gt;set&lt;class, &amp;class::method&gt; (object *)</dt>
1983     <dd>
1984     <p>This method sets the callback method to call. The method has to have a
1985     signature of <code>void (*)(ev_TYPE &amp;, int)</code>, it receives the watcher as
1986     first argument and the <code>revents</code> as second. The object must be given as
1987     parameter and is stored in the <code>data</code> member of the watcher.</p>
1988     <p>This method synthesizes efficient thunking code to call your method from
1989     the C callback that libev requires. If your compiler can inline your
1990     callback (i.e. it is visible to it at the place of the <code>set</code> call and
1991     your compiler is good :), then the method will be fully inlined into the
1992     thunking function, making it as fast as a direct C callback.</p>
1993     <p>Example: simple class declaration and watcher initialisation</p>
1994     <pre> struct myclass
1995     {
1996     void io_cb (ev::io &amp;w, int revents) { }
1997     }
1998    
1999     myclass obj;
2000     ev::io iow;
2001     iow.set &lt;myclass, &amp;myclass::io_cb&gt; (&amp;obj);
2002    
2003     </pre>
2004     </dd>
2005 root 1.70 <dt>w-&gt;set&lt;function&gt; (void *data = 0)</dt>
2006 root 1.68 <dd>
2007     <p>Also sets a callback, but uses a static method or plain function as
2008     callback. The optional <code>data</code> argument will be stored in the watcher's
2009     <code>data</code> member and is free for you to use.</p>
2010 root 1.70 <p>The prototype of the <code>function</code> must be <code>void (*)(ev::TYPE &amp;w, int)</code>.</p>
2011 root 1.68 <p>See the method-<code>set</code> above for more details.</p>
2012 root 1.70 <p>Example:</p>
2013     <pre> static void io_cb (ev::io &amp;w, int revents) { }
2014     iow.set &lt;io_cb&gt; ();
2015    
2016     </pre>
2017 root 1.68 </dd>
2018 root 1.39 <dt>w-&gt;set (struct ev_loop *)</dt>
2019     <dd>
2020     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
2021     do this when the watcher is inactive (and not pending either).</p>
2022     </dd>
2023     <dt>w-&gt;set ([args])</dt>
2024     <dd>
2025     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
2026 root 1.68 called at least once. Unlike the C counterpart, an active watcher gets
2027     automatically stopped and restarted when reconfiguring it with this
2028     method.</p>
2029 root 1.39 </dd>
2030     <dt>w-&gt;start ()</dt>
2031     <dd>
2032 root 1.68 <p>Starts the watcher. Note that there is no <code>loop</code> argument, as the
2033     constructor already stores the event loop.</p>
2034 root 1.39 </dd>
2035     <dt>w-&gt;stop ()</dt>
2036     <dd>
2037     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
2038     </dd>
2039     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
2040     <dd>
2041     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
2042     <code>ev_TYPE_again</code> function.</p>
2043     </dd>
2044     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
2045     <dd>
2046     <p>Invokes <code>ev_embed_sweep</code>.</p>
2047     </dd>
2048 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
2049     <dd>
2050     <p>Invokes <code>ev_stat_stat</code>.</p>
2051     </dd>
2052 root 1.39 </dl>
2053     </p>
2054     </dd>
2055     </dl>
2056     <p>Example: Define a class with an IO and idle watcher, start one of them in
2057     the constructor.</p>
2058     <pre> class myclass
2059     {
2060     ev_io io; void io_cb (ev::io &amp;w, int revents);
2061     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
2062    
2063     myclass ();
2064     }
2065    
2066     myclass::myclass (int fd)
2067     {
2068 root 1.68 io .set &lt;myclass, &amp;myclass::io_cb &gt; (this);
2069     idle.set &lt;myclass, &amp;myclass::idle_cb&gt; (this);
2070    
2071 root 1.39 io.start (fd, ev::READ);
2072     }
2073    
2074 root 1.50
2075    
2076    
2077     </pre>
2078    
2079     </div>
2080 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
2081 root 1.50 <div id="MACRO_MAGIC_CONTENT">
2082     <p>Libev can be compiled with a variety of options, the most fundemantal is
2083 root 1.65 <code>EV_MULTIPLICITY</code>. This option determines whether (most) functions and
2084 root 1.50 callbacks have an initial <code>struct ev_loop *</code> argument.</p>
2085     <p>To make it easier to write programs that cope with either variant, the
2086     following macros are defined:</p>
2087     <dl>
2088     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
2089     <dd>
2090     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
2091     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
2092     <code>EV_A_</code> is used when other arguments are following. Example:</p>
2093     <pre> ev_unref (EV_A);
2094     ev_timer_add (EV_A_ watcher);
2095     ev_loop (EV_A_ 0);
2096    
2097     </pre>
2098     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
2099     which is often provided by the following macro.</p>
2100     </dd>
2101     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
2102     <dd>
2103     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
2104     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
2105     <code>EV_P_</code> is used when other parameters are following. Example:</p>
2106     <pre> // this is how ev_unref is being declared
2107     static void ev_unref (EV_P);
2108    
2109     // this is how you can declare your typical callback
2110     static void cb (EV_P_ ev_timer *w, int revents)
2111    
2112     </pre>
2113     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
2114     suitable for use with <code>EV_A</code>.</p>
2115     </dd>
2116     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
2117     <dd>
2118     <p>Similar to the other two macros, this gives you the value of the default
2119     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
2120     </dd>
2121     </dl>
2122 root 1.63 <p>Example: Declare and initialise a check watcher, utilising the above
2123 root 1.65 macros so it will work regardless of whether multiple loops are supported
2124 root 1.63 or not.</p>
2125 root 1.50 <pre> static void
2126     check_cb (EV_P_ ev_timer *w, int revents)
2127     {
2128     ev_check_stop (EV_A_ w);
2129     }
2130    
2131     ev_check check;
2132     ev_check_init (&amp;check, check_cb);
2133     ev_check_start (EV_DEFAULT_ &amp;check);
2134     ev_loop (EV_DEFAULT_ 0);
2135    
2136 root 1.39 </pre>
2137 root 1.23
2138     </div>
2139 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
2140 root 1.40 <div id="EMBEDDING_CONTENT">
2141     <p>Libev can (and often is) directly embedded into host
2142     applications. Examples of applications that embed it include the Deliantra
2143     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
2144     and rxvt-unicode.</p>
2145     <p>The goal is to enable you to just copy the neecssary files into your
2146     source directory without having to change even a single line in them, so
2147     you can easily upgrade by simply copying (or having a checked-out copy of
2148     libev somewhere in your source tree).</p>
2149    
2150     </div>
2151     <h2 id="FILESETS">FILESETS</h2>
2152     <div id="FILESETS_CONTENT">
2153     <p>Depending on what features you need you need to include one or more sets of files
2154     in your app.</p>
2155    
2156     </div>
2157     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
2158     <div id="CORE_EVENT_LOOP_CONTENT">
2159     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
2160     configuration (no autoconf):</p>
2161     <pre> #define EV_STANDALONE 1
2162     #include &quot;ev.c&quot;
2163    
2164     </pre>
2165     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
2166     single C source file only to provide the function implementations. To use
2167     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
2168     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
2169     where you can put other configuration options):</p>
2170     <pre> #define EV_STANDALONE 1
2171     #include &quot;ev.h&quot;
2172    
2173     </pre>
2174     <p>Both header files and implementation files can be compiled with a C++
2175     compiler (at least, thats a stated goal, and breakage will be treated
2176     as a bug).</p>
2177     <p>You need the following files in your source tree, or in a directory
2178     in your include path (e.g. in libev/ when using -Ilibev):</p>
2179     <pre> ev.h
2180     ev.c
2181     ev_vars.h
2182     ev_wrap.h
2183    
2184     ev_win32.c required on win32 platforms only
2185    
2186 root 1.63 ev_select.c only when select backend is enabled (which is enabled by default)
2187 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
2188     ev_epoll.c only when the epoll backend is enabled (disabled by default)
2189     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
2190     ev_port.c only when the solaris port backend is enabled (disabled by default)
2191    
2192     </pre>
2193     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
2194 root 1.44 to compile this single file.</p>
2195 root 1.40
2196     </div>
2197     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
2198     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
2199     <p>To include the libevent compatibility API, also include:</p>
2200     <pre> #include &quot;event.c&quot;
2201    
2202     </pre>
2203     <p>in the file including <cite>ev.c</cite>, and:</p>
2204     <pre> #include &quot;event.h&quot;
2205    
2206     </pre>
2207     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
2208     <p>You need the following additional files for this:</p>
2209     <pre> event.h
2210     event.c
2211    
2212     </pre>
2213    
2214     </div>
2215     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
2216     <div id="AUTOCONF_SUPPORT_CONTENT">
2217     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
2218     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
2219 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
2220     include <cite>config.h</cite> and configure itself accordingly.</p>
2221 root 1.40 <p>For this of course you need the m4 file:</p>
2222     <pre> libev.m4
2223    
2224     </pre>
2225    
2226     </div>
2227     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
2228     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
2229     <p>Libev can be configured via a variety of preprocessor symbols you have to define
2230     before including any of its files. The default is not to build for multiplicity
2231     and only include the select backend.</p>
2232     <dl>
2233     <dt>EV_STANDALONE</dt>
2234     <dd>
2235     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
2236     keeps libev from including <cite>config.h</cite>, and it also defines dummy
2237     implementations for some libevent functions (such as logging, which is not
2238     supported). It will also not define any of the structs usually found in
2239     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
2240     </dd>
2241     <dt>EV_USE_MONOTONIC</dt>
2242     <dd>
2243     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2244     monotonic clock option at both compiletime and runtime. Otherwise no use
2245     of the monotonic clock option will be attempted. If you enable this, you
2246     usually have to link against librt or something similar. Enabling it when
2247     the functionality isn't available is safe, though, althoguh you have
2248     to make sure you link against any libraries where the <code>clock_gettime</code>
2249     function is hiding in (often <cite>-lrt</cite>).</p>
2250     </dd>
2251     <dt>EV_USE_REALTIME</dt>
2252     <dd>
2253     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2254     realtime clock option at compiletime (and assume its availability at
2255     runtime if successful). Otherwise no use of the realtime clock option will
2256     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
2257     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
2258     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
2259     </dd>
2260     <dt>EV_USE_SELECT</dt>
2261     <dd>
2262     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
2263     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
2264     other method takes over, select will be it. Otherwise the select backend
2265     will not be compiled in.</p>
2266     </dd>
2267     <dt>EV_SELECT_USE_FD_SET</dt>
2268     <dd>
2269     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
2270     structure. This is useful if libev doesn't compile due to a missing
2271     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
2272     exotic systems. This usually limits the range of file descriptors to some
2273     low limit such as 1024 or might have other limitations (winsocket only
2274     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
2275     influence the size of the <code>fd_set</code> used.</p>
2276     </dd>
2277     <dt>EV_SELECT_IS_WINSOCKET</dt>
2278     <dd>
2279     <p>When defined to <code>1</code>, the select backend will assume that
2280     select/socket/connect etc. don't understand file descriptors but
2281     wants osf handles on win32 (this is the case when the select to
2282     be used is the winsock select). This means that it will call
2283     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2284     it is assumed that all these functions actually work on fds, even
2285     on win32. Should not be defined on non-win32 platforms.</p>
2286     </dd>
2287     <dt>EV_USE_POLL</dt>
2288     <dd>
2289     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2290     backend. Otherwise it will be enabled on non-win32 platforms. It
2291     takes precedence over select.</p>
2292     </dd>
2293     <dt>EV_USE_EPOLL</dt>
2294     <dd>
2295     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2296     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2297     otherwise another method will be used as fallback. This is the
2298     preferred backend for GNU/Linux systems.</p>
2299     </dd>
2300     <dt>EV_USE_KQUEUE</dt>
2301     <dd>
2302     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2303     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2304     otherwise another method will be used as fallback. This is the preferred
2305     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2306     supports some types of fds correctly (the only platform we found that
2307     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2308     not be used unless explicitly requested. The best way to use it is to find
2309 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2310 root 1.40 kqueue loop.</p>
2311     </dd>
2312     <dt>EV_USE_PORT</dt>
2313     <dd>
2314     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2315     10 port style backend. Its availability will be detected at runtime,
2316     otherwise another method will be used as fallback. This is the preferred
2317     backend for Solaris 10 systems.</p>
2318     </dd>
2319     <dt>EV_USE_DEVPOLL</dt>
2320     <dd>
2321     <p>reserved for future expansion, works like the USE symbols above.</p>
2322     </dd>
2323 root 1.57 <dt>EV_USE_INOTIFY</dt>
2324     <dd>
2325     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2326     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2327     be detected at runtime.</p>
2328     </dd>
2329 root 1.40 <dt>EV_H</dt>
2330     <dd>
2331     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2332     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2333     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2334     </dd>
2335     <dt>EV_CONFIG_H</dt>
2336     <dd>
2337     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2338     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2339     <code>EV_H</code>, above.</p>
2340     </dd>
2341     <dt>EV_EVENT_H</dt>
2342     <dd>
2343     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2344     of how the <cite>event.h</cite> header can be found.</p>
2345     </dd>
2346     <dt>EV_PROTOTYPES</dt>
2347     <dd>
2348     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2349     prototypes, but still define all the structs and other symbols. This is
2350     occasionally useful if you want to provide your own wrapper functions
2351     around libev functions.</p>
2352     </dd>
2353     <dt>EV_MULTIPLICITY</dt>
2354     <dd>
2355     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2356     will have the <code>struct ev_loop *</code> as first argument, and you can create
2357     additional independent event loops. Otherwise there will be no support
2358     for multiple event loops and there is no first event loop pointer
2359     argument. Instead, all functions act on the single default loop.</p>
2360     </dd>
2361 root 1.66 <dt>EV_MINPRI</dt>
2362     <dt>EV_MAXPRI</dt>
2363     <dd>
2364     <p>The range of allowed priorities. <code>EV_MINPRI</code> must be smaller or equal to
2365     <code>EV_MAXPRI</code>, but otherwise there are no non-obvious limitations. You can
2366     provide for more priorities by overriding those symbols (usually defined
2367     to be <code>-2</code> and <code>2</code>, respectively).</p>
2368     <p>When doing priority-based operations, libev usually has to linearly search
2369     all the priorities, so having many of them (hundreds) uses a lot of space
2370     and time, so using the defaults of five priorities (-2 .. +2) is usually
2371     fine.</p>
2372     <p>If your embedding app does not need any priorities, defining these both to
2373     <code>0</code> will save some memory and cpu.</p>
2374     </dd>
2375 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2376     <dd>
2377     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2378     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2379     code.</p>
2380     </dd>
2381 root 1.64 <dt>EV_IDLE_ENABLE</dt>
2382     <dd>
2383     <p>If undefined or defined to be <code>1</code>, then idle watchers are supported. If
2384     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2385     code.</p>
2386     </dd>
2387 root 1.48 <dt>EV_EMBED_ENABLE</dt>
2388     <dd>
2389     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2390     defined to be <code>0</code>, then they are not.</p>
2391     </dd>
2392     <dt>EV_STAT_ENABLE</dt>
2393     <dd>
2394     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2395     defined to be <code>0</code>, then they are not.</p>
2396     </dd>
2397 root 1.50 <dt>EV_FORK_ENABLE</dt>
2398     <dd>
2399     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2400     defined to be <code>0</code>, then they are not.</p>
2401     </dd>
2402 root 1.48 <dt>EV_MINIMAL</dt>
2403 root 1.40 <dd>
2404 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2405     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2406     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2407 root 1.40 </dd>
2408 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2409     <dd>
2410     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2411     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2412     than enough. If you need to manage thousands of children you might want to
2413 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2414     </dd>
2415     <dt>EV_INOTIFY_HASHSIZE</dt>
2416     <dd>
2417     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2418     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2419     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2420     watchers you might want to increase this value (<i>must</i> be a power of
2421     two).</p>
2422 root 1.51 </dd>
2423 root 1.40 <dt>EV_COMMON</dt>
2424     <dd>
2425     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2426     this macro to a something else you can include more and other types of
2427     members. You have to define it each time you include one of the files,
2428     though, and it must be identical each time.</p>
2429     <p>For example, the perl EV module uses something like this:</p>
2430     <pre> #define EV_COMMON \
2431     SV *self; /* contains this struct */ \
2432     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2433    
2434     </pre>
2435     </dd>
2436 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2437     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2438     <dt>ev_set_cb (ev, cb)</dt>
2439 root 1.40 <dd>
2440     <p>Can be used to change the callback member declaration in each watcher,
2441     and the way callbacks are invoked and set. Must expand to a struct member
2442     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2443     their default definitions. One possible use for overriding these is to
2444 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2445     method calls instead of plain function calls in C++.</p>
2446 root 1.40
2447     </div>
2448     <h2 id="EXAMPLES">EXAMPLES</h2>
2449     <div id="EXAMPLES_CONTENT">
2450     <p>For a real-world example of a program the includes libev
2451     verbatim, you can have a look at the EV perl module
2452     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2453     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2454     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2455     will be compiled. It is pretty complex because it provides its own header
2456     file.</p>
2457     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2458 root 1.63 that everybody includes and which overrides some configure choices:</p>
2459     <pre> #define EV_MINIMAL 1
2460     #define EV_USE_POLL 0
2461 root 1.41 #define EV_MULTIPLICITY 0
2462 root 1.63 #define EV_PERIODIC_ENABLE 0
2463     #define EV_STAT_ENABLE 0
2464     #define EV_FORK_ENABLE 0
2465 root 1.41 #define EV_CONFIG_H &lt;config.h&gt;
2466 root 1.63 #define EV_MINPRI 0
2467     #define EV_MAXPRI 0
2468 root 1.40
2469 root 1.41 #include &quot;ev++.h&quot;
2470 root 1.40
2471     </pre>
2472     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2473 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2474     #include &quot;ev.c&quot;
2475 root 1.40
2476 root 1.47
2477    
2478    
2479 root 1.40 </pre>
2480    
2481     </div>
2482 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2483 root 1.47 <div id="COMPLEXITIES_CONTENT">
2484     <p>In this section the complexities of (many of) the algorithms used inside
2485     libev will be explained. For complexity discussions about backends see the
2486     documentation for <code>ev_default_init</code>.</p>
2487 root 1.67 <p>All of the following are about amortised time: If an array needs to be
2488     extended, libev needs to realloc and move the whole array, but this
2489     happens asymptotically never with higher number of elements, so O(1) might
2490     mean it might do a lengthy realloc operation in rare cases, but on average
2491     it is much faster and asymptotically approaches constant time.</p>
2492 root 1.47 <p>
2493     <dl>
2494     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2495 root 1.66 <dd>
2496     <p>This means that, when you have a watcher that triggers in one hour and
2497     there are 100 watchers that would trigger before that then inserting will
2498     have to skip those 100 watchers.</p>
2499     </dd>
2500 root 1.47 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2501 root 1.66 <dd>
2502     <p>That means that for changing a timer costs less than removing/adding them
2503     as only the relative motion in the event queue has to be paid for.</p>
2504     </dd>
2505 root 1.47 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2506 root 1.66 <dd>
2507 root 1.67 <p>These just add the watcher into an array or at the head of a list.
2508     =item Stopping check/prepare/idle watchers: O(1)</p>
2509 root 1.66 </dd>
2510 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2511 root 1.66 <dd>
2512     <p>These watchers are stored in lists then need to be walked to find the
2513     correct watcher to remove. The lists are usually short (you don't usually
2514     have many watchers waiting for the same fd or signal).</p>
2515     </dd>
2516 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2517     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2518 root 1.66 <dd>
2519     <p>A change means an I/O watcher gets started or stopped, which requires
2520     libev to recalculate its status (and possibly tell the kernel).</p>
2521     </dd>
2522 root 1.47 <dt>Activating one watcher: O(1)</dt>
2523 root 1.66 <dt>Priority handling: O(number_of_priorities)</dt>
2524     <dd>
2525     <p>Priorities are implemented by allocating some space for each
2526     priority. When doing priority-based operations, libev usually has to
2527     linearly search all the priorities.</p>
2528     </dd>
2529 root 1.47 </dl>
2530     </p>
2531    
2532    
2533    
2534    
2535    
2536     </div>
2537 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2538 root 1.1 <div id="AUTHOR_CONTENT">
2539 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2540 root 1.1
2541     </div>
2542     </div></body>
2543     </html>