ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.html
Revision: 1.79
Committed: Wed Dec 12 17:55:30 2007 UTC (16 years, 5 months ago) by root
Content type: text/html
Branch: MAIN
Changes since 1.78: +9 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3     <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
4     <head>
5     <title>libev</title>
6     <meta name="description" content="Pod documentation for libev" />
7     <meta name="inputfile" content="&lt;standard input&gt;" />
8     <meta name="outputfile" content="&lt;standard output&gt;" />
9 root 1.79 <meta name="created" content="Wed Dec 12 18:55:28 2007" />
10 root 1.1 <meta name="generator" content="Pod::Xhtml 1.57" />
11     <link rel="stylesheet" href="http://res.tst.eu/pod.css"/></head>
12     <body>
13     <div class="pod">
14     <!-- INDEX START -->
15     <h3 id="TOP">Index</h3>
16    
17     <ul><li><a href="#NAME">NAME</a></li>
18     <li><a href="#SYNOPSIS">SYNOPSIS</a></li>
19 root 1.54 <li><a href="#EXAMPLE_PROGRAM">EXAMPLE PROGRAM</a></li>
20 root 1.1 <li><a href="#DESCRIPTION">DESCRIPTION</a></li>
21     <li><a href="#FEATURES">FEATURES</a></li>
22     <li><a href="#CONVENTIONS">CONVENTIONS</a></li>
23 root 1.18 <li><a href="#TIME_REPRESENTATION">TIME REPRESENTATION</a></li>
24     <li><a href="#GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</a></li>
25 root 1.1 <li><a href="#FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</a></li>
26     <li><a href="#ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</a>
27 root 1.43 <ul><li><a href="#GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</a></li>
28 root 1.37 <li><a href="#ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</a></li>
29 root 1.1 </ul>
30     </li>
31     <li><a href="#WATCHER_TYPES">WATCHER TYPES</a>
32 root 1.77 <ul><li><a href="#code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</a>
33     <ul><li><a href="#The_special_problem_of_disappearing_">The special problem of disappearing file descriptors</a></li>
34 root 1.78 <li><a href="#Watcher_Specific_Functions">Watcher-Specific Functions</a></li>
35     </ul>
36     </li>
37     <li><a href="#code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</a>
38     <ul><li><a href="#Watcher_Specific_Functions_and_Data_">Watcher-Specific Functions and Data Members</a></li>
39     </ul>
40     </li>
41     <li><a href="#code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</a>
42     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-3">Watcher-Specific Functions and Data Members</a></li>
43     </ul>
44     </li>
45     <li><a href="#code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</a>
46     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-4">Watcher-Specific Functions and Data Members</a></li>
47     </ul>
48     </li>
49     <li><a href="#code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</a>
50     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-5">Watcher-Specific Functions and Data Members</a></li>
51     </ul>
52     </li>
53     <li><a href="#code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</a>
54     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-6">Watcher-Specific Functions and Data Members</a></li>
55     </ul>
56     </li>
57     <li><a href="#code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</a>
58     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-7">Watcher-Specific Functions and Data Members</a></li>
59     </ul>
60     </li>
61     <li><a href="#code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</a>
62     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-8">Watcher-Specific Functions and Data Members</a></li>
63     </ul>
64     </li>
65     <li><a href="#code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</a>
66     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-9">Watcher-Specific Functions and Data Members</a></li>
67 root 1.77 </ul>
68     </li>
69 root 1.79 <li><a href="#code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</a>
70     <ul><li><a href="#Watcher_Specific_Functions_and_Data_-10">Watcher-Specific Functions and Data Members</a></li>
71     </ul>
72     </li>
73 root 1.1 </ul>
74     </li>
75     <li><a href="#OTHER_FUNCTIONS">OTHER FUNCTIONS</a></li>
76 root 1.23 <li><a href="#LIBEVENT_EMULATION">LIBEVENT EMULATION</a></li>
77     <li><a href="#C_SUPPORT">C++ SUPPORT</a></li>
78 root 1.50 <li><a href="#MACRO_MAGIC">MACRO MAGIC</a></li>
79 root 1.40 <li><a href="#EMBEDDING">EMBEDDING</a>
80     <ul><li><a href="#FILESETS">FILESETS</a>
81     <ul><li><a href="#CORE_EVENT_LOOP">CORE EVENT LOOP</a></li>
82     <li><a href="#LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</a></li>
83     <li><a href="#AUTOCONF_SUPPORT">AUTOCONF SUPPORT</a></li>
84     </ul>
85     </li>
86     <li><a href="#PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</a></li>
87     <li><a href="#EXAMPLES">EXAMPLES</a></li>
88     </ul>
89     </li>
90 root 1.47 <li><a href="#COMPLEXITIES">COMPLEXITIES</a></li>
91 root 1.1 <li><a href="#AUTHOR">AUTHOR</a>
92     </li>
93     </ul><hr />
94     <!-- INDEX END -->
95    
96 root 1.55 <h1 id="NAME">NAME</h1>
97 root 1.1 <div id="NAME_CONTENT">
98     <p>libev - a high performance full-featured event loop written in C</p>
99    
100     </div>
101 root 1.55 <h1 id="SYNOPSIS">SYNOPSIS</h1>
102 root 1.1 <div id="SYNOPSIS_CONTENT">
103 root 1.54 <pre> #include &lt;ev.h&gt;
104    
105     </pre>
106    
107     </div>
108 root 1.55 <h1 id="EXAMPLE_PROGRAM">EXAMPLE PROGRAM</h1>
109 root 1.54 <div id="EXAMPLE_PROGRAM_CONTENT">
110     <pre> #include &lt;ev.h&gt;
111 root 1.53
112     ev_io stdin_watcher;
113     ev_timer timeout_watcher;
114    
115     /* called when data readable on stdin */
116     static void
117     stdin_cb (EV_P_ struct ev_io *w, int revents)
118     {
119     /* puts (&quot;stdin ready&quot;); */
120     ev_io_stop (EV_A_ w); /* just a syntax example */
121     ev_unloop (EV_A_ EVUNLOOP_ALL); /* leave all loop calls */
122     }
123    
124     static void
125     timeout_cb (EV_P_ struct ev_timer *w, int revents)
126     {
127     /* puts (&quot;timeout&quot;); */
128     ev_unloop (EV_A_ EVUNLOOP_ONE); /* leave one loop call */
129     }
130    
131     int
132     main (void)
133     {
134     struct ev_loop *loop = ev_default_loop (0);
135    
136     /* initialise an io watcher, then start it */
137     ev_io_init (&amp;stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
138     ev_io_start (loop, &amp;stdin_watcher);
139    
140     /* simple non-repeating 5.5 second timeout */
141     ev_timer_init (&amp;timeout_watcher, timeout_cb, 5.5, 0.);
142     ev_timer_start (loop, &amp;timeout_watcher);
143    
144     /* loop till timeout or data ready */
145     ev_loop (loop, 0);
146    
147     return 0;
148     }
149 root 1.1
150     </pre>
151    
152     </div>
153 root 1.55 <h1 id="DESCRIPTION">DESCRIPTION</h1>
154 root 1.1 <div id="DESCRIPTION_CONTENT">
155 root 1.66 <p>The newest version of this document is also available as a html-formatted
156     web page you might find easier to navigate when reading it for the first
157     time: <a href="http://cvs.schmorp.de/libev/ev.html">http://cvs.schmorp.de/libev/ev.html</a>.</p>
158 root 1.1 <p>Libev is an event loop: you register interest in certain events (such as a
159     file descriptor being readable or a timeout occuring), and it will manage
160 root 1.4 these event sources and provide your program with events.</p>
161 root 1.1 <p>To do this, it must take more or less complete control over your process
162     (or thread) by executing the <i>event loop</i> handler, and will then
163     communicate events via a callback mechanism.</p>
164     <p>You register interest in certain events by registering so-called <i>event
165     watchers</i>, which are relatively small C structures you initialise with the
166     details of the event, and then hand it over to libev by <i>starting</i> the
167     watcher.</p>
168    
169     </div>
170 root 1.55 <h1 id="FEATURES">FEATURES</h1>
171 root 1.1 <div id="FEATURES_CONTENT">
172 root 1.58 <p>Libev supports <code>select</code>, <code>poll</code>, the Linux-specific <code>epoll</code>, the
173     BSD-specific <code>kqueue</code> and the Solaris-specific event port mechanisms
174     for file descriptor events (<code>ev_io</code>), the Linux <code>inotify</code> interface
175     (for <code>ev_stat</code>), relative timers (<code>ev_timer</code>), absolute timers
176     with customised rescheduling (<code>ev_periodic</code>), synchronous signals
177     (<code>ev_signal</code>), process status change events (<code>ev_child</code>), and event
178     watchers dealing with the event loop mechanism itself (<code>ev_idle</code>,
179 root 1.54 <code>ev_embed</code>, <code>ev_prepare</code> and <code>ev_check</code> watchers) as well as
180     file watchers (<code>ev_stat</code>) and even limited support for fork events
181     (<code>ev_fork</code>).</p>
182     <p>It also is quite fast (see this
183     <a href="http://libev.schmorp.de/bench.html">benchmark</a> comparing it to libevent
184     for example).</p>
185 root 1.1
186     </div>
187 root 1.55 <h1 id="CONVENTIONS">CONVENTIONS</h1>
188 root 1.1 <div id="CONVENTIONS_CONTENT">
189 root 1.54 <p>Libev is very configurable. In this manual the default configuration will
190     be described, which supports multiple event loops. For more info about
191     various configuration options please have a look at <strong>EMBED</strong> section in
192     this manual. If libev was configured without support for multiple event
193     loops, then all functions taking an initial argument of name <code>loop</code>
194     (which is always of type <code>struct ev_loop *</code>) will not have this argument.</p>
195 root 1.1
196     </div>
197 root 1.55 <h1 id="TIME_REPRESENTATION">TIME REPRESENTATION</h1>
198 root 1.18 <div id="TIME_REPRESENTATION_CONTENT">
199 root 1.2 <p>Libev represents time as a single floating point number, representing the
200     (fractional) number of seconds since the (POSIX) epoch (somewhere near
201     the beginning of 1970, details are complicated, don't ask). This type is
202 root 1.1 called <code>ev_tstamp</code>, which is what you should use too. It usually aliases
203 root 1.35 to the <code>double</code> type in C, and when you need to do any calculations on
204     it, you should treat it as such.</p>
205    
206 root 1.18 </div>
207 root 1.55 <h1 id="GLOBAL_FUNCTIONS">GLOBAL FUNCTIONS</h1>
208 root 1.18 <div id="GLOBAL_FUNCTIONS_CONTENT">
209 root 1.21 <p>These functions can be called anytime, even before initialising the
210     library in any way.</p>
211 root 1.1 <dl>
212     <dt>ev_tstamp ev_time ()</dt>
213     <dd>
214 root 1.28 <p>Returns the current time as libev would use it. Please note that the
215     <code>ev_now</code> function is usually faster and also often returns the timestamp
216     you actually want to know.</p>
217 root 1.1 </dd>
218     <dt>int ev_version_major ()</dt>
219     <dt>int ev_version_minor ()</dt>
220     <dd>
221 root 1.76 <p>You can find out the major and minor ABI version numbers of the library
222 root 1.1 you linked against by calling the functions <code>ev_version_major</code> and
223     <code>ev_version_minor</code>. If you want, you can compare against the global
224     symbols <code>EV_VERSION_MAJOR</code> and <code>EV_VERSION_MINOR</code>, which specify the
225     version of the library your program was compiled against.</p>
226 root 1.76 <p>These version numbers refer to the ABI version of the library, not the
227     release version.</p>
228 root 1.9 <p>Usually, it's a good idea to terminate if the major versions mismatch,
229 root 1.75 as this indicates an incompatible change. Minor versions are usually
230 root 1.1 compatible to older versions, so a larger minor version alone is usually
231     not a problem.</p>
232 root 1.54 <p>Example: Make sure we haven't accidentally been linked against the wrong
233     version.</p>
234 root 1.35 <pre> assert ((&quot;libev version mismatch&quot;,
235     ev_version_major () == EV_VERSION_MAJOR
236     &amp;&amp; ev_version_minor () &gt;= EV_VERSION_MINOR));
237    
238     </pre>
239 root 1.1 </dd>
240 root 1.32 <dt>unsigned int ev_supported_backends ()</dt>
241     <dd>
242     <p>Return the set of all backends (i.e. their corresponding <code>EV_BACKEND_*</code>
243     value) compiled into this binary of libev (independent of their
244     availability on the system you are running on). See <code>ev_default_loop</code> for
245     a description of the set values.</p>
246 root 1.35 <p>Example: make sure we have the epoll method, because yeah this is cool and
247     a must have and can we have a torrent of it please!!!11</p>
248     <pre> assert ((&quot;sorry, no epoll, no sex&quot;,
249     ev_supported_backends () &amp; EVBACKEND_EPOLL));
250    
251     </pre>
252 root 1.32 </dd>
253     <dt>unsigned int ev_recommended_backends ()</dt>
254     <dd>
255     <p>Return the set of all backends compiled into this binary of libev and also
256     recommended for this platform. This set is often smaller than the one
257     returned by <code>ev_supported_backends</code>, as for example kqueue is broken on
258     most BSDs and will not be autodetected unless you explicitly request it
259     (assuming you know what you are doing). This is the set of backends that
260 root 1.34 libev will probe for if you specify no backends explicitly.</p>
261 root 1.32 </dd>
262 root 1.36 <dt>unsigned int ev_embeddable_backends ()</dt>
263     <dd>
264     <p>Returns the set of backends that are embeddable in other event loops. This
265     is the theoretical, all-platform, value. To find which backends
266     might be supported on the current system, you would need to look at
267     <code>ev_embeddable_backends () &amp; ev_supported_backends ()</code>, likewise for
268     recommended ones.</p>
269     <p>See the description of <code>ev_embed</code> watchers for more info.</p>
270     </dd>
271 root 1.59 <dt>ev_set_allocator (void *(*cb)(void *ptr, long size))</dt>
272 root 1.1 <dd>
273 root 1.59 <p>Sets the allocation function to use (the prototype is similar - the
274     semantics is identical - to the realloc C function). It is used to
275     allocate and free memory (no surprises here). If it returns zero when
276     memory needs to be allocated, the library might abort or take some
277     potentially destructive action. The default is your system realloc
278     function.</p>
279 root 1.1 <p>You could override this function in high-availability programs to, say,
280     free some memory if it cannot allocate memory, to use a special allocator,
281     or even to sleep a while and retry until some memory is available.</p>
282 root 1.54 <p>Example: Replace the libev allocator with one that waits a bit and then
283     retries).</p>
284 root 1.35 <pre> static void *
285 root 1.52 persistent_realloc (void *ptr, size_t size)
286 root 1.35 {
287     for (;;)
288     {
289     void *newptr = realloc (ptr, size);
290    
291     if (newptr)
292     return newptr;
293    
294     sleep (60);
295     }
296     }
297    
298     ...
299     ev_set_allocator (persistent_realloc);
300    
301     </pre>
302 root 1.1 </dd>
303     <dt>ev_set_syserr_cb (void (*cb)(const char *msg));</dt>
304     <dd>
305     <p>Set the callback function to call on a retryable syscall error (such
306     as failed select, poll, epoll_wait). The message is a printable string
307     indicating the system call or subsystem causing the problem. If this
308     callback is set, then libev will expect it to remedy the sitution, no
309 root 1.7 matter what, when it returns. That is, libev will generally retry the
310 root 1.1 requested operation, or, if the condition doesn't go away, do bad stuff
311     (such as abort).</p>
312 root 1.54 <p>Example: This is basically the same thing that libev does internally, too.</p>
313 root 1.35 <pre> static void
314     fatal_error (const char *msg)
315     {
316     perror (msg);
317     abort ();
318     }
319    
320     ...
321     ev_set_syserr_cb (fatal_error);
322    
323     </pre>
324 root 1.1 </dd>
325     </dl>
326    
327     </div>
328 root 1.55 <h1 id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP">FUNCTIONS CONTROLLING THE EVENT LOOP</h1>
329 root 1.1 <div id="FUNCTIONS_CONTROLLING_THE_EVENT_LOOP-2">
330     <p>An event loop is described by a <code>struct ev_loop *</code>. The library knows two
331     types of such loops, the <i>default</i> loop, which supports signals and child
332     events, and dynamically created loops which do not.</p>
333     <p>If you use threads, a common model is to run the default event loop
334 root 1.18 in your main thread (or in a separate thread) and for each thread you
335 root 1.7 create, you also create another event loop. Libev itself does no locking
336     whatsoever, so if you mix calls to the same event loop in different
337     threads, make sure you lock (this is usually a bad idea, though, even if
338 root 1.9 done correctly, because it's hideous and inefficient).</p>
339 root 1.1 <dl>
340     <dt>struct ev_loop *ev_default_loop (unsigned int flags)</dt>
341     <dd>
342     <p>This will initialise the default event loop if it hasn't been initialised
343     yet and return it. If the default loop could not be initialised, returns
344     false. If it already was initialised it simply returns it (and ignores the
345 root 1.32 flags. If that is troubling you, check <code>ev_backend ()</code> afterwards).</p>
346 root 1.1 <p>If you don't know what event loop to use, use the one returned from this
347     function.</p>
348     <p>The flags argument can be used to specify special behaviour or specific
349 root 1.34 backends to use, and is usually specified as <code>0</code> (or <code>EVFLAG_AUTO</code>).</p>
350     <p>The following flags are supported:</p>
351 root 1.1 <p>
352     <dl>
353 root 1.10 <dt><code>EVFLAG_AUTO</code></dt>
354 root 1.1 <dd>
355 root 1.9 <p>The default flags value. Use this if you have no clue (it's the right
356 root 1.1 thing, believe me).</p>
357     </dd>
358 root 1.10 <dt><code>EVFLAG_NOENV</code></dt>
359 root 1.1 <dd>
360 root 1.8 <p>If this flag bit is ored into the flag value (or the program runs setuid
361     or setgid) then libev will <i>not</i> look at the environment variable
362     <code>LIBEV_FLAGS</code>. Otherwise (the default), this environment variable will
363     override the flags completely if it is found in the environment. This is
364     useful to try out specific backends to test their performance, or to work
365     around bugs.</p>
366 root 1.1 </dd>
367 root 1.62 <dt><code>EVFLAG_FORKCHECK</code></dt>
368     <dd>
369     <p>Instead of calling <code>ev_default_fork</code> or <code>ev_loop_fork</code> manually after
370     a fork, you can also make libev check for a fork in each iteration by
371     enabling this flag.</p>
372     <p>This works by calling <code>getpid ()</code> on every iteration of the loop,
373     and thus this might slow down your event loop if you do a lot of loop
374 root 1.64 iterations and little real work, but is usually not noticeable (on my
375 root 1.62 Linux system for example, <code>getpid</code> is actually a simple 5-insn sequence
376     without a syscall and thus <i>very</i> fast, but my Linux system also has
377     <code>pthread_atfork</code> which is even faster).</p>
378     <p>The big advantage of this flag is that you can forget about fork (and
379     forget about forgetting to tell libev about forking) when you use this
380     flag.</p>
381     <p>This flag setting cannot be overriden or specified in the <code>LIBEV_FLAGS</code>
382     environment variable.</p>
383     </dd>
384 root 1.32 <dt><code>EVBACKEND_SELECT</code> (value 1, portable select backend)</dt>
385 root 1.29 <dd>
386     <p>This is your standard select(2) backend. Not <i>completely</i> standard, as
387     libev tries to roll its own fd_set with no limits on the number of fds,
388     but if that fails, expect a fairly low limit on the number of fds when
389     using this backend. It doesn't scale too well (O(highest_fd)), but its usually
390     the fastest backend for a low number of fds.</p>
391     </dd>
392 root 1.32 <dt><code>EVBACKEND_POLL</code> (value 2, poll backend, available everywhere except on windows)</dt>
393 root 1.29 <dd>
394     <p>And this is your standard poll(2) backend. It's more complicated than
395     select, but handles sparse fds better and has no artificial limit on the
396     number of fds you can use (except it will slow down considerably with a
397     lot of inactive fds). It scales similarly to select, i.e. O(total_fds).</p>
398     </dd>
399 root 1.32 <dt><code>EVBACKEND_EPOLL</code> (value 4, Linux)</dt>
400 root 1.29 <dd>
401     <p>For few fds, this backend is a bit little slower than poll and select,
402     but it scales phenomenally better. While poll and select usually scale like
403     O(total_fds) where n is the total number of fds (or the highest fd), epoll scales
404     either O(1) or O(active_fds).</p>
405     <p>While stopping and starting an I/O watcher in the same iteration will
406     result in some caching, there is still a syscall per such incident
407     (because the fd could point to a different file description now), so its
408     best to avoid that. Also, dup()ed file descriptors might not work very
409     well if you register events for both fds.</p>
410 root 1.33 <p>Please note that epoll sometimes generates spurious notifications, so you
411     need to use non-blocking I/O or other means to avoid blocking when no data
412     (or space) is available.</p>
413 root 1.29 </dd>
414 root 1.32 <dt><code>EVBACKEND_KQUEUE</code> (value 8, most BSD clones)</dt>
415 root 1.29 <dd>
416     <p>Kqueue deserves special mention, as at the time of this writing, it
417     was broken on all BSDs except NetBSD (usually it doesn't work with
418     anything but sockets and pipes, except on Darwin, where of course its
419 root 1.34 completely useless). For this reason its not being &quot;autodetected&quot;
420     unless you explicitly specify it explicitly in the flags (i.e. using
421     <code>EVBACKEND_KQUEUE</code>).</p>
422 root 1.29 <p>It scales in the same way as the epoll backend, but the interface to the
423     kernel is more efficient (which says nothing about its actual speed, of
424     course). While starting and stopping an I/O watcher does not cause an
425     extra syscall as with epoll, it still adds up to four event changes per
426     incident, so its best to avoid that.</p>
427     </dd>
428 root 1.32 <dt><code>EVBACKEND_DEVPOLL</code> (value 16, Solaris 8)</dt>
429 root 1.29 <dd>
430     <p>This is not implemented yet (and might never be).</p>
431     </dd>
432 root 1.32 <dt><code>EVBACKEND_PORT</code> (value 32, Solaris 10)</dt>
433 root 1.29 <dd>
434     <p>This uses the Solaris 10 port mechanism. As with everything on Solaris,
435     it's really slow, but it still scales very well (O(active_fds)).</p>
436 root 1.33 <p>Please note that solaris ports can result in a lot of spurious
437     notifications, so you need to use non-blocking I/O or other means to avoid
438     blocking when no data (or space) is available.</p>
439 root 1.29 </dd>
440 root 1.32 <dt><code>EVBACKEND_ALL</code></dt>
441 root 1.29 <dd>
442 root 1.30 <p>Try all backends (even potentially broken ones that wouldn't be tried
443     with <code>EVFLAG_AUTO</code>). Since this is a mask, you can do stuff such as
444 root 1.32 <code>EVBACKEND_ALL &amp; ~EVBACKEND_KQUEUE</code>.</p>
445 root 1.1 </dd>
446     </dl>
447     </p>
448 root 1.29 <p>If one or more of these are ored into the flags value, then only these
449     backends will be tried (in the reverse order as given here). If none are
450     specified, most compiled-in backend will be tried, usually in reverse
451     order of their flag values :)</p>
452 root 1.34 <p>The most typical usage is like this:</p>
453     <pre> if (!ev_default_loop (0))
454     fatal (&quot;could not initialise libev, bad $LIBEV_FLAGS in environment?&quot;);
455    
456     </pre>
457     <p>Restrict libev to the select and poll backends, and do not allow
458     environment settings to be taken into account:</p>
459     <pre> ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT | EVFLAG_NOENV);
460    
461     </pre>
462     <p>Use whatever libev has to offer, but make sure that kqueue is used if
463     available (warning, breaks stuff, best use only with your own private
464     event loop and only if you know the OS supports your types of fds):</p>
465     <pre> ev_default_loop (ev_recommended_backends () | EVBACKEND_KQUEUE);
466    
467     </pre>
468 root 1.1 </dd>
469     <dt>struct ev_loop *ev_loop_new (unsigned int flags)</dt>
470     <dd>
471     <p>Similar to <code>ev_default_loop</code>, but always creates a new event loop that is
472     always distinct from the default loop. Unlike the default loop, it cannot
473     handle signal and child watchers, and attempts to do so will be greeted by
474     undefined behaviour (or a failed assertion if assertions are enabled).</p>
475 root 1.54 <p>Example: Try to create a event loop that uses epoll and nothing else.</p>
476 root 1.35 <pre> struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL | EVFLAG_NOENV);
477     if (!epoller)
478     fatal (&quot;no epoll found here, maybe it hides under your chair&quot;);
479    
480     </pre>
481 root 1.1 </dd>
482     <dt>ev_default_destroy ()</dt>
483     <dd>
484     <p>Destroys the default loop again (frees all memory and kernel state
485 root 1.38 etc.). None of the active event watchers will be stopped in the normal
486     sense, so e.g. <code>ev_is_active</code> might still return true. It is your
487     responsibility to either stop all watchers cleanly yoursef <i>before</i>
488     calling this function, or cope with the fact afterwards (which is usually
489     the easiest thing, youc na just ignore the watchers and/or <code>free ()</code> them
490     for example).</p>
491 root 1.1 </dd>
492     <dt>ev_loop_destroy (loop)</dt>
493     <dd>
494     <p>Like <code>ev_default_destroy</code>, but destroys an event loop created by an
495     earlier call to <code>ev_loop_new</code>.</p>
496     </dd>
497     <dt>ev_default_fork ()</dt>
498     <dd>
499     <p>This function reinitialises the kernel state for backends that have
500     one. Despite the name, you can call it anytime, but it makes most sense
501     after forking, in either the parent or child process (or both, but that
502     again makes little sense).</p>
503 root 1.31 <p>You <i>must</i> call this function in the child process after forking if and
504     only if you want to use the event library in both processes. If you just
505     fork+exec, you don't have to call it.</p>
506 root 1.9 <p>The function itself is quite fast and it's usually not a problem to call
507 root 1.1 it just in case after a fork. To make this easy, the function will fit in
508     quite nicely into a call to <code>pthread_atfork</code>:</p>
509     <pre> pthread_atfork (0, 0, ev_default_fork);
510    
511     </pre>
512 root 1.32 <p>At the moment, <code>EVBACKEND_SELECT</code> and <code>EVBACKEND_POLL</code> are safe to use
513     without calling this function, so if you force one of those backends you
514     do not need to care.</p>
515 root 1.1 </dd>
516     <dt>ev_loop_fork (loop)</dt>
517     <dd>
518     <p>Like <code>ev_default_fork</code>, but acts on an event loop created by
519     <code>ev_loop_new</code>. Yes, you have to call this on every allocated event loop
520     after fork, and how you do this is entirely your own problem.</p>
521     </dd>
522 root 1.64 <dt>unsigned int ev_loop_count (loop)</dt>
523     <dd>
524     <p>Returns the count of loop iterations for the loop, which is identical to
525     the number of times libev did poll for new events. It starts at <code>0</code> and
526     happily wraps around with enough iterations.</p>
527     <p>This value can sometimes be useful as a generation counter of sorts (it
528     &quot;ticks&quot; the number of loop iterations), as it roughly corresponds with
529     <code>ev_prepare</code> and <code>ev_check</code> calls.</p>
530     </dd>
531 root 1.32 <dt>unsigned int ev_backend (loop)</dt>
532 root 1.1 <dd>
533 root 1.32 <p>Returns one of the <code>EVBACKEND_*</code> flags indicating the event backend in
534 root 1.1 use.</p>
535     </dd>
536 root 1.9 <dt>ev_tstamp ev_now (loop)</dt>
537 root 1.1 <dd>
538     <p>Returns the current &quot;event loop time&quot;, which is the time the event loop
539 root 1.35 received events and started processing them. This timestamp does not
540     change as long as callbacks are being processed, and this is also the base
541     time used for relative timers. You can treat it as the timestamp of the
542     event occuring (or more correctly, libev finding out about it).</p>
543 root 1.1 </dd>
544     <dt>ev_loop (loop, int flags)</dt>
545     <dd>
546     <p>Finally, this is it, the event handler. This function usually is called
547     after you initialised all your watchers and you want to start handling
548     events.</p>
549 root 1.34 <p>If the flags argument is specified as <code>0</code>, it will not return until
550     either no event watchers are active anymore or <code>ev_unloop</code> was called.</p>
551 root 1.35 <p>Please note that an explicit <code>ev_unloop</code> is usually better than
552     relying on all watchers to be stopped when deciding when a program has
553     finished (especially in interactive programs), but having a program that
554     automatically loops as long as it has to and no longer by virtue of
555     relying on its watchers stopping correctly is a thing of beauty.</p>
556 root 1.1 <p>A flags value of <code>EVLOOP_NONBLOCK</code> will look for new events, will handle
557     those events and any outstanding ones, but will not block your process in
558 root 1.9 case there are no events and will return after one iteration of the loop.</p>
559 root 1.1 <p>A flags value of <code>EVLOOP_ONESHOT</code> will look for new events (waiting if
560     neccessary) and will handle those and any outstanding ones. It will block
561 root 1.9 your process until at least one new event arrives, and will return after
562 root 1.34 one iteration of the loop. This is useful if you are waiting for some
563     external event in conjunction with something not expressible using other
564     libev watchers. However, a pair of <code>ev_prepare</code>/<code>ev_check</code> watchers is
565     usually a better approach for this kind of thing.</p>
566     <p>Here are the gory details of what <code>ev_loop</code> does:</p>
567 root 1.73 <pre> - Before the first iteration, call any pending watchers.
568     * If there are no active watchers (reference count is zero), return.
569     - Queue all prepare watchers and then call all outstanding watchers.
570 root 1.34 - If we have been forked, recreate the kernel state.
571     - Update the kernel state with all outstanding changes.
572     - Update the &quot;event loop time&quot;.
573     - Calculate for how long to block.
574     - Block the process, waiting for any events.
575     - Queue all outstanding I/O (fd) events.
576     - Update the &quot;event loop time&quot; and do time jump handling.
577     - Queue all outstanding timers.
578     - Queue all outstanding periodics.
579     - If no events are pending now, queue all idle watchers.
580     - Queue all check watchers.
581     - Call all queued watchers in reverse order (i.e. check watchers first).
582     Signals and child watchers are implemented as I/O watchers, and will
583     be handled here by queueing them when their watcher gets executed.
584     - If ev_unloop has been called or EVLOOP_ONESHOT or EVLOOP_NONBLOCK
585     were used, return, otherwise continue with step *.
586 root 1.28
587     </pre>
588 root 1.54 <p>Example: Queue some jobs and then loop until no events are outsanding
589 root 1.35 anymore.</p>
590     <pre> ... queue jobs here, make sure they register event watchers as long
591     ... as they still have work to do (even an idle watcher will do..)
592     ev_loop (my_loop, 0);
593     ... jobs done. yeah!
594    
595     </pre>
596 root 1.1 </dd>
597     <dt>ev_unloop (loop, how)</dt>
598     <dd>
599 root 1.9 <p>Can be used to make a call to <code>ev_loop</code> return early (but only after it
600     has processed all outstanding events). The <code>how</code> argument must be either
601 root 1.27 <code>EVUNLOOP_ONE</code>, which will make the innermost <code>ev_loop</code> call return, or
602 root 1.9 <code>EVUNLOOP_ALL</code>, which will make all nested <code>ev_loop</code> calls return.</p>
603 root 1.1 </dd>
604     <dt>ev_ref (loop)</dt>
605     <dt>ev_unref (loop)</dt>
606     <dd>
607 root 1.9 <p>Ref/unref can be used to add or remove a reference count on the event
608     loop: Every watcher keeps one reference, and as long as the reference
609     count is nonzero, <code>ev_loop</code> will not return on its own. If you have
610     a watcher you never unregister that should not keep <code>ev_loop</code> from
611     returning, ev_unref() after starting, and ev_ref() before stopping it. For
612     example, libev itself uses this for its internal signal pipe: It is not
613     visible to the libev user and should not keep <code>ev_loop</code> from exiting if
614     no event watchers registered by it are active. It is also an excellent
615     way to do this for generic recurring timers or from within third-party
616     libraries. Just remember to <i>unref after start</i> and <i>ref before stop</i>.</p>
617 root 1.54 <p>Example: Create a signal watcher, but keep it from keeping <code>ev_loop</code>
618 root 1.35 running when nothing else is active.</p>
619 root 1.54 <pre> struct ev_signal exitsig;
620 root 1.35 ev_signal_init (&amp;exitsig, sig_cb, SIGINT);
621 root 1.54 ev_signal_start (loop, &amp;exitsig);
622     evf_unref (loop);
623 root 1.35
624     </pre>
625 root 1.54 <p>Example: For some weird reason, unregister the above signal handler again.</p>
626     <pre> ev_ref (loop);
627     ev_signal_stop (loop, &amp;exitsig);
628 root 1.35
629     </pre>
630 root 1.1 </dd>
631     </dl>
632    
633 root 1.43
634    
635    
636    
637 root 1.1 </div>
638 root 1.55 <h1 id="ANATOMY_OF_A_WATCHER">ANATOMY OF A WATCHER</h1>
639 root 1.1 <div id="ANATOMY_OF_A_WATCHER_CONTENT">
640     <p>A watcher is a structure that you create and register to record your
641     interest in some event. For instance, if you want to wait for STDIN to
642 root 1.10 become readable, you would create an <code>ev_io</code> watcher for that:</p>
643 root 1.1 <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w, int revents)
644     {
645     ev_io_stop (w);
646     ev_unloop (loop, EVUNLOOP_ALL);
647     }
648    
649     struct ev_loop *loop = ev_default_loop (0);
650     struct ev_io stdin_watcher;
651     ev_init (&amp;stdin_watcher, my_cb);
652     ev_io_set (&amp;stdin_watcher, STDIN_FILENO, EV_READ);
653     ev_io_start (loop, &amp;stdin_watcher);
654     ev_loop (loop, 0);
655    
656     </pre>
657     <p>As you can see, you are responsible for allocating the memory for your
658     watcher structures (and it is usually a bad idea to do this on the stack,
659     although this can sometimes be quite valid).</p>
660     <p>Each watcher structure must be initialised by a call to <code>ev_init
661     (watcher *, callback)</code>, which expects a callback to be provided. This
662     callback gets invoked each time the event occurs (or, in the case of io
663     watchers, each time the event loop detects that the file descriptor given
664     is readable and/or writable).</p>
665     <p>Each watcher type has its own <code>ev_&lt;type&gt;_set (watcher *, ...)</code> macro
666     with arguments specific to this watcher type. There is also a macro
667     to combine initialisation and setting in one call: <code>ev_&lt;type&gt;_init
668     (watcher *, callback, ...)</code>.</p>
669     <p>To make the watcher actually watch out for events, you have to start it
670     with a watcher-specific start function (<code>ev_&lt;type&gt;_start (loop, watcher
671     *)</code>), and you can stop watching for events at any time by calling the
672     corresponding stop function (<code>ev_&lt;type&gt;_stop (loop, watcher *)</code>.</p>
673     <p>As long as your watcher is active (has been started but not stopped) you
674     must not touch the values stored in it. Most specifically you must never
675 root 1.37 reinitialise it or call its <code>set</code> macro.</p>
676 root 1.1 <p>Each and every callback receives the event loop pointer as first, the
677     registered watcher structure as second, and a bitset of received events as
678     third argument.</p>
679 root 1.14 <p>The received events usually include a single bit per event type received
680 root 1.1 (you can receive multiple events at the same time). The possible bit masks
681     are:</p>
682     <dl>
683 root 1.10 <dt><code>EV_READ</code></dt>
684     <dt><code>EV_WRITE</code></dt>
685 root 1.1 <dd>
686 root 1.10 <p>The file descriptor in the <code>ev_io</code> watcher has become readable and/or
687 root 1.1 writable.</p>
688     </dd>
689 root 1.10 <dt><code>EV_TIMEOUT</code></dt>
690 root 1.1 <dd>
691 root 1.10 <p>The <code>ev_timer</code> watcher has timed out.</p>
692 root 1.1 </dd>
693 root 1.10 <dt><code>EV_PERIODIC</code></dt>
694 root 1.1 <dd>
695 root 1.10 <p>The <code>ev_periodic</code> watcher has timed out.</p>
696 root 1.1 </dd>
697 root 1.10 <dt><code>EV_SIGNAL</code></dt>
698 root 1.1 <dd>
699 root 1.10 <p>The signal specified in the <code>ev_signal</code> watcher has been received by a thread.</p>
700 root 1.1 </dd>
701 root 1.10 <dt><code>EV_CHILD</code></dt>
702 root 1.1 <dd>
703 root 1.10 <p>The pid specified in the <code>ev_child</code> watcher has received a status change.</p>
704 root 1.1 </dd>
705 root 1.48 <dt><code>EV_STAT</code></dt>
706     <dd>
707     <p>The path specified in the <code>ev_stat</code> watcher changed its attributes somehow.</p>
708     </dd>
709 root 1.10 <dt><code>EV_IDLE</code></dt>
710 root 1.1 <dd>
711 root 1.10 <p>The <code>ev_idle</code> watcher has determined that you have nothing better to do.</p>
712 root 1.1 </dd>
713 root 1.10 <dt><code>EV_PREPARE</code></dt>
714     <dt><code>EV_CHECK</code></dt>
715 root 1.1 <dd>
716 root 1.10 <p>All <code>ev_prepare</code> watchers are invoked just <i>before</i> <code>ev_loop</code> starts
717     to gather new events, and all <code>ev_check</code> watchers are invoked just after
718 root 1.1 <code>ev_loop</code> has gathered them, but before it invokes any callbacks for any
719     received events. Callbacks of both watcher types can start and stop as
720     many watchers as they want, and all of them will be taken into account
721 root 1.10 (for example, a <code>ev_prepare</code> watcher might start an idle watcher to keep
722 root 1.1 <code>ev_loop</code> from blocking).</p>
723     </dd>
724 root 1.50 <dt><code>EV_EMBED</code></dt>
725     <dd>
726     <p>The embedded event loop specified in the <code>ev_embed</code> watcher needs attention.</p>
727     </dd>
728     <dt><code>EV_FORK</code></dt>
729     <dd>
730     <p>The event loop has been resumed in the child process after fork (see
731     <code>ev_fork</code>).</p>
732     </dd>
733 root 1.10 <dt><code>EV_ERROR</code></dt>
734 root 1.1 <dd>
735     <p>An unspecified error has occured, the watcher has been stopped. This might
736     happen because the watcher could not be properly started because libev
737     ran out of memory, a file descriptor was found to be closed or any other
738     problem. You best act on it by reporting the problem and somehow coping
739     with the watcher being stopped.</p>
740     <p>Libev will usually signal a few &quot;dummy&quot; events together with an error,
741     for example it might indicate that a fd is readable or writable, and if
742     your callbacks is well-written it can just attempt the operation and cope
743     with the error from read() or write(). This will not work in multithreaded
744     programs, though, so beware.</p>
745     </dd>
746     </dl>
747    
748     </div>
749 root 1.43 <h2 id="GENERIC_WATCHER_FUNCTIONS">GENERIC WATCHER FUNCTIONS</h2>
750     <div id="GENERIC_WATCHER_FUNCTIONS_CONTENT">
751 root 1.37 <p>In the following description, <code>TYPE</code> stands for the watcher type,
752     e.g. <code>timer</code> for <code>ev_timer</code> watchers and <code>io</code> for <code>ev_io</code> watchers.</p>
753     <dl>
754     <dt><code>ev_init</code> (ev_TYPE *watcher, callback)</dt>
755     <dd>
756     <p>This macro initialises the generic portion of a watcher. The contents
757     of the watcher object can be arbitrary (so <code>malloc</code> will do). Only
758     the generic parts of the watcher are initialised, you <i>need</i> to call
759     the type-specific <code>ev_TYPE_set</code> macro afterwards to initialise the
760     type-specific parts. For each type there is also a <code>ev_TYPE_init</code> macro
761     which rolls both calls into one.</p>
762     <p>You can reinitialise a watcher at any time as long as it has been stopped
763     (or never started) and there are no pending events outstanding.</p>
764 root 1.43 <p>The callback is always of type <code>void (*)(ev_loop *loop, ev_TYPE *watcher,
765 root 1.37 int revents)</code>.</p>
766     </dd>
767     <dt><code>ev_TYPE_set</code> (ev_TYPE *, [args])</dt>
768     <dd>
769     <p>This macro initialises the type-specific parts of a watcher. You need to
770     call <code>ev_init</code> at least once before you call this macro, but you can
771     call <code>ev_TYPE_set</code> any number of times. You must not, however, call this
772     macro on a watcher that is active (it can be pending, however, which is a
773     difference to the <code>ev_init</code> macro).</p>
774     <p>Although some watcher types do not have type-specific arguments
775     (e.g. <code>ev_prepare</code>) you still need to call its <code>set</code> macro.</p>
776     </dd>
777     <dt><code>ev_TYPE_init</code> (ev_TYPE *watcher, callback, [args])</dt>
778     <dd>
779     <p>This convinience macro rolls both <code>ev_init</code> and <code>ev_TYPE_set</code> macro
780     calls into a single call. This is the most convinient method to initialise
781     a watcher. The same limitations apply, of course.</p>
782     </dd>
783     <dt><code>ev_TYPE_start</code> (loop *, ev_TYPE *watcher)</dt>
784     <dd>
785     <p>Starts (activates) the given watcher. Only active watchers will receive
786     events. If the watcher is already active nothing will happen.</p>
787     </dd>
788     <dt><code>ev_TYPE_stop</code> (loop *, ev_TYPE *watcher)</dt>
789     <dd>
790     <p>Stops the given watcher again (if active) and clears the pending
791     status. It is possible that stopped watchers are pending (for example,
792     non-repeating timers are being stopped when they become pending), but
793     <code>ev_TYPE_stop</code> ensures that the watcher is neither active nor pending. If
794     you want to free or reuse the memory used by the watcher it is therefore a
795     good idea to always call its <code>ev_TYPE_stop</code> function.</p>
796     </dd>
797     <dt>bool ev_is_active (ev_TYPE *watcher)</dt>
798     <dd>
799     <p>Returns a true value iff the watcher is active (i.e. it has been started
800     and not yet been stopped). As long as a watcher is active you must not modify
801     it.</p>
802     </dd>
803     <dt>bool ev_is_pending (ev_TYPE *watcher)</dt>
804     <dd>
805     <p>Returns a true value iff the watcher is pending, (i.e. it has outstanding
806     events but its callback has not yet been invoked). As long as a watcher
807     is pending (but not active) you must not call an init function on it (but
808 root 1.70 <code>ev_TYPE_set</code> is safe), you must not change its priority, and you must
809     make sure the watcher is available to libev (e.g. you cannot <code>free ()</code>
810     it).</p>
811 root 1.37 </dd>
812 root 1.56 <dt>callback ev_cb (ev_TYPE *watcher)</dt>
813 root 1.37 <dd>
814     <p>Returns the callback currently set on the watcher.</p>
815     </dd>
816     <dt>ev_cb_set (ev_TYPE *watcher, callback)</dt>
817     <dd>
818     <p>Change the callback. You can change the callback at virtually any time
819     (modulo threads).</p>
820     </dd>
821 root 1.64 <dt>ev_set_priority (ev_TYPE *watcher, priority)</dt>
822     <dt>int ev_priority (ev_TYPE *watcher)</dt>
823     <dd>
824     <p>Set and query the priority of the watcher. The priority is a small
825     integer between <code>EV_MAXPRI</code> (default: <code>2</code>) and <code>EV_MINPRI</code>
826     (default: <code>-2</code>). Pending watchers with higher priority will be invoked
827     before watchers with lower priority, but priority will not keep watchers
828     from being executed (except for <code>ev_idle</code> watchers).</p>
829     <p>This means that priorities are <i>only</i> used for ordering callback
830     invocation after new events have been received. This is useful, for
831     example, to reduce latency after idling, or more often, to bind two
832     watchers on the same event and make sure one is called first.</p>
833     <p>If you need to suppress invocation when higher priority events are pending
834     you need to look at <code>ev_idle</code> watchers, which provide this functionality.</p>
835 root 1.70 <p>You <i>must not</i> change the priority of a watcher as long as it is active or
836     pending.</p>
837 root 1.64 <p>The default priority used by watchers when no priority has been set is
838     always <code>0</code>, which is supposed to not be too high and not be too low :).</p>
839     <p>Setting a priority outside the range of <code>EV_MINPRI</code> to <code>EV_MAXPRI</code> is
840     fine, as long as you do not mind that the priority value you query might
841     or might not have been adjusted to be within valid range.</p>
842     </dd>
843 root 1.70 <dt>ev_invoke (loop, ev_TYPE *watcher, int revents)</dt>
844     <dd>
845     <p>Invoke the <code>watcher</code> with the given <code>loop</code> and <code>revents</code>. Neither
846     <code>loop</code> nor <code>revents</code> need to be valid as long as the watcher callback
847     can deal with that fact.</p>
848     </dd>
849     <dt>int ev_clear_pending (loop, ev_TYPE *watcher)</dt>
850     <dd>
851     <p>If the watcher is pending, this function returns clears its pending status
852     and returns its <code>revents</code> bitset (as if its callback was invoked). If the
853     watcher isn't pending it does nothing and returns <code>0</code>.</p>
854     </dd>
855 root 1.37 </dl>
856    
857    
858    
859    
860    
861     </div>
862 root 1.1 <h2 id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH">ASSOCIATING CUSTOM DATA WITH A WATCHER</h2>
863     <div id="ASSOCIATING_CUSTOM_DATA_WITH_A_WATCH-2">
864     <p>Each watcher has, by default, a member <code>void *data</code> that you can change
865 root 1.14 and read at any time, libev will completely ignore it. This can be used
866 root 1.1 to associate arbitrary data with your watcher. If you need more data and
867     don't want to allocate memory and store a pointer to it in that data
868     member, you can also &quot;subclass&quot; the watcher type and provide your own
869     data:</p>
870     <pre> struct my_io
871     {
872     struct ev_io io;
873     int otherfd;
874     void *somedata;
875     struct whatever *mostinteresting;
876     }
877    
878     </pre>
879     <p>And since your callback will be called with a pointer to the watcher, you
880     can cast it back to your own type:</p>
881     <pre> static void my_cb (struct ev_loop *loop, struct ev_io *w_, int revents)
882     {
883     struct my_io *w = (struct my_io *)w_;
884     ...
885     }
886    
887     </pre>
888 root 1.56 <p>More interesting and less C-conformant ways of casting your callback type
889     instead have been omitted.</p>
890     <p>Another common scenario is having some data structure with multiple
891     watchers:</p>
892     <pre> struct my_biggy
893     {
894     int some_data;
895     ev_timer t1;
896     ev_timer t2;
897     }
898 root 1.1
899 root 1.56 </pre>
900     <p>In this case getting the pointer to <code>my_biggy</code> is a bit more complicated,
901     you need to use <code>offsetof</code>:</p>
902     <pre> #include &lt;stddef.h&gt;
903 root 1.1
904 root 1.56 static void
905     t1_cb (EV_P_ struct ev_timer *w, int revents)
906     {
907     struct my_biggy big = (struct my_biggy *
908     (((char *)w) - offsetof (struct my_biggy, t1));
909     }
910    
911     static void
912     t2_cb (EV_P_ struct ev_timer *w, int revents)
913     {
914     struct my_biggy big = (struct my_biggy *
915     (((char *)w) - offsetof (struct my_biggy, t2));
916     }
917 root 1.1
918    
919    
920 root 1.56
921     </pre>
922    
923 root 1.1 </div>
924 root 1.55 <h1 id="WATCHER_TYPES">WATCHER TYPES</h1>
925 root 1.1 <div id="WATCHER_TYPES_CONTENT">
926     <p>This section describes each watcher in detail, but will not repeat
927 root 1.48 information given in the last section. Any initialisation/set macros,
928     functions and members specific to the watcher type are explained.</p>
929     <p>Members are additionally marked with either <i>[read-only]</i>, meaning that,
930     while the watcher is active, you can look at the member and expect some
931     sensible content, but you must not modify it (you can modify it while the
932     watcher is stopped to your hearts content), or <i>[read-write]</i>, which
933     means you can expect it to have some sensible content while the watcher
934     is active, but you can also modify it. Modifying it may not do something
935     sensible or take immediate effect (or do anything at all), but libev will
936     not crash or malfunction in any way.</p>
937 root 1.1
938 root 1.35
939    
940    
941    
942 root 1.1 </div>
943 root 1.43 <h2 id="code_ev_io_code_is_this_file_descrip"><code>ev_io</code> - is this file descriptor readable or writable?</h2>
944 root 1.11 <div id="code_ev_io_code_is_this_file_descrip-2">
945 root 1.4 <p>I/O watchers check whether a file descriptor is readable or writable
946 root 1.43 in each iteration of the event loop, or, more precisely, when reading
947     would not block the process and writing would at least be able to write
948     some data. This behaviour is called level-triggering because you keep
949     receiving events as long as the condition persists. Remember you can stop
950     the watcher if you don't want to act on the event and neither want to
951     receive future events.</p>
952 root 1.25 <p>In general you can register as many read and/or write event watchers per
953 root 1.8 fd as you want (as long as you don't confuse yourself). Setting all file
954     descriptors to non-blocking mode is also usually a good idea (but not
955     required if you know what you are doing).</p>
956     <p>You have to be careful with dup'ed file descriptors, though. Some backends
957     (the linux epoll backend is a notable example) cannot handle dup'ed file
958     descriptors correctly if you register interest in two or more fds pointing
959 root 1.43 to the same underlying file/socket/etc. description (that is, they share
960 root 1.26 the same underlying &quot;file open&quot;).</p>
961 root 1.8 <p>If you must do this, then force the use of a known-to-be-good backend
962 root 1.32 (at the time of this writing, this includes only <code>EVBACKEND_SELECT</code> and
963     <code>EVBACKEND_POLL</code>).</p>
964 root 1.43 <p>Another thing you have to watch out for is that it is quite easy to
965     receive &quot;spurious&quot; readyness notifications, that is your callback might
966     be called with <code>EV_READ</code> but a subsequent <code>read</code>(2) will actually block
967     because there is no data. Not only are some backends known to create a
968     lot of those (for example solaris ports), it is very easy to get into
969     this situation even with a relatively standard program structure. Thus
970     it is best to always use non-blocking I/O: An extra <code>read</code>(2) returning
971     <code>EAGAIN</code> is far preferable to a program hanging until some data arrives.</p>
972     <p>If you cannot run the fd in non-blocking mode (for example you should not
973     play around with an Xlib connection), then you have to seperately re-test
974 root 1.65 whether a file descriptor is really ready with a known-to-be good interface
975 root 1.43 such as poll (fortunately in our Xlib example, Xlib already does this on
976     its own, so its quite safe to use).</p>
977 root 1.77
978     </div>
979     <h3 id="The_special_problem_of_disappearing_">The special problem of disappearing file descriptors</h3>
980     <div id="The_special_problem_of_disappearing_-2">
981     <p>Some backends (e.g kqueue, epoll) need to be told about closing a file
982     descriptor (either by calling <code>close</code> explicitly or by any other means,
983     such as <code>dup</code>). The reason is that you register interest in some file
984     descriptor, but when it goes away, the operating system will silently drop
985     this interest. If another file descriptor with the same number then is
986     registered with libev, there is no efficient way to see that this is, in
987     fact, a different file descriptor.</p>
988     <p>To avoid having to explicitly tell libev about such cases, libev follows
989     the following policy: Each time <code>ev_io_set</code> is being called, libev
990     will assume that this is potentially a new file descriptor, otherwise
991     it is assumed that the file descriptor stays the same. That means that
992     you <i>have</i> to call <code>ev_io_set</code> (or <code>ev_io_init</code>) when you change the
993     descriptor even if the file descriptor number itself did not change.</p>
994     <p>This is how one would do it normally anyway, the important point is that
995     the libev application should not optimise around libev but should leave
996     optimisations to libev.</p>
997    
998    
999    
1000    
1001 root 1.78
1002     </div>
1003     <h3 id="Watcher_Specific_Functions">Watcher-Specific Functions</h3>
1004     <div id="Watcher_Specific_Functions_CONTENT">
1005 root 1.1 <dl>
1006     <dt>ev_io_init (ev_io *, callback, int fd, int events)</dt>
1007     <dt>ev_io_set (ev_io *, int fd, int events)</dt>
1008     <dd>
1009 root 1.43 <p>Configures an <code>ev_io</code> watcher. The <code>fd</code> is the file descriptor to
1010     rceeive events for and events is either <code>EV_READ</code>, <code>EV_WRITE</code> or
1011     <code>EV_READ | EV_WRITE</code> to receive the given events.</p>
1012 root 1.1 </dd>
1013 root 1.48 <dt>int fd [read-only]</dt>
1014     <dd>
1015     <p>The file descriptor being watched.</p>
1016     </dd>
1017     <dt>int events [read-only]</dt>
1018     <dd>
1019     <p>The events being watched.</p>
1020     </dd>
1021 root 1.1 </dl>
1022 root 1.54 <p>Example: Call <code>stdin_readable_cb</code> when STDIN_FILENO has become, well
1023 root 1.35 readable, but only once. Since it is likely line-buffered, you could
1024 root 1.54 attempt to read a whole line in the callback.</p>
1025 root 1.35 <pre> static void
1026     stdin_readable_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1027     {
1028     ev_io_stop (loop, w);
1029     .. read from stdin here (or from w-&gt;fd) and haqndle any I/O errors
1030     }
1031    
1032     ...
1033     struct ev_loop *loop = ev_default_init (0);
1034     struct ev_io stdin_readable;
1035     ev_io_init (&amp;stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
1036     ev_io_start (loop, &amp;stdin_readable);
1037     ev_loop (loop, 0);
1038    
1039    
1040    
1041    
1042     </pre>
1043 root 1.1
1044     </div>
1045 root 1.43 <h2 id="code_ev_timer_code_relative_and_opti"><code>ev_timer</code> - relative and optionally repeating timeouts</h2>
1046 root 1.10 <div id="code_ev_timer_code_relative_and_opti-2">
1047 root 1.1 <p>Timer watchers are simple relative timers that generate an event after a
1048     given time, and optionally repeating in regular intervals after that.</p>
1049     <p>The timers are based on real time, that is, if you register an event that
1050 root 1.25 times out after an hour and you reset your system clock to last years
1051 root 1.1 time, it will still time out after (roughly) and hour. &quot;Roughly&quot; because
1052 root 1.28 detecting time jumps is hard, and some inaccuracies are unavoidable (the
1053 root 1.1 monotonic clock option helps a lot here).</p>
1054 root 1.9 <p>The relative timeouts are calculated relative to the <code>ev_now ()</code>
1055     time. This is usually the right thing as this timestamp refers to the time
1056 root 1.28 of the event triggering whatever timeout you are modifying/starting. If
1057     you suspect event processing to be delayed and you <i>need</i> to base the timeout
1058 root 1.25 on the current time, use something like this to adjust for this:</p>
1059 root 1.9 <pre> ev_timer_set (&amp;timer, after + ev_now () - ev_time (), 0.);
1060    
1061     </pre>
1062 root 1.28 <p>The callback is guarenteed to be invoked only when its timeout has passed,
1063     but if multiple timers become ready during the same loop iteration then
1064     order of execution is undefined.</p>
1065 root 1.78
1066     </div>
1067     <h3 id="Watcher_Specific_Functions_and_Data_">Watcher-Specific Functions and Data Members</h3>
1068     <div id="Watcher_Specific_Functions_and_Data_-2">
1069 root 1.1 <dl>
1070     <dt>ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)</dt>
1071     <dt>ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)</dt>
1072     <dd>
1073     <p>Configure the timer to trigger after <code>after</code> seconds. If <code>repeat</code> is
1074     <code>0.</code>, then it will automatically be stopped. If it is positive, then the
1075     timer will automatically be configured to trigger again <code>repeat</code> seconds
1076     later, again, and again, until stopped manually.</p>
1077     <p>The timer itself will do a best-effort at avoiding drift, that is, if you
1078     configure a timer to trigger every 10 seconds, then it will trigger at
1079     exactly 10 second intervals. If, however, your program cannot keep up with
1080 root 1.25 the timer (because it takes longer than those 10 seconds to do stuff) the
1081 root 1.1 timer will not fire more than once per event loop iteration.</p>
1082     </dd>
1083     <dt>ev_timer_again (loop)</dt>
1084     <dd>
1085     <p>This will act as if the timer timed out and restart it again if it is
1086     repeating. The exact semantics are:</p>
1087 root 1.61 <p>If the timer is pending, its pending status is cleared.</p>
1088     <p>If the timer is started but nonrepeating, stop it (as if it timed out).</p>
1089     <p>If the timer is repeating, either start it if necessary (with the
1090     <code>repeat</code> value), or reset the running timer to the <code>repeat</code> value.</p>
1091 root 1.1 <p>This sounds a bit complicated, but here is a useful and typical
1092 root 1.61 example: Imagine you have a tcp connection and you want a so-called idle
1093     timeout, that is, you want to be called when there have been, say, 60
1094     seconds of inactivity on the socket. The easiest way to do this is to
1095     configure an <code>ev_timer</code> with a <code>repeat</code> value of <code>60</code> and then call
1096 root 1.48 <code>ev_timer_again</code> each time you successfully read or write some data. If
1097     you go into an idle state where you do not expect data to travel on the
1098 root 1.61 socket, you can <code>ev_timer_stop</code> the timer, and <code>ev_timer_again</code> will
1099     automatically restart it if need be.</p>
1100     <p>That means you can ignore the <code>after</code> value and <code>ev_timer_start</code>
1101     altogether and only ever use the <code>repeat</code> value and <code>ev_timer_again</code>:</p>
1102 root 1.48 <pre> ev_timer_init (timer, callback, 0., 5.);
1103     ev_timer_again (loop, timer);
1104     ...
1105     timer-&gt;again = 17.;
1106     ev_timer_again (loop, timer);
1107     ...
1108     timer-&gt;again = 10.;
1109     ev_timer_again (loop, timer);
1110    
1111     </pre>
1112 root 1.61 <p>This is more slightly efficient then stopping/starting the timer each time
1113     you want to modify its timeout value.</p>
1114 root 1.48 </dd>
1115     <dt>ev_tstamp repeat [read-write]</dt>
1116     <dd>
1117     <p>The current <code>repeat</code> value. Will be used each time the watcher times out
1118     or <code>ev_timer_again</code> is called and determines the next timeout (if any),
1119     which is also when any modifications are taken into account.</p>
1120 root 1.1 </dd>
1121     </dl>
1122 root 1.54 <p>Example: Create a timer that fires after 60 seconds.</p>
1123 root 1.35 <pre> static void
1124     one_minute_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1125     {
1126     .. one minute over, w is actually stopped right here
1127     }
1128    
1129     struct ev_timer mytimer;
1130     ev_timer_init (&amp;mytimer, one_minute_cb, 60., 0.);
1131     ev_timer_start (loop, &amp;mytimer);
1132    
1133     </pre>
1134 root 1.54 <p>Example: Create a timeout timer that times out after 10 seconds of
1135 root 1.35 inactivity.</p>
1136     <pre> static void
1137     timeout_cb (struct ev_loop *loop, struct ev_timer *w, int revents)
1138     {
1139     .. ten seconds without any activity
1140     }
1141    
1142     struct ev_timer mytimer;
1143     ev_timer_init (&amp;mytimer, timeout_cb, 0., 10.); /* note, only repeat used */
1144     ev_timer_again (&amp;mytimer); /* start timer */
1145     ev_loop (loop, 0);
1146    
1147     // and in some piece of code that gets executed on any &quot;activity&quot;:
1148     // reset the timeout to start ticking again at 10 seconds
1149     ev_timer_again (&amp;mytimer);
1150    
1151    
1152    
1153    
1154     </pre>
1155 root 1.1
1156     </div>
1157 root 1.43 <h2 id="code_ev_periodic_code_to_cron_or_not"><code>ev_periodic</code> - to cron or not to cron?</h2>
1158 root 1.10 <div id="code_ev_periodic_code_to_cron_or_not-2">
1159 root 1.1 <p>Periodic watchers are also timers of a kind, but they are very versatile
1160     (and unfortunately a bit complex).</p>
1161 root 1.10 <p>Unlike <code>ev_timer</code>'s, they are not based on real time (or relative time)
1162 root 1.1 but on wallclock time (absolute time). You can tell a periodic watcher
1163     to trigger &quot;at&quot; some specific point in time. For example, if you tell a
1164 root 1.39 periodic watcher to trigger in 10 seconds (by specifiying e.g. <code>ev_now ()
1165     + 10.</code>) and then reset your system clock to the last year, then it will
1166 root 1.10 take a year to trigger the event (unlike an <code>ev_timer</code>, which would trigger
1167 root 1.74 roughly 10 seconds later).</p>
1168 root 1.1 <p>They can also be used to implement vastly more complex timers, such as
1169 root 1.74 triggering an event on each midnight, local time or other, complicated,
1170     rules.</p>
1171 root 1.28 <p>As with timers, the callback is guarenteed to be invoked only when the
1172     time (<code>at</code>) has been passed, but if multiple periodic timers become ready
1173     during the same loop iteration then order of execution is undefined.</p>
1174 root 1.78
1175     </div>
1176     <h3 id="Watcher_Specific_Functions_and_Data_-3">Watcher-Specific Functions and Data Members</h3>
1177     <div id="Watcher_Specific_Functions_and_Data_-2">
1178 root 1.1 <dl>
1179     <dt>ev_periodic_init (ev_periodic *, callback, ev_tstamp at, ev_tstamp interval, reschedule_cb)</dt>
1180     <dt>ev_periodic_set (ev_periodic *, ev_tstamp after, ev_tstamp repeat, reschedule_cb)</dt>
1181     <dd>
1182     <p>Lots of arguments, lets sort it out... There are basically three modes of
1183     operation, and we will explain them from simplest to complex:</p>
1184     <p>
1185     <dl>
1186 root 1.74 <dt>* absolute timer (at = time, interval = reschedule_cb = 0)</dt>
1187 root 1.1 <dd>
1188     <p>In this configuration the watcher triggers an event at the wallclock time
1189     <code>at</code> and doesn't repeat. It will not adjust when a time jump occurs,
1190     that is, if it is to be run at January 1st 2011 then it will run when the
1191     system time reaches or surpasses this time.</p>
1192     </dd>
1193 root 1.74 <dt>* non-repeating interval timer (at = offset, interval &gt; 0, reschedule_cb = 0)</dt>
1194 root 1.1 <dd>
1195     <p>In this mode the watcher will always be scheduled to time out at the next
1196 root 1.74 <code>at + N * interval</code> time (for some integer N, which can also be negative)
1197     and then repeat, regardless of any time jumps.</p>
1198 root 1.1 <p>This can be used to create timers that do not drift with respect to system
1199     time:</p>
1200     <pre> ev_periodic_set (&amp;periodic, 0., 3600., 0);
1201    
1202     </pre>
1203     <p>This doesn't mean there will always be 3600 seconds in between triggers,
1204     but only that the the callback will be called when the system time shows a
1205 root 1.12 full hour (UTC), or more correctly, when the system time is evenly divisible
1206 root 1.1 by 3600.</p>
1207     <p>Another way to think about it (for the mathematically inclined) is that
1208 root 1.10 <code>ev_periodic</code> will try to run the callback in this mode at the next possible
1209 root 1.1 time where <code>time = at (mod interval)</code>, regardless of any time jumps.</p>
1210 root 1.74 <p>For numerical stability it is preferable that the <code>at</code> value is near
1211     <code>ev_now ()</code> (the current time), but there is no range requirement for
1212     this value.</p>
1213 root 1.1 </dd>
1214 root 1.74 <dt>* manual reschedule mode (at and interval ignored, reschedule_cb = callback)</dt>
1215 root 1.1 <dd>
1216     <p>In this mode the values for <code>interval</code> and <code>at</code> are both being
1217     ignored. Instead, each time the periodic watcher gets scheduled, the
1218     reschedule callback will be called with the watcher as first, and the
1219     current time as second argument.</p>
1220 root 1.21 <p>NOTE: <i>This callback MUST NOT stop or destroy any periodic watcher,
1221     ever, or make any event loop modifications</i>. If you need to stop it,
1222     return <code>now + 1e30</code> (or so, fudge fudge) and stop it afterwards (e.g. by
1223 root 1.74 starting an <code>ev_prepare</code> watcher, which is legal).</p>
1224 root 1.13 <p>Its prototype is <code>ev_tstamp (*reschedule_cb)(struct ev_periodic *w,
1225     ev_tstamp now)</code>, e.g.:</p>
1226 root 1.1 <pre> static ev_tstamp my_rescheduler (struct ev_periodic *w, ev_tstamp now)
1227     {
1228     return now + 60.;
1229     }
1230    
1231     </pre>
1232     <p>It must return the next time to trigger, based on the passed time value
1233     (that is, the lowest time value larger than to the second argument). It
1234     will usually be called just before the callback will be triggered, but
1235     might be called at other times, too.</p>
1236 root 1.21 <p>NOTE: <i>This callback must always return a time that is later than the
1237 root 1.22 passed <code>now</code> value</i>. Not even <code>now</code> itself will do, it <i>must</i> be larger.</p>
1238 root 1.1 <p>This can be used to create very complex timers, such as a timer that
1239     triggers on each midnight, local time. To do this, you would calculate the
1240 root 1.22 next midnight after <code>now</code> and return the timestamp value for this. How
1241     you do this is, again, up to you (but it is not trivial, which is the main
1242     reason I omitted it as an example).</p>
1243 root 1.1 </dd>
1244     </dl>
1245     </p>
1246     </dd>
1247     <dt>ev_periodic_again (loop, ev_periodic *)</dt>
1248     <dd>
1249     <p>Simply stops and restarts the periodic watcher again. This is only useful
1250     when you changed some parameters or the reschedule callback would return
1251     a different time than the last time it was called (e.g. in a crond like
1252     program when the crontabs have changed).</p>
1253     </dd>
1254 root 1.74 <dt>ev_tstamp offset [read-write]</dt>
1255     <dd>
1256     <p>When repeating, this contains the offset value, otherwise this is the
1257     absolute point in time (the <code>at</code> value passed to <code>ev_periodic_set</code>).</p>
1258     <p>Can be modified any time, but changes only take effect when the periodic
1259     timer fires or <code>ev_periodic_again</code> is being called.</p>
1260     </dd>
1261 root 1.48 <dt>ev_tstamp interval [read-write]</dt>
1262     <dd>
1263     <p>The current interval value. Can be modified any time, but changes only
1264     take effect when the periodic timer fires or <code>ev_periodic_again</code> is being
1265     called.</p>
1266     </dd>
1267     <dt>ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) [read-write]</dt>
1268     <dd>
1269     <p>The current reschedule callback, or <code>0</code>, if this functionality is
1270     switched off. Can be changed any time, but changes only take effect when
1271     the periodic timer fires or <code>ev_periodic_again</code> is being called.</p>
1272     </dd>
1273 root 1.1 </dl>
1274 root 1.54 <p>Example: Call a callback every hour, or, more precisely, whenever the
1275 root 1.35 system clock is divisible by 3600. The callback invocation times have
1276     potentially a lot of jittering, but good long-term stability.</p>
1277     <pre> static void
1278     clock_cb (struct ev_loop *loop, struct ev_io *w, int revents)
1279     {
1280     ... its now a full hour (UTC, or TAI or whatever your clock follows)
1281     }
1282    
1283     struct ev_periodic hourly_tick;
1284     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 3600., 0);
1285     ev_periodic_start (loop, &amp;hourly_tick);
1286    
1287     </pre>
1288 root 1.54 <p>Example: The same as above, but use a reschedule callback to do it:</p>
1289 root 1.35 <pre> #include &lt;math.h&gt;
1290    
1291     static ev_tstamp
1292     my_scheduler_cb (struct ev_periodic *w, ev_tstamp now)
1293     {
1294     return fmod (now, 3600.) + 3600.;
1295     }
1296    
1297     ev_periodic_init (&amp;hourly_tick, clock_cb, 0., 0., my_scheduler_cb);
1298    
1299     </pre>
1300 root 1.54 <p>Example: Call a callback every hour, starting now:</p>
1301 root 1.35 <pre> struct ev_periodic hourly_tick;
1302     ev_periodic_init (&amp;hourly_tick, clock_cb,
1303     fmod (ev_now (loop), 3600.), 3600., 0);
1304     ev_periodic_start (loop, &amp;hourly_tick);
1305    
1306    
1307    
1308    
1309     </pre>
1310 root 1.1
1311     </div>
1312 root 1.43 <h2 id="code_ev_signal_code_signal_me_when_a"><code>ev_signal</code> - signal me when a signal gets signalled!</h2>
1313 root 1.10 <div id="code_ev_signal_code_signal_me_when_a-2">
1314 root 1.1 <p>Signal watchers will trigger an event when the process receives a specific
1315     signal one or more times. Even though signals are very asynchronous, libev
1316 root 1.9 will try it's best to deliver signals synchronously, i.e. as part of the
1317 root 1.1 normal event processing, like any other event.</p>
1318 root 1.14 <p>You can configure as many watchers as you like per signal. Only when the
1319 root 1.1 first watcher gets started will libev actually register a signal watcher
1320     with the kernel (thus it coexists with your own signal handlers as long
1321     as you don't register any with libev). Similarly, when the last signal
1322     watcher for a signal is stopped libev will reset the signal handler to
1323     SIG_DFL (regardless of what it was set to before).</p>
1324 root 1.78
1325     </div>
1326     <h3 id="Watcher_Specific_Functions_and_Data_-4">Watcher-Specific Functions and Data Members</h3>
1327     <div id="Watcher_Specific_Functions_and_Data_-2-2">
1328 root 1.1 <dl>
1329     <dt>ev_signal_init (ev_signal *, callback, int signum)</dt>
1330     <dt>ev_signal_set (ev_signal *, int signum)</dt>
1331     <dd>
1332     <p>Configures the watcher to trigger on the given signal number (usually one
1333     of the <code>SIGxxx</code> constants).</p>
1334     </dd>
1335 root 1.48 <dt>int signum [read-only]</dt>
1336     <dd>
1337     <p>The signal the watcher watches out for.</p>
1338     </dd>
1339 root 1.1 </dl>
1340    
1341 root 1.36
1342    
1343    
1344    
1345 root 1.1 </div>
1346 root 1.43 <h2 id="code_ev_child_code_watch_out_for_pro"><code>ev_child</code> - watch out for process status changes</h2>
1347     <div id="code_ev_child_code_watch_out_for_pro-2">
1348 root 1.1 <p>Child watchers trigger when your process receives a SIGCHLD in response to
1349     some child status changes (most typically when a child of yours dies).</p>
1350 root 1.78
1351     </div>
1352     <h3 id="Watcher_Specific_Functions_and_Data_-5">Watcher-Specific Functions and Data Members</h3>
1353     <div id="Watcher_Specific_Functions_and_Data_-2-3">
1354 root 1.1 <dl>
1355     <dt>ev_child_init (ev_child *, callback, int pid)</dt>
1356     <dt>ev_child_set (ev_child *, int pid)</dt>
1357     <dd>
1358     <p>Configures the watcher to wait for status changes of process <code>pid</code> (or
1359     <i>any</i> process if <code>pid</code> is specified as <code>0</code>). The callback can look
1360     at the <code>rstatus</code> member of the <code>ev_child</code> watcher structure to see
1361 root 1.14 the status word (use the macros from <code>sys/wait.h</code> and see your systems
1362     <code>waitpid</code> documentation). The <code>rpid</code> member contains the pid of the
1363     process causing the status change.</p>
1364 root 1.1 </dd>
1365 root 1.48 <dt>int pid [read-only]</dt>
1366     <dd>
1367     <p>The process id this watcher watches out for, or <code>0</code>, meaning any process id.</p>
1368     </dd>
1369     <dt>int rpid [read-write]</dt>
1370     <dd>
1371     <p>The process id that detected a status change.</p>
1372     </dd>
1373     <dt>int rstatus [read-write]</dt>
1374     <dd>
1375     <p>The process exit/trace status caused by <code>rpid</code> (see your systems
1376     <code>waitpid</code> and <code>sys/wait.h</code> documentation for details).</p>
1377     </dd>
1378 root 1.1 </dl>
1379 root 1.54 <p>Example: Try to exit cleanly on SIGINT and SIGTERM.</p>
1380 root 1.35 <pre> static void
1381     sigint_cb (struct ev_loop *loop, struct ev_signal *w, int revents)
1382     {
1383     ev_unloop (loop, EVUNLOOP_ALL);
1384     }
1385    
1386     struct ev_signal signal_watcher;
1387     ev_signal_init (&amp;signal_watcher, sigint_cb, SIGINT);
1388     ev_signal_start (loop, &amp;sigint_cb);
1389    
1390    
1391    
1392    
1393     </pre>
1394 root 1.1
1395     </div>
1396 root 1.48 <h2 id="code_ev_stat_code_did_the_file_attri"><code>ev_stat</code> - did the file attributes just change?</h2>
1397     <div id="code_ev_stat_code_did_the_file_attri-2">
1398     <p>This watches a filesystem path for attribute changes. That is, it calls
1399     <code>stat</code> regularly (or when the OS says it changed) and sees if it changed
1400     compared to the last time, invoking the callback if it did.</p>
1401     <p>The path does not need to exist: changing from &quot;path exists&quot; to &quot;path does
1402     not exist&quot; is a status change like any other. The condition &quot;path does
1403     not exist&quot; is signified by the <code>st_nlink</code> field being zero (which is
1404     otherwise always forced to be at least one) and all the other fields of
1405     the stat buffer having unspecified contents.</p>
1406 root 1.60 <p>The path <i>should</i> be absolute and <i>must not</i> end in a slash. If it is
1407     relative and your working directory changes, the behaviour is undefined.</p>
1408 root 1.48 <p>Since there is no standard to do this, the portable implementation simply
1409 root 1.57 calls <code>stat (2)</code> regularly on the path to see if it changed somehow. You
1410 root 1.48 can specify a recommended polling interval for this case. If you specify
1411     a polling interval of <code>0</code> (highly recommended!) then a <i>suitable,
1412     unspecified default</i> value will be used (which you can expect to be around
1413     five seconds, although this might change dynamically). Libev will also
1414     impose a minimum interval which is currently around <code>0.1</code>, but thats
1415     usually overkill.</p>
1416     <p>This watcher type is not meant for massive numbers of stat watchers,
1417     as even with OS-supported change notifications, this can be
1418     resource-intensive.</p>
1419 root 1.57 <p>At the time of this writing, only the Linux inotify interface is
1420     implemented (implementing kqueue support is left as an exercise for the
1421     reader). Inotify will be used to give hints only and should not change the
1422     semantics of <code>ev_stat</code> watchers, which means that libev sometimes needs
1423     to fall back to regular polling again even with inotify, but changes are
1424     usually detected immediately, and if the file exists there will be no
1425     polling.</p>
1426 root 1.78
1427     </div>
1428     <h3 id="Watcher_Specific_Functions_and_Data_-6">Watcher-Specific Functions and Data Members</h3>
1429     <div id="Watcher_Specific_Functions_and_Data_-2-4">
1430 root 1.48 <dl>
1431     <dt>ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)</dt>
1432     <dt>ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)</dt>
1433     <dd>
1434     <p>Configures the watcher to wait for status changes of the given
1435     <code>path</code>. The <code>interval</code> is a hint on how quickly a change is expected to
1436     be detected and should normally be specified as <code>0</code> to let libev choose
1437     a suitable value. The memory pointed to by <code>path</code> must point to the same
1438     path for as long as the watcher is active.</p>
1439     <p>The callback will be receive <code>EV_STAT</code> when a change was detected,
1440     relative to the attributes at the time the watcher was started (or the
1441     last change was detected).</p>
1442     </dd>
1443     <dt>ev_stat_stat (ev_stat *)</dt>
1444     <dd>
1445     <p>Updates the stat buffer immediately with new values. If you change the
1446     watched path in your callback, you could call this fucntion to avoid
1447     detecting this change (while introducing a race condition). Can also be
1448     useful simply to find out the new values.</p>
1449     </dd>
1450     <dt>ev_statdata attr [read-only]</dt>
1451     <dd>
1452     <p>The most-recently detected attributes of the file. Although the type is of
1453     <code>ev_statdata</code>, this is usually the (or one of the) <code>struct stat</code> types
1454     suitable for your system. If the <code>st_nlink</code> member is <code>0</code>, then there
1455     was some error while <code>stat</code>ing the file.</p>
1456     </dd>
1457     <dt>ev_statdata prev [read-only]</dt>
1458     <dd>
1459     <p>The previous attributes of the file. The callback gets invoked whenever
1460     <code>prev</code> != <code>attr</code>.</p>
1461     </dd>
1462     <dt>ev_tstamp interval [read-only]</dt>
1463     <dd>
1464     <p>The specified interval.</p>
1465     </dd>
1466     <dt>const char *path [read-only]</dt>
1467     <dd>
1468     <p>The filesystem path that is being watched.</p>
1469     </dd>
1470     </dl>
1471     <p>Example: Watch <code>/etc/passwd</code> for attribute changes.</p>
1472     <pre> static void
1473     passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
1474     {
1475     /* /etc/passwd changed in some way */
1476     if (w-&gt;attr.st_nlink)
1477     {
1478     printf (&quot;passwd current size %ld\n&quot;, (long)w-&gt;attr.st_size);
1479     printf (&quot;passwd current atime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1480     printf (&quot;passwd current mtime %ld\n&quot;, (long)w-&gt;attr.st_mtime);
1481     }
1482     else
1483     /* you shalt not abuse printf for puts */
1484     puts (&quot;wow, /etc/passwd is not there, expect problems. &quot;
1485     &quot;if this is windows, they already arrived\n&quot;);
1486     }
1487    
1488     ...
1489     ev_stat passwd;
1490    
1491     ev_stat_init (&amp;passwd, passwd_cb, &quot;/etc/passwd&quot;);
1492     ev_stat_start (loop, &amp;passwd);
1493    
1494    
1495    
1496    
1497     </pre>
1498    
1499     </div>
1500 root 1.43 <h2 id="code_ev_idle_code_when_you_ve_got_no"><code>ev_idle</code> - when you've got nothing better to do...</h2>
1501 root 1.10 <div id="code_ev_idle_code_when_you_ve_got_no-2">
1502 root 1.64 <p>Idle watchers trigger events when no other events of the same or higher
1503     priority are pending (prepare, check and other idle watchers do not
1504     count).</p>
1505     <p>That is, as long as your process is busy handling sockets or timeouts
1506     (or even signals, imagine) of the same or higher priority it will not be
1507     triggered. But when your process is idle (or only lower-priority watchers
1508     are pending), the idle watchers are being called once per event loop
1509     iteration - until stopped, that is, or your process receives more events
1510     and becomes busy again with higher priority stuff.</p>
1511 root 1.1 <p>The most noteworthy effect is that as long as any idle watchers are
1512     active, the process will not block when waiting for new events.</p>
1513     <p>Apart from keeping your process non-blocking (which is a useful
1514     effect on its own sometimes), idle watchers are a good place to do
1515     &quot;pseudo-background processing&quot;, or delay processing stuff to after the
1516     event loop has handled all outstanding events.</p>
1517 root 1.78
1518     </div>
1519     <h3 id="Watcher_Specific_Functions_and_Data_-7">Watcher-Specific Functions and Data Members</h3>
1520     <div id="Watcher_Specific_Functions_and_Data_-2-5">
1521 root 1.1 <dl>
1522     <dt>ev_idle_init (ev_signal *, callback)</dt>
1523     <dd>
1524     <p>Initialises and configures the idle watcher - it has no parameters of any
1525     kind. There is a <code>ev_idle_set</code> macro, but using it is utterly pointless,
1526     believe me.</p>
1527     </dd>
1528     </dl>
1529 root 1.54 <p>Example: Dynamically allocate an <code>ev_idle</code> watcher, start it, and in the
1530     callback, free it. Also, use no error checking, as usual.</p>
1531 root 1.35 <pre> static void
1532     idle_cb (struct ev_loop *loop, struct ev_idle *w, int revents)
1533     {
1534     free (w);
1535     // now do something you wanted to do when the program has
1536     // no longer asnything immediate to do.
1537     }
1538    
1539     struct ev_idle *idle_watcher = malloc (sizeof (struct ev_idle));
1540     ev_idle_init (idle_watcher, idle_cb);
1541     ev_idle_start (loop, idle_cb);
1542    
1543    
1544    
1545    
1546     </pre>
1547 root 1.1
1548     </div>
1549 root 1.43 <h2 id="code_ev_prepare_code_and_code_ev_che"><code>ev_prepare</code> and <code>ev_check</code> - customise your event loop!</h2>
1550 root 1.16 <div id="code_ev_prepare_code_and_code_ev_che-2">
1551 root 1.14 <p>Prepare and check watchers are usually (but not always) used in tandem:
1552 root 1.23 prepare watchers get invoked before the process blocks and check watchers
1553 root 1.14 afterwards.</p>
1554 root 1.46 <p>You <i>must not</i> call <code>ev_loop</code> or similar functions that enter
1555     the current event loop from either <code>ev_prepare</code> or <code>ev_check</code>
1556     watchers. Other loops than the current one are fine, however. The
1557     rationale behind this is that you do not need to check for recursion in
1558     those watchers, i.e. the sequence will always be <code>ev_prepare</code>, blocking,
1559     <code>ev_check</code> so if you have one watcher of each kind they will always be
1560     called in pairs bracketing the blocking call.</p>
1561 root 1.36 <p>Their main purpose is to integrate other event mechanisms into libev and
1562     their use is somewhat advanced. This could be used, for example, to track
1563     variable changes, implement your own watchers, integrate net-snmp or a
1564 root 1.46 coroutine library and lots more. They are also occasionally useful if
1565     you cache some data and want to flush it before blocking (for example,
1566     in X programs you might want to do an <code>XFlush ()</code> in an <code>ev_prepare</code>
1567     watcher).</p>
1568 root 1.1 <p>This is done by examining in each prepare call which file descriptors need
1569 root 1.14 to be watched by the other library, registering <code>ev_io</code> watchers for
1570     them and starting an <code>ev_timer</code> watcher for any timeouts (many libraries
1571     provide just this functionality). Then, in the check watcher you check for
1572     any events that occured (by checking the pending status of all watchers
1573     and stopping them) and call back into the library. The I/O and timer
1574 root 1.23 callbacks will never actually be called (but must be valid nevertheless,
1575 root 1.14 because you never know, you know?).</p>
1576     <p>As another example, the Perl Coro module uses these hooks to integrate
1577 root 1.1 coroutines into libev programs, by yielding to other active coroutines
1578     during each prepare and only letting the process block if no coroutines
1579 root 1.23 are ready to run (it's actually more complicated: it only runs coroutines
1580     with priority higher than or equal to the event loop and one coroutine
1581     of lower priority, but only once, using idle watchers to keep the event
1582     loop from blocking if lower-priority coroutines are active, thus mapping
1583     low-priority coroutines to idle/background tasks).</p>
1584 root 1.73 <p>It is recommended to give <code>ev_check</code> watchers highest (<code>EV_MAXPRI</code>)
1585     priority, to ensure that they are being run before any other watchers
1586     after the poll. Also, <code>ev_check</code> watchers (and <code>ev_prepare</code> watchers,
1587     too) should not activate (&quot;feed&quot;) events into libev. While libev fully
1588     supports this, they will be called before other <code>ev_check</code> watchers did
1589     their job. As <code>ev_check</code> watchers are often used to embed other event
1590     loops those other event loops might be in an unusable state until their
1591     <code>ev_check</code> watcher ran (always remind yourself to coexist peacefully with
1592     others).</p>
1593 root 1.78
1594     </div>
1595     <h3 id="Watcher_Specific_Functions_and_Data_-8">Watcher-Specific Functions and Data Members</h3>
1596     <div id="Watcher_Specific_Functions_and_Data_-2-6">
1597 root 1.1 <dl>
1598     <dt>ev_prepare_init (ev_prepare *, callback)</dt>
1599     <dt>ev_check_init (ev_check *, callback)</dt>
1600     <dd>
1601     <p>Initialises and configures the prepare or check watcher - they have no
1602     parameters of any kind. There are <code>ev_prepare_set</code> and <code>ev_check_set</code>
1603 root 1.14 macros, but using them is utterly, utterly and completely pointless.</p>
1604 root 1.1 </dd>
1605     </dl>
1606 root 1.72 <p>There are a number of principal ways to embed other event loops or modules
1607     into libev. Here are some ideas on how to include libadns into libev
1608     (there is a Perl module named <code>EV::ADNS</code> that does this, which you could
1609     use for an actually working example. Another Perl module named <code>EV::Glib</code>
1610     embeds a Glib main context into libev, and finally, <code>Glib::EV</code> embeds EV
1611     into the Glib event loop).</p>
1612     <p>Method 1: Add IO watchers and a timeout watcher in a prepare handler,
1613     and in a check watcher, destroy them and call into libadns. What follows
1614     is pseudo-code only of course. This requires you to either use a low
1615     priority for the check watcher or use <code>ev_clear_pending</code> explicitly, as
1616     the callbacks for the IO/timeout watchers might not have been called yet.</p>
1617 root 1.46 <pre> static ev_io iow [nfd];
1618     static ev_timer tw;
1619    
1620     static void
1621     io_cb (ev_loop *loop, ev_io *w, int revents)
1622     {
1623     }
1624    
1625     // create io watchers for each fd and a timer before blocking
1626     static void
1627     adns_prepare_cb (ev_loop *loop, ev_prepare *w, int revents)
1628     {
1629 root 1.64 int timeout = 3600000;
1630     struct pollfd fds [nfd];
1631 root 1.46 // actual code will need to loop here and realloc etc.
1632     adns_beforepoll (ads, fds, &amp;nfd, &amp;timeout, timeval_from (ev_time ()));
1633    
1634     /* the callback is illegal, but won't be called as we stop during check */
1635     ev_timer_init (&amp;tw, 0, timeout * 1e-3);
1636     ev_timer_start (loop, &amp;tw);
1637    
1638 root 1.72 // create one ev_io per pollfd
1639 root 1.46 for (int i = 0; i &lt; nfd; ++i)
1640     {
1641     ev_io_init (iow + i, io_cb, fds [i].fd,
1642     ((fds [i].events &amp; POLLIN ? EV_READ : 0)
1643     | (fds [i].events &amp; POLLOUT ? EV_WRITE : 0)));
1644    
1645     fds [i].revents = 0;
1646     ev_io_start (loop, iow + i);
1647     }
1648     }
1649    
1650     // stop all watchers after blocking
1651     static void
1652     adns_check_cb (ev_loop *loop, ev_check *w, int revents)
1653     {
1654     ev_timer_stop (loop, &amp;tw);
1655    
1656     for (int i = 0; i &lt; nfd; ++i)
1657 root 1.72 {
1658     // set the relevant poll flags
1659     // could also call adns_processreadable etc. here
1660     struct pollfd *fd = fds + i;
1661     int revents = ev_clear_pending (iow + i);
1662     if (revents &amp; EV_READ ) fd-&gt;revents |= fd-&gt;events &amp; POLLIN;
1663     if (revents &amp; EV_WRITE) fd-&gt;revents |= fd-&gt;events &amp; POLLOUT;
1664    
1665     // now stop the watcher
1666     ev_io_stop (loop, iow + i);
1667     }
1668 root 1.46
1669     adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
1670     }
1671 root 1.35
1672 root 1.72 </pre>
1673     <p>Method 2: This would be just like method 1, but you run <code>adns_afterpoll</code>
1674     in the prepare watcher and would dispose of the check watcher.</p>
1675     <p>Method 3: If the module to be embedded supports explicit event
1676     notification (adns does), you can also make use of the actual watcher
1677     callbacks, and only destroy/create the watchers in the prepare watcher.</p>
1678     <pre> static void
1679     timer_cb (EV_P_ ev_timer *w, int revents)
1680     {
1681     adns_state ads = (adns_state)w-&gt;data;
1682     update_now (EV_A);
1683    
1684     adns_processtimeouts (ads, &amp;tv_now);
1685     }
1686    
1687     static void
1688     io_cb (EV_P_ ev_io *w, int revents)
1689     {
1690     adns_state ads = (adns_state)w-&gt;data;
1691     update_now (EV_A);
1692    
1693     if (revents &amp; EV_READ ) adns_processreadable (ads, w-&gt;fd, &amp;tv_now);
1694     if (revents &amp; EV_WRITE) adns_processwriteable (ads, w-&gt;fd, &amp;tv_now);
1695     }
1696    
1697     // do not ever call adns_afterpoll
1698    
1699     </pre>
1700     <p>Method 4: Do not use a prepare or check watcher because the module you
1701     want to embed is too inflexible to support it. Instead, youc na override
1702     their poll function. The drawback with this solution is that the main
1703     loop is now no longer controllable by EV. The <code>Glib::EV</code> module does
1704     this.</p>
1705     <pre> static gint
1706     event_poll_func (GPollFD *fds, guint nfds, gint timeout)
1707     {
1708     int got_events = 0;
1709    
1710     for (n = 0; n &lt; nfds; ++n)
1711     // create/start io watcher that sets the relevant bits in fds[n] and increment got_events
1712    
1713     if (timeout &gt;= 0)
1714     // create/start timer
1715    
1716     // poll
1717     ev_loop (EV_A_ 0);
1718    
1719     // stop timer again
1720     if (timeout &gt;= 0)
1721     ev_timer_stop (EV_A_ &amp;to);
1722    
1723     // stop io watchers again - their callbacks should have set
1724     for (n = 0; n &lt; nfds; ++n)
1725     ev_io_stop (EV_A_ iow [n]);
1726    
1727     return got_events;
1728     }
1729    
1730 root 1.35
1731    
1732    
1733 root 1.46 </pre>
1734 root 1.1
1735     </div>
1736 root 1.43 <h2 id="code_ev_embed_code_when_one_backend_"><code>ev_embed</code> - when one backend isn't enough...</h2>
1737 root 1.36 <div id="code_ev_embed_code_when_one_backend_-2">
1738     <p>This is a rather advanced watcher type that lets you embed one event loop
1739 root 1.37 into another (currently only <code>ev_io</code> events are supported in the embedded
1740     loop, other types of watchers might be handled in a delayed or incorrect
1741     fashion and must not be used).</p>
1742 root 1.36 <p>There are primarily two reasons you would want that: work around bugs and
1743     prioritise I/O.</p>
1744     <p>As an example for a bug workaround, the kqueue backend might only support
1745     sockets on some platform, so it is unusable as generic backend, but you
1746     still want to make use of it because you have many sockets and it scales
1747     so nicely. In this case, you would create a kqueue-based loop and embed it
1748     into your default loop (which might use e.g. poll). Overall operation will
1749     be a bit slower because first libev has to poll and then call kevent, but
1750     at least you can use both at what they are best.</p>
1751     <p>As for prioritising I/O: rarely you have the case where some fds have
1752     to be watched and handled very quickly (with low latency), and even
1753     priorities and idle watchers might have too much overhead. In this case
1754     you would put all the high priority stuff in one loop and all the rest in
1755     a second one, and embed the second one in the first.</p>
1756 root 1.37 <p>As long as the watcher is active, the callback will be invoked every time
1757     there might be events pending in the embedded loop. The callback must then
1758     call <code>ev_embed_sweep (mainloop, watcher)</code> to make a single sweep and invoke
1759     their callbacks (you could also start an idle watcher to give the embedded
1760     loop strictly lower priority for example). You can also set the callback
1761     to <code>0</code>, in which case the embed watcher will automatically execute the
1762     embedded loop sweep.</p>
1763 root 1.36 <p>As long as the watcher is started it will automatically handle events. The
1764     callback will be invoked whenever some events have been handled. You can
1765     set the callback to <code>0</code> to avoid having to specify one if you are not
1766     interested in that.</p>
1767     <p>Also, there have not currently been made special provisions for forking:
1768     when you fork, you not only have to call <code>ev_loop_fork</code> on both loops,
1769     but you will also have to stop and restart any <code>ev_embed</code> watchers
1770     yourself.</p>
1771     <p>Unfortunately, not all backends are embeddable, only the ones returned by
1772     <code>ev_embeddable_backends</code> are, which, unfortunately, does not include any
1773     portable one.</p>
1774     <p>So when you want to use this feature you will always have to be prepared
1775     that you cannot get an embeddable loop. The recommended way to get around
1776     this is to have a separate variables for your embeddable loop, try to
1777     create it, and if that fails, use the normal loop for everything:</p>
1778     <pre> struct ev_loop *loop_hi = ev_default_init (0);
1779     struct ev_loop *loop_lo = 0;
1780     struct ev_embed embed;
1781    
1782     // see if there is a chance of getting one that works
1783     // (remember that a flags value of 0 means autodetection)
1784     loop_lo = ev_embeddable_backends () &amp; ev_recommended_backends ()
1785     ? ev_loop_new (ev_embeddable_backends () &amp; ev_recommended_backends ())
1786     : 0;
1787    
1788     // if we got one, then embed it, otherwise default to loop_hi
1789     if (loop_lo)
1790     {
1791     ev_embed_init (&amp;embed, 0, loop_lo);
1792     ev_embed_start (loop_hi, &amp;embed);
1793     }
1794     else
1795     loop_lo = loop_hi;
1796    
1797     </pre>
1798 root 1.78
1799     </div>
1800     <h3 id="Watcher_Specific_Functions_and_Data_-9">Watcher-Specific Functions and Data Members</h3>
1801     <div id="Watcher_Specific_Functions_and_Data_-2-7">
1802 root 1.36 <dl>
1803 root 1.37 <dt>ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1804     <dt>ev_embed_set (ev_embed *, callback, struct ev_loop *embedded_loop)</dt>
1805 root 1.36 <dd>
1806 root 1.37 <p>Configures the watcher to embed the given loop, which must be
1807     embeddable. If the callback is <code>0</code>, then <code>ev_embed_sweep</code> will be
1808     invoked automatically, otherwise it is the responsibility of the callback
1809     to invoke it (it will continue to be called until the sweep has been done,
1810     if you do not want thta, you need to temporarily stop the embed watcher).</p>
1811     </dd>
1812     <dt>ev_embed_sweep (loop, ev_embed *)</dt>
1813     <dd>
1814     <p>Make a single, non-blocking sweep over the embedded loop. This works
1815     similarly to <code>ev_loop (embedded_loop, EVLOOP_NONBLOCK)</code>, but in the most
1816     apropriate way for embedded loops.</p>
1817 root 1.36 </dd>
1818 root 1.48 <dt>struct ev_loop *loop [read-only]</dt>
1819     <dd>
1820     <p>The embedded event loop.</p>
1821     </dd>
1822 root 1.36 </dl>
1823    
1824    
1825    
1826    
1827    
1828     </div>
1829 root 1.50 <h2 id="code_ev_fork_code_the_audacity_to_re"><code>ev_fork</code> - the audacity to resume the event loop after a fork</h2>
1830     <div id="code_ev_fork_code_the_audacity_to_re-2">
1831     <p>Fork watchers are called when a <code>fork ()</code> was detected (usually because
1832     whoever is a good citizen cared to tell libev about it by calling
1833     <code>ev_default_fork</code> or <code>ev_loop_fork</code>). The invocation is done before the
1834     event loop blocks next and before <code>ev_check</code> watchers are being called,
1835     and only in the child after the fork. If whoever good citizen calling
1836     <code>ev_default_fork</code> cheats and calls it in the wrong process, the fork
1837     handlers will be invoked, too, of course.</p>
1838 root 1.79
1839     </div>
1840     <h3 id="Watcher_Specific_Functions_and_Data_-10">Watcher-Specific Functions and Data Members</h3>
1841     <div id="Watcher_Specific_Functions_and_Data_-2-8">
1842 root 1.50 <dl>
1843     <dt>ev_fork_init (ev_signal *, callback)</dt>
1844     <dd>
1845     <p>Initialises and configures the fork watcher - it has no parameters of any
1846     kind. There is a <code>ev_fork_set</code> macro, but using it is utterly pointless,
1847     believe me.</p>
1848     </dd>
1849     </dl>
1850    
1851    
1852    
1853    
1854    
1855     </div>
1856 root 1.55 <h1 id="OTHER_FUNCTIONS">OTHER FUNCTIONS</h1>
1857 root 1.1 <div id="OTHER_FUNCTIONS_CONTENT">
1858 root 1.14 <p>There are some other functions of possible interest. Described. Here. Now.</p>
1859 root 1.1 <dl>
1860     <dt>ev_once (loop, int fd, int events, ev_tstamp timeout, callback)</dt>
1861     <dd>
1862     <p>This function combines a simple timer and an I/O watcher, calls your
1863     callback on whichever event happens first and automatically stop both
1864     watchers. This is useful if you want to wait for a single event on an fd
1865 root 1.25 or timeout without having to allocate/configure/start/stop/free one or
1866 root 1.1 more watchers yourself.</p>
1867 root 1.14 <p>If <code>fd</code> is less than 0, then no I/O watcher will be started and events
1868     is being ignored. Otherwise, an <code>ev_io</code> watcher for the given <code>fd</code> and
1869     <code>events</code> set will be craeted and started.</p>
1870 root 1.1 <p>If <code>timeout</code> is less than 0, then no timeout watcher will be
1871 root 1.14 started. Otherwise an <code>ev_timer</code> watcher with after = <code>timeout</code> (and
1872     repeat = 0) will be started. While <code>0</code> is a valid timeout, it is of
1873     dubious value.</p>
1874     <p>The callback has the type <code>void (*cb)(int revents, void *arg)</code> and gets
1875 root 1.24 passed an <code>revents</code> set like normal event callbacks (a combination of
1876 root 1.14 <code>EV_ERROR</code>, <code>EV_READ</code>, <code>EV_WRITE</code> or <code>EV_TIMEOUT</code>) and the <code>arg</code>
1877     value passed to <code>ev_once</code>:</p>
1878 root 1.1 <pre> static void stdin_ready (int revents, void *arg)
1879     {
1880     if (revents &amp; EV_TIMEOUT)
1881 root 1.14 /* doh, nothing entered */;
1882 root 1.1 else if (revents &amp; EV_READ)
1883 root 1.14 /* stdin might have data for us, joy! */;
1884 root 1.1 }
1885    
1886 root 1.14 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);
1887 root 1.1
1888     </pre>
1889     </dd>
1890 root 1.37 <dt>ev_feed_event (ev_loop *, watcher *, int revents)</dt>
1891 root 1.1 <dd>
1892     <p>Feeds the given event set into the event loop, as if the specified event
1893 root 1.14 had happened for the specified watcher (which must be a pointer to an
1894     initialised but not necessarily started event watcher).</p>
1895 root 1.1 </dd>
1896 root 1.37 <dt>ev_feed_fd_event (ev_loop *, int fd, int revents)</dt>
1897 root 1.1 <dd>
1898 root 1.14 <p>Feed an event on the given fd, as if a file descriptor backend detected
1899     the given events it.</p>
1900 root 1.1 </dd>
1901 root 1.37 <dt>ev_feed_signal_event (ev_loop *loop, int signum)</dt>
1902 root 1.1 <dd>
1903 root 1.37 <p>Feed an event as if the given signal occured (<code>loop</code> must be the default
1904     loop!).</p>
1905 root 1.1 </dd>
1906     </dl>
1907    
1908 root 1.35
1909    
1910    
1911    
1912 root 1.1 </div>
1913 root 1.55 <h1 id="LIBEVENT_EMULATION">LIBEVENT EMULATION</h1>
1914 root 1.23 <div id="LIBEVENT_EMULATION_CONTENT">
1915 root 1.26 <p>Libev offers a compatibility emulation layer for libevent. It cannot
1916     emulate the internals of libevent, so here are some usage hints:</p>
1917     <dl>
1918     <dt>* Use it by including &lt;event.h&gt;, as usual.</dt>
1919     <dt>* The following members are fully supported: ev_base, ev_callback,
1920     ev_arg, ev_fd, ev_res, ev_events.</dt>
1921     <dt>* Avoid using ev_flags and the EVLIST_*-macros, while it is
1922     maintained by libev, it does not work exactly the same way as in libevent (consider
1923     it a private API).</dt>
1924     <dt>* Priorities are not currently supported. Initialising priorities
1925     will fail and all watchers will have the same priority, even though there
1926     is an ev_pri field.</dt>
1927     <dt>* Other members are not supported.</dt>
1928     <dt>* The libev emulation is <i>not</i> ABI compatible to libevent, you need
1929     to use the libev header file and library.</dt>
1930     </dl>
1931 root 1.23
1932     </div>
1933 root 1.55 <h1 id="C_SUPPORT">C++ SUPPORT</h1>
1934 root 1.23 <div id="C_SUPPORT_CONTENT">
1935 root 1.39 <p>Libev comes with some simplistic wrapper classes for C++ that mainly allow
1936     you to use some convinience methods to start/stop watchers and also change
1937     the callback model to a model using method callbacks on objects.</p>
1938     <p>To use it,</p>
1939     <pre> #include &lt;ev++.h&gt;
1940    
1941     </pre>
1942 root 1.68 <p>This automatically includes <cite>ev.h</cite> and puts all of its definitions (many
1943     of them macros) into the global namespace. All C++ specific things are
1944     put into the <code>ev</code> namespace. It should support all the same embedding
1945     options as <cite>ev.h</cite>, most notably <code>EV_MULTIPLICITY</code>.</p>
1946 root 1.69 <p>Care has been taken to keep the overhead low. The only data member the C++
1947     classes add (compared to plain C-style watchers) is the event loop pointer
1948     that the watcher is associated with (or no additional members at all if
1949     you disable <code>EV_MULTIPLICITY</code> when embedding libev).</p>
1950     <p>Currently, functions, and static and non-static member functions can be
1951 root 1.68 used as callbacks. Other types should be easy to add as long as they only
1952     need one additional pointer for context. If you need support for other
1953     types of functors please contact the author (preferably after implementing
1954     it).</p>
1955 root 1.39 <p>Here is a list of things available in the <code>ev</code> namespace:</p>
1956     <dl>
1957     <dt><code>ev::READ</code>, <code>ev::WRITE</code> etc.</dt>
1958     <dd>
1959     <p>These are just enum values with the same values as the <code>EV_READ</code> etc.
1960     macros from <cite>ev.h</cite>.</p>
1961     </dd>
1962     <dt><code>ev::tstamp</code>, <code>ev::now</code></dt>
1963     <dd>
1964     <p>Aliases to the same types/functions as with the <code>ev_</code> prefix.</p>
1965     </dd>
1966     <dt><code>ev::io</code>, <code>ev::timer</code>, <code>ev::periodic</code>, <code>ev::idle</code>, <code>ev::sig</code> etc.</dt>
1967     <dd>
1968     <p>For each <code>ev_TYPE</code> watcher in <cite>ev.h</cite> there is a corresponding class of
1969     the same name in the <code>ev</code> namespace, with the exception of <code>ev_signal</code>
1970     which is called <code>ev::sig</code> to avoid clashes with the <code>signal</code> macro
1971     defines by many implementations.</p>
1972     <p>All of those classes have these methods:</p>
1973     <p>
1974     <dl>
1975 root 1.68 <dt>ev::TYPE::TYPE ()</dt>
1976     <dt>ev::TYPE::TYPE (struct ev_loop *)</dt>
1977 root 1.39 <dt>ev::TYPE::~TYPE</dt>
1978     <dd>
1979 root 1.68 <p>The constructor (optionally) takes an event loop to associate the watcher
1980     with. If it is omitted, it will use <code>EV_DEFAULT</code>.</p>
1981     <p>The constructor calls <code>ev_init</code> for you, which means you have to call the
1982     <code>set</code> method before starting it.</p>
1983     <p>It will not set a callback, however: You have to call the templated <code>set</code>
1984     method to set a callback before you can start the watcher.</p>
1985     <p>(The reason why you have to use a method is a limitation in C++ which does
1986     not allow explicit template arguments for constructors).</p>
1987 root 1.39 <p>The destructor automatically stops the watcher if it is active.</p>
1988     </dd>
1989 root 1.68 <dt>w-&gt;set&lt;class, &amp;class::method&gt; (object *)</dt>
1990     <dd>
1991     <p>This method sets the callback method to call. The method has to have a
1992     signature of <code>void (*)(ev_TYPE &amp;, int)</code>, it receives the watcher as
1993     first argument and the <code>revents</code> as second. The object must be given as
1994     parameter and is stored in the <code>data</code> member of the watcher.</p>
1995     <p>This method synthesizes efficient thunking code to call your method from
1996     the C callback that libev requires. If your compiler can inline your
1997     callback (i.e. it is visible to it at the place of the <code>set</code> call and
1998     your compiler is good :), then the method will be fully inlined into the
1999     thunking function, making it as fast as a direct C callback.</p>
2000     <p>Example: simple class declaration and watcher initialisation</p>
2001     <pre> struct myclass
2002     {
2003     void io_cb (ev::io &amp;w, int revents) { }
2004     }
2005    
2006     myclass obj;
2007     ev::io iow;
2008     iow.set &lt;myclass, &amp;myclass::io_cb&gt; (&amp;obj);
2009    
2010     </pre>
2011     </dd>
2012 root 1.70 <dt>w-&gt;set&lt;function&gt; (void *data = 0)</dt>
2013 root 1.68 <dd>
2014     <p>Also sets a callback, but uses a static method or plain function as
2015     callback. The optional <code>data</code> argument will be stored in the watcher's
2016     <code>data</code> member and is free for you to use.</p>
2017 root 1.70 <p>The prototype of the <code>function</code> must be <code>void (*)(ev::TYPE &amp;w, int)</code>.</p>
2018 root 1.68 <p>See the method-<code>set</code> above for more details.</p>
2019 root 1.70 <p>Example:</p>
2020     <pre> static void io_cb (ev::io &amp;w, int revents) { }
2021     iow.set &lt;io_cb&gt; ();
2022    
2023     </pre>
2024 root 1.68 </dd>
2025 root 1.39 <dt>w-&gt;set (struct ev_loop *)</dt>
2026     <dd>
2027     <p>Associates a different <code>struct ev_loop</code> with this watcher. You can only
2028     do this when the watcher is inactive (and not pending either).</p>
2029     </dd>
2030     <dt>w-&gt;set ([args])</dt>
2031     <dd>
2032     <p>Basically the same as <code>ev_TYPE_set</code>, with the same args. Must be
2033 root 1.68 called at least once. Unlike the C counterpart, an active watcher gets
2034     automatically stopped and restarted when reconfiguring it with this
2035     method.</p>
2036 root 1.39 </dd>
2037     <dt>w-&gt;start ()</dt>
2038     <dd>
2039 root 1.68 <p>Starts the watcher. Note that there is no <code>loop</code> argument, as the
2040     constructor already stores the event loop.</p>
2041 root 1.39 </dd>
2042     <dt>w-&gt;stop ()</dt>
2043     <dd>
2044     <p>Stops the watcher if it is active. Again, no <code>loop</code> argument.</p>
2045     </dd>
2046     <dt>w-&gt;again () <code>ev::timer</code>, <code>ev::periodic</code> only</dt>
2047     <dd>
2048     <p>For <code>ev::timer</code> and <code>ev::periodic</code>, this invokes the corresponding
2049     <code>ev_TYPE_again</code> function.</p>
2050     </dd>
2051     <dt>w-&gt;sweep () <code>ev::embed</code> only</dt>
2052     <dd>
2053     <p>Invokes <code>ev_embed_sweep</code>.</p>
2054     </dd>
2055 root 1.49 <dt>w-&gt;update () <code>ev::stat</code> only</dt>
2056     <dd>
2057     <p>Invokes <code>ev_stat_stat</code>.</p>
2058     </dd>
2059 root 1.39 </dl>
2060     </p>
2061     </dd>
2062     </dl>
2063     <p>Example: Define a class with an IO and idle watcher, start one of them in
2064     the constructor.</p>
2065     <pre> class myclass
2066     {
2067     ev_io io; void io_cb (ev::io &amp;w, int revents);
2068     ev_idle idle void idle_cb (ev::idle &amp;w, int revents);
2069    
2070     myclass ();
2071     }
2072    
2073     myclass::myclass (int fd)
2074     {
2075 root 1.68 io .set &lt;myclass, &amp;myclass::io_cb &gt; (this);
2076     idle.set &lt;myclass, &amp;myclass::idle_cb&gt; (this);
2077    
2078 root 1.39 io.start (fd, ev::READ);
2079     }
2080    
2081 root 1.50
2082    
2083    
2084     </pre>
2085    
2086     </div>
2087 root 1.55 <h1 id="MACRO_MAGIC">MACRO MAGIC</h1>
2088 root 1.50 <div id="MACRO_MAGIC_CONTENT">
2089     <p>Libev can be compiled with a variety of options, the most fundemantal is
2090 root 1.65 <code>EV_MULTIPLICITY</code>. This option determines whether (most) functions and
2091 root 1.50 callbacks have an initial <code>struct ev_loop *</code> argument.</p>
2092     <p>To make it easier to write programs that cope with either variant, the
2093     following macros are defined:</p>
2094     <dl>
2095     <dt><code>EV_A</code>, <code>EV_A_</code></dt>
2096     <dd>
2097     <p>This provides the loop <i>argument</i> for functions, if one is required (&quot;ev
2098     loop argument&quot;). The <code>EV_A</code> form is used when this is the sole argument,
2099     <code>EV_A_</code> is used when other arguments are following. Example:</p>
2100     <pre> ev_unref (EV_A);
2101     ev_timer_add (EV_A_ watcher);
2102     ev_loop (EV_A_ 0);
2103    
2104     </pre>
2105     <p>It assumes the variable <code>loop</code> of type <code>struct ev_loop *</code> is in scope,
2106     which is often provided by the following macro.</p>
2107     </dd>
2108     <dt><code>EV_P</code>, <code>EV_P_</code></dt>
2109     <dd>
2110     <p>This provides the loop <i>parameter</i> for functions, if one is required (&quot;ev
2111     loop parameter&quot;). The <code>EV_P</code> form is used when this is the sole parameter,
2112     <code>EV_P_</code> is used when other parameters are following. Example:</p>
2113     <pre> // this is how ev_unref is being declared
2114     static void ev_unref (EV_P);
2115    
2116     // this is how you can declare your typical callback
2117     static void cb (EV_P_ ev_timer *w, int revents)
2118    
2119     </pre>
2120     <p>It declares a parameter <code>loop</code> of type <code>struct ev_loop *</code>, quite
2121     suitable for use with <code>EV_A</code>.</p>
2122     </dd>
2123     <dt><code>EV_DEFAULT</code>, <code>EV_DEFAULT_</code></dt>
2124     <dd>
2125     <p>Similar to the other two macros, this gives you the value of the default
2126     loop, if multiple loops are supported (&quot;ev loop default&quot;).</p>
2127     </dd>
2128     </dl>
2129 root 1.63 <p>Example: Declare and initialise a check watcher, utilising the above
2130 root 1.65 macros so it will work regardless of whether multiple loops are supported
2131 root 1.63 or not.</p>
2132 root 1.50 <pre> static void
2133     check_cb (EV_P_ ev_timer *w, int revents)
2134     {
2135     ev_check_stop (EV_A_ w);
2136     }
2137    
2138     ev_check check;
2139     ev_check_init (&amp;check, check_cb);
2140     ev_check_start (EV_DEFAULT_ &amp;check);
2141     ev_loop (EV_DEFAULT_ 0);
2142    
2143 root 1.39 </pre>
2144 root 1.23
2145     </div>
2146 root 1.55 <h1 id="EMBEDDING">EMBEDDING</h1>
2147 root 1.40 <div id="EMBEDDING_CONTENT">
2148     <p>Libev can (and often is) directly embedded into host
2149     applications. Examples of applications that embed it include the Deliantra
2150     Game Server, the EV perl module, the GNU Virtual Private Ethernet (gvpe)
2151     and rxvt-unicode.</p>
2152     <p>The goal is to enable you to just copy the neecssary files into your
2153     source directory without having to change even a single line in them, so
2154     you can easily upgrade by simply copying (or having a checked-out copy of
2155     libev somewhere in your source tree).</p>
2156    
2157     </div>
2158     <h2 id="FILESETS">FILESETS</h2>
2159     <div id="FILESETS_CONTENT">
2160     <p>Depending on what features you need you need to include one or more sets of files
2161     in your app.</p>
2162    
2163     </div>
2164     <h3 id="CORE_EVENT_LOOP">CORE EVENT LOOP</h3>
2165     <div id="CORE_EVENT_LOOP_CONTENT">
2166     <p>To include only the libev core (all the <code>ev_*</code> functions), with manual
2167     configuration (no autoconf):</p>
2168     <pre> #define EV_STANDALONE 1
2169     #include &quot;ev.c&quot;
2170    
2171     </pre>
2172     <p>This will automatically include <cite>ev.h</cite>, too, and should be done in a
2173     single C source file only to provide the function implementations. To use
2174     it, do the same for <cite>ev.h</cite> in all files wishing to use this API (best
2175     done by writing a wrapper around <cite>ev.h</cite> that you can include instead and
2176     where you can put other configuration options):</p>
2177     <pre> #define EV_STANDALONE 1
2178     #include &quot;ev.h&quot;
2179    
2180     </pre>
2181     <p>Both header files and implementation files can be compiled with a C++
2182     compiler (at least, thats a stated goal, and breakage will be treated
2183     as a bug).</p>
2184     <p>You need the following files in your source tree, or in a directory
2185     in your include path (e.g. in libev/ when using -Ilibev):</p>
2186     <pre> ev.h
2187     ev.c
2188     ev_vars.h
2189     ev_wrap.h
2190    
2191     ev_win32.c required on win32 platforms only
2192    
2193 root 1.63 ev_select.c only when select backend is enabled (which is enabled by default)
2194 root 1.40 ev_poll.c only when poll backend is enabled (disabled by default)
2195     ev_epoll.c only when the epoll backend is enabled (disabled by default)
2196     ev_kqueue.c only when the kqueue backend is enabled (disabled by default)
2197     ev_port.c only when the solaris port backend is enabled (disabled by default)
2198    
2199     </pre>
2200     <p><cite>ev.c</cite> includes the backend files directly when enabled, so you only need
2201 root 1.44 to compile this single file.</p>
2202 root 1.40
2203     </div>
2204     <h3 id="LIBEVENT_COMPATIBILITY_API">LIBEVENT COMPATIBILITY API</h3>
2205     <div id="LIBEVENT_COMPATIBILITY_API_CONTENT">
2206     <p>To include the libevent compatibility API, also include:</p>
2207     <pre> #include &quot;event.c&quot;
2208    
2209     </pre>
2210     <p>in the file including <cite>ev.c</cite>, and:</p>
2211     <pre> #include &quot;event.h&quot;
2212    
2213     </pre>
2214     <p>in the files that want to use the libevent API. This also includes <cite>ev.h</cite>.</p>
2215     <p>You need the following additional files for this:</p>
2216     <pre> event.h
2217     event.c
2218    
2219     </pre>
2220    
2221     </div>
2222     <h3 id="AUTOCONF_SUPPORT">AUTOCONF SUPPORT</h3>
2223     <div id="AUTOCONF_SUPPORT_CONTENT">
2224     <p>Instead of using <code>EV_STANDALONE=1</code> and providing your config in
2225     whatever way you want, you can also <code>m4_include([libev.m4])</code> in your
2226 root 1.44 <cite>configure.ac</cite> and leave <code>EV_STANDALONE</code> undefined. <cite>ev.c</cite> will then
2227     include <cite>config.h</cite> and configure itself accordingly.</p>
2228 root 1.40 <p>For this of course you need the m4 file:</p>
2229     <pre> libev.m4
2230    
2231     </pre>
2232    
2233     </div>
2234     <h2 id="PREPROCESSOR_SYMBOLS_MACROS">PREPROCESSOR SYMBOLS/MACROS</h2>
2235     <div id="PREPROCESSOR_SYMBOLS_MACROS_CONTENT">
2236     <p>Libev can be configured via a variety of preprocessor symbols you have to define
2237     before including any of its files. The default is not to build for multiplicity
2238     and only include the select backend.</p>
2239     <dl>
2240     <dt>EV_STANDALONE</dt>
2241     <dd>
2242     <p>Must always be <code>1</code> if you do not use autoconf configuration, which
2243     keeps libev from including <cite>config.h</cite>, and it also defines dummy
2244     implementations for some libevent functions (such as logging, which is not
2245     supported). It will also not define any of the structs usually found in
2246     <cite>event.h</cite> that are not directly supported by the libev core alone.</p>
2247     </dd>
2248     <dt>EV_USE_MONOTONIC</dt>
2249     <dd>
2250     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2251     monotonic clock option at both compiletime and runtime. Otherwise no use
2252     of the monotonic clock option will be attempted. If you enable this, you
2253     usually have to link against librt or something similar. Enabling it when
2254     the functionality isn't available is safe, though, althoguh you have
2255     to make sure you link against any libraries where the <code>clock_gettime</code>
2256     function is hiding in (often <cite>-lrt</cite>).</p>
2257     </dd>
2258     <dt>EV_USE_REALTIME</dt>
2259     <dd>
2260     <p>If defined to be <code>1</code>, libev will try to detect the availability of the
2261     realtime clock option at compiletime (and assume its availability at
2262     runtime if successful). Otherwise no use of the realtime clock option will
2263     be attempted. This effectively replaces <code>gettimeofday</code> by <code>clock_get
2264     (CLOCK_REALTIME, ...)</code> and will not normally affect correctness. See tzhe note about libraries
2265     in the description of <code>EV_USE_MONOTONIC</code>, though.</p>
2266     </dd>
2267     <dt>EV_USE_SELECT</dt>
2268     <dd>
2269     <p>If undefined or defined to be <code>1</code>, libev will compile in support for the
2270     <code>select</code>(2) backend. No attempt at autodetection will be done: if no
2271     other method takes over, select will be it. Otherwise the select backend
2272     will not be compiled in.</p>
2273     </dd>
2274     <dt>EV_SELECT_USE_FD_SET</dt>
2275     <dd>
2276     <p>If defined to <code>1</code>, then the select backend will use the system <code>fd_set</code>
2277     structure. This is useful if libev doesn't compile due to a missing
2278     <code>NFDBITS</code> or <code>fd_mask</code> definition or it misguesses the bitset layout on
2279     exotic systems. This usually limits the range of file descriptors to some
2280     low limit such as 1024 or might have other limitations (winsocket only
2281     allows 64 sockets). The <code>FD_SETSIZE</code> macro, set before compilation, might
2282     influence the size of the <code>fd_set</code> used.</p>
2283     </dd>
2284     <dt>EV_SELECT_IS_WINSOCKET</dt>
2285     <dd>
2286     <p>When defined to <code>1</code>, the select backend will assume that
2287     select/socket/connect etc. don't understand file descriptors but
2288     wants osf handles on win32 (this is the case when the select to
2289     be used is the winsock select). This means that it will call
2290     <code>_get_osfhandle</code> on the fd to convert it to an OS handle. Otherwise,
2291     it is assumed that all these functions actually work on fds, even
2292     on win32. Should not be defined on non-win32 platforms.</p>
2293     </dd>
2294     <dt>EV_USE_POLL</dt>
2295     <dd>
2296     <p>If defined to be <code>1</code>, libev will compile in support for the <code>poll</code>(2)
2297     backend. Otherwise it will be enabled on non-win32 platforms. It
2298     takes precedence over select.</p>
2299     </dd>
2300     <dt>EV_USE_EPOLL</dt>
2301     <dd>
2302     <p>If defined to be <code>1</code>, libev will compile in support for the Linux
2303     <code>epoll</code>(7) backend. Its availability will be detected at runtime,
2304     otherwise another method will be used as fallback. This is the
2305     preferred backend for GNU/Linux systems.</p>
2306     </dd>
2307     <dt>EV_USE_KQUEUE</dt>
2308     <dd>
2309     <p>If defined to be <code>1</code>, libev will compile in support for the BSD style
2310     <code>kqueue</code>(2) backend. Its actual availability will be detected at runtime,
2311     otherwise another method will be used as fallback. This is the preferred
2312     backend for BSD and BSD-like systems, although on most BSDs kqueue only
2313     supports some types of fds correctly (the only platform we found that
2314     supports ptys for example was NetBSD), so kqueue might be compiled in, but
2315     not be used unless explicitly requested. The best way to use it is to find
2316 root 1.42 out whether kqueue supports your type of fd properly and use an embedded
2317 root 1.40 kqueue loop.</p>
2318     </dd>
2319     <dt>EV_USE_PORT</dt>
2320     <dd>
2321     <p>If defined to be <code>1</code>, libev will compile in support for the Solaris
2322     10 port style backend. Its availability will be detected at runtime,
2323     otherwise another method will be used as fallback. This is the preferred
2324     backend for Solaris 10 systems.</p>
2325     </dd>
2326     <dt>EV_USE_DEVPOLL</dt>
2327     <dd>
2328     <p>reserved for future expansion, works like the USE symbols above.</p>
2329     </dd>
2330 root 1.57 <dt>EV_USE_INOTIFY</dt>
2331     <dd>
2332     <p>If defined to be <code>1</code>, libev will compile in support for the Linux inotify
2333     interface to speed up <code>ev_stat</code> watchers. Its actual availability will
2334     be detected at runtime.</p>
2335     </dd>
2336 root 1.40 <dt>EV_H</dt>
2337     <dd>
2338     <p>The name of the <cite>ev.h</cite> header file used to include it. The default if
2339     undefined is <code>&lt;ev.h&gt;</code> in <cite>event.h</cite> and <code>&quot;ev.h&quot;</code> in <cite>ev.c</cite>. This
2340     can be used to virtually rename the <cite>ev.h</cite> header file in case of conflicts.</p>
2341     </dd>
2342     <dt>EV_CONFIG_H</dt>
2343     <dd>
2344     <p>If <code>EV_STANDALONE</code> isn't <code>1</code>, this variable can be used to override
2345     <cite>ev.c</cite>'s idea of where to find the <cite>config.h</cite> file, similarly to
2346     <code>EV_H</code>, above.</p>
2347     </dd>
2348     <dt>EV_EVENT_H</dt>
2349     <dd>
2350     <p>Similarly to <code>EV_H</code>, this macro can be used to override <cite>event.c</cite>'s idea
2351     of how the <cite>event.h</cite> header can be found.</p>
2352     </dd>
2353     <dt>EV_PROTOTYPES</dt>
2354     <dd>
2355     <p>If defined to be <code>0</code>, then <cite>ev.h</cite> will not define any function
2356     prototypes, but still define all the structs and other symbols. This is
2357     occasionally useful if you want to provide your own wrapper functions
2358     around libev functions.</p>
2359     </dd>
2360     <dt>EV_MULTIPLICITY</dt>
2361     <dd>
2362     <p>If undefined or defined to <code>1</code>, then all event-loop-specific functions
2363     will have the <code>struct ev_loop *</code> as first argument, and you can create
2364     additional independent event loops. Otherwise there will be no support
2365     for multiple event loops and there is no first event loop pointer
2366     argument. Instead, all functions act on the single default loop.</p>
2367     </dd>
2368 root 1.66 <dt>EV_MINPRI</dt>
2369     <dt>EV_MAXPRI</dt>
2370     <dd>
2371     <p>The range of allowed priorities. <code>EV_MINPRI</code> must be smaller or equal to
2372     <code>EV_MAXPRI</code>, but otherwise there are no non-obvious limitations. You can
2373     provide for more priorities by overriding those symbols (usually defined
2374     to be <code>-2</code> and <code>2</code>, respectively).</p>
2375     <p>When doing priority-based operations, libev usually has to linearly search
2376     all the priorities, so having many of them (hundreds) uses a lot of space
2377     and time, so using the defaults of five priorities (-2 .. +2) is usually
2378     fine.</p>
2379     <p>If your embedding app does not need any priorities, defining these both to
2380     <code>0</code> will save some memory and cpu.</p>
2381     </dd>
2382 root 1.48 <dt>EV_PERIODIC_ENABLE</dt>
2383     <dd>
2384     <p>If undefined or defined to be <code>1</code>, then periodic timers are supported. If
2385     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2386     code.</p>
2387     </dd>
2388 root 1.64 <dt>EV_IDLE_ENABLE</dt>
2389     <dd>
2390     <p>If undefined or defined to be <code>1</code>, then idle watchers are supported. If
2391     defined to be <code>0</code>, then they are not. Disabling them saves a few kB of
2392     code.</p>
2393     </dd>
2394 root 1.48 <dt>EV_EMBED_ENABLE</dt>
2395     <dd>
2396     <p>If undefined or defined to be <code>1</code>, then embed watchers are supported. If
2397     defined to be <code>0</code>, then they are not.</p>
2398     </dd>
2399     <dt>EV_STAT_ENABLE</dt>
2400     <dd>
2401     <p>If undefined or defined to be <code>1</code>, then stat watchers are supported. If
2402     defined to be <code>0</code>, then they are not.</p>
2403     </dd>
2404 root 1.50 <dt>EV_FORK_ENABLE</dt>
2405     <dd>
2406     <p>If undefined or defined to be <code>1</code>, then fork watchers are supported. If
2407     defined to be <code>0</code>, then they are not.</p>
2408     </dd>
2409 root 1.48 <dt>EV_MINIMAL</dt>
2410 root 1.40 <dd>
2411 root 1.48 <p>If you need to shave off some kilobytes of code at the expense of some
2412     speed, define this symbol to <code>1</code>. Currently only used for gcc to override
2413     some inlining decisions, saves roughly 30% codesize of amd64.</p>
2414 root 1.40 </dd>
2415 root 1.51 <dt>EV_PID_HASHSIZE</dt>
2416     <dd>
2417     <p><code>ev_child</code> watchers use a small hash table to distribute workload by
2418     pid. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>), usually more
2419     than enough. If you need to manage thousands of children you might want to
2420 root 1.57 increase this value (<i>must</i> be a power of two).</p>
2421     </dd>
2422     <dt>EV_INOTIFY_HASHSIZE</dt>
2423     <dd>
2424     <p><code>ev_staz</code> watchers use a small hash table to distribute workload by
2425     inotify watch id. The default size is <code>16</code> (or <code>1</code> with <code>EV_MINIMAL</code>),
2426     usually more than enough. If you need to manage thousands of <code>ev_stat</code>
2427     watchers you might want to increase this value (<i>must</i> be a power of
2428     two).</p>
2429 root 1.51 </dd>
2430 root 1.40 <dt>EV_COMMON</dt>
2431     <dd>
2432     <p>By default, all watchers have a <code>void *data</code> member. By redefining
2433     this macro to a something else you can include more and other types of
2434     members. You have to define it each time you include one of the files,
2435     though, and it must be identical each time.</p>
2436     <p>For example, the perl EV module uses something like this:</p>
2437     <pre> #define EV_COMMON \
2438     SV *self; /* contains this struct */ \
2439     SV *cb_sv, *fh /* note no trailing &quot;;&quot; */
2440    
2441     </pre>
2442     </dd>
2443 root 1.45 <dt>EV_CB_DECLARE (type)</dt>
2444     <dt>EV_CB_INVOKE (watcher, revents)</dt>
2445     <dt>ev_set_cb (ev, cb)</dt>
2446 root 1.40 <dd>
2447     <p>Can be used to change the callback member declaration in each watcher,
2448     and the way callbacks are invoked and set. Must expand to a struct member
2449     definition and a statement, respectively. See the <cite>ev.v</cite> header file for
2450     their default definitions. One possible use for overriding these is to
2451 root 1.45 avoid the <code>struct ev_loop *</code> as first argument in all cases, or to use
2452     method calls instead of plain function calls in C++.</p>
2453 root 1.40
2454     </div>
2455     <h2 id="EXAMPLES">EXAMPLES</h2>
2456     <div id="EXAMPLES_CONTENT">
2457     <p>For a real-world example of a program the includes libev
2458     verbatim, you can have a look at the EV perl module
2459     (<a href="http://software.schmorp.de/pkg/EV.html">http://software.schmorp.de/pkg/EV.html</a>). It has the libev files in
2460     the <cite>libev/</cite> subdirectory and includes them in the <cite>EV/EVAPI.h</cite> (public
2461     interface) and <cite>EV.xs</cite> (implementation) files. Only the <cite>EV.xs</cite> file
2462     will be compiled. It is pretty complex because it provides its own header
2463     file.</p>
2464     <p>The usage in rxvt-unicode is simpler. It has a <cite>ev_cpp.h</cite> header file
2465 root 1.63 that everybody includes and which overrides some configure choices:</p>
2466     <pre> #define EV_MINIMAL 1
2467     #define EV_USE_POLL 0
2468 root 1.41 #define EV_MULTIPLICITY 0
2469 root 1.63 #define EV_PERIODIC_ENABLE 0
2470     #define EV_STAT_ENABLE 0
2471     #define EV_FORK_ENABLE 0
2472 root 1.41 #define EV_CONFIG_H &lt;config.h&gt;
2473 root 1.63 #define EV_MINPRI 0
2474     #define EV_MAXPRI 0
2475 root 1.40
2476 root 1.41 #include &quot;ev++.h&quot;
2477 root 1.40
2478     </pre>
2479     <p>And a <cite>ev_cpp.C</cite> implementation file that contains libev proper and is compiled:</p>
2480 root 1.41 <pre> #include &quot;ev_cpp.h&quot;
2481     #include &quot;ev.c&quot;
2482 root 1.40
2483 root 1.47
2484    
2485    
2486 root 1.40 </pre>
2487    
2488     </div>
2489 root 1.55 <h1 id="COMPLEXITIES">COMPLEXITIES</h1>
2490 root 1.47 <div id="COMPLEXITIES_CONTENT">
2491     <p>In this section the complexities of (many of) the algorithms used inside
2492     libev will be explained. For complexity discussions about backends see the
2493     documentation for <code>ev_default_init</code>.</p>
2494 root 1.67 <p>All of the following are about amortised time: If an array needs to be
2495     extended, libev needs to realloc and move the whole array, but this
2496     happens asymptotically never with higher number of elements, so O(1) might
2497     mean it might do a lengthy realloc operation in rare cases, but on average
2498     it is much faster and asymptotically approaches constant time.</p>
2499 root 1.47 <p>
2500     <dl>
2501     <dt>Starting and stopping timer/periodic watchers: O(log skipped_other_timers)</dt>
2502 root 1.66 <dd>
2503     <p>This means that, when you have a watcher that triggers in one hour and
2504     there are 100 watchers that would trigger before that then inserting will
2505     have to skip those 100 watchers.</p>
2506     </dd>
2507 root 1.47 <dt>Changing timer/periodic watchers (by autorepeat, again): O(log skipped_other_timers)</dt>
2508 root 1.66 <dd>
2509     <p>That means that for changing a timer costs less than removing/adding them
2510     as only the relative motion in the event queue has to be paid for.</p>
2511     </dd>
2512 root 1.47 <dt>Starting io/check/prepare/idle/signal/child watchers: O(1)</dt>
2513 root 1.66 <dd>
2514 root 1.67 <p>These just add the watcher into an array or at the head of a list.
2515     =item Stopping check/prepare/idle watchers: O(1)</p>
2516 root 1.66 </dd>
2517 root 1.57 <dt>Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid % EV_PID_HASHSIZE))</dt>
2518 root 1.66 <dd>
2519     <p>These watchers are stored in lists then need to be walked to find the
2520     correct watcher to remove. The lists are usually short (you don't usually
2521     have many watchers waiting for the same fd or signal).</p>
2522     </dd>
2523 root 1.47 <dt>Finding the next timer per loop iteration: O(1)</dt>
2524     <dt>Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)</dt>
2525 root 1.66 <dd>
2526     <p>A change means an I/O watcher gets started or stopped, which requires
2527     libev to recalculate its status (and possibly tell the kernel).</p>
2528     </dd>
2529 root 1.47 <dt>Activating one watcher: O(1)</dt>
2530 root 1.66 <dt>Priority handling: O(number_of_priorities)</dt>
2531     <dd>
2532     <p>Priorities are implemented by allocating some space for each
2533     priority. When doing priority-based operations, libev usually has to
2534     linearly search all the priorities.</p>
2535     </dd>
2536 root 1.47 </dl>
2537     </p>
2538    
2539    
2540    
2541    
2542    
2543     </div>
2544 root 1.55 <h1 id="AUTHOR">AUTHOR</h1>
2545 root 1.1 <div id="AUTHOR_CONTENT">
2546 root 1.40 <p>Marc Lehmann &lt;libev@schmorp.de&gt;.</p>
2547 root 1.1
2548     </div>
2549     </div></body>
2550     </html>