ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev_linuxaio.c
Revision: 1.37
Committed: Wed Jun 26 07:20:09 2019 UTC (4 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: EV-rel-4_27, rel-4_27
Changes since 1.36: +65 -29 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 /*
2     * libev linux aio fd activity backend
3     *
4     * Copyright (c) 2019 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without modifica-
8     * tion, are permitted provided that the following conditions are met:
9     *
10     * 1. Redistributions of source code must retain the above copyright notice,
11     * this list of conditions and the following disclaimer.
12     *
13     * 2. Redistributions in binary form must reproduce the above copyright
14     * notice, this list of conditions and the following disclaimer in the
15     * documentation and/or other materials provided with the distribution.
16     *
17     * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18     * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19     * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20     * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21     * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23     * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24     * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25     * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26     * OF THE POSSIBILITY OF SUCH DAMAGE.
27     *
28     * Alternatively, the contents of this file may be used under the terms of
29     * the GNU General Public License ("GPL") version 2 or any later version,
30     * in which case the provisions of the GPL are applicable instead of
31     * the above. If you wish to allow the use of your version of this file
32     * only under the terms of the GPL and not to allow others to use your
33     * version of this file under the BSD license, indicate your decision
34     * by deleting the provisions above and replace them with the notice
35     * and other provisions required by the GPL. If you do not delete the
36     * provisions above, a recipient may use your version of this file under
37     * either the BSD or the GPL.
38     */
39    
40 root 1.25 /*
41     * general notes about linux aio:
42     *
43     * a) at first, the linux aio IOCB_CMD_POLL functionality introduced in
44     * 4.18 looks too good to be true: both watchers and events can be
45     * batched, and events can even be handled in userspace using
46     * a ring buffer shared with the kernel. watchers can be canceled
47     * regardless of whether the fd has been closed. no problems with fork.
48     * ok, the ring buffer is 200% undocumented (there isn't even a
49     * header file), but otherwise, it's pure bliss!
50     * b) ok, watchers are one-shot, so you have to re-arm active ones
51     * on every iteration. so much for syscall-less event handling,
52     * but at least these re-arms can be batched, no big deal, right?
53     * c) well, linux as usual: the documentation lies to you: io_submit
54     * sometimes returns EINVAL because the kernel doesn't feel like
55     * handling your poll mask - ttys can be polled for POLLOUT,
56     * POLLOUT|POLLIN, but polling for POLLIN fails. just great,
57     * so we have to fall back to something else (hello, epoll),
58     * but at least the fallback can be slow, because these are
59     * exceptional cases, right?
60     * d) hmm, you have to tell the kernel the maximum number of watchers
61 root 1.27 * you want to queue when initialising the aio context. but of
62 root 1.25 * course the real limit is magically calculated in the kernel, and
63     * is often higher then we asked for. so we just have to destroy
64     * the aio context and re-create it a bit larger if we hit the limit.
65     * (starts to remind you of epoll? well, it's a bit more deterministic
66     * and less gambling, but still ugly as hell).
67     * e) that's when you find out you can also hit an arbitrary system-wide
68     * limit. or the kernel simply doesn't want to handle your watchers.
69     * what the fuck do we do then? you guessed it, in the middle
70     * of event handling we have to switch to 100% epoll polling. and
71     * that better is as fast as normal epoll polling, so you practically
72     * have to use the normal epoll backend with all its quirks.
73 root 1.27 * f) end result of this train wreck: it inherits all the disadvantages
74 root 1.25 * from epoll, while adding a number on its own. why even bother to use
75     * it? because if conditions are right and your fds are supported and you
76     * don't hit a limit, this backend is actually faster, doesn't gamble with
77     * your fds, batches watchers and events and doesn't require costly state
78     * recreates. well, until it does.
79     * g) all of this makes this backend use almost twice as much code as epoll.
80 root 1.27 * which in turn uses twice as much code as poll. and that#s not counting
81 root 1.25 * the fact that this backend also depends on the epoll backend, making
82     * it three times as much code as poll, or kqueue.
83     * h) bleah. why can't linux just do kqueue. sure kqueue is ugly, but by now
84 root 1.27 * it's clear that whatever linux comes up with is far, far, far worse.
85 root 1.25 */
86 root 1.10
87 root 1.1 #include <sys/time.h> /* actually linux/time.h, but we must assume they are compatible */
88 root 1.2 #include <poll.h>
89 root 1.1 #include <linux/aio_abi.h>
90    
91     /*****************************************************************************/
92 root 1.25 /* syscall wrapdadoop - this section has the raw api/abi definitions */
93 root 1.1
94     #include <sys/syscall.h> /* no glibc wrappers */
95    
96 root 1.5 /* aio_abi.h is not versioned in any way, so we cannot test for its existance */
97 root 1.1 #define IOCB_CMD_POLL 5
98    
99 root 1.25 /* taken from linux/fs/aio.c. yup, that's a .c file.
100     * not only is this totally undocumented, not even the source code
101     * can tell you what the future semantics of compat_features and
102     * incompat_features are, or what header_length actually is for.
103     */
104 root 1.1 #define AIO_RING_MAGIC 0xa10a10a1
105 root 1.37 #define EV_AIO_RING_INCOMPAT_FEATURES 0
106 root 1.1 struct aio_ring
107     {
108     unsigned id; /* kernel internal index number */
109     unsigned nr; /* number of io_events */
110     unsigned head; /* Written to by userland or by kernel. */
111     unsigned tail;
112    
113     unsigned magic;
114     unsigned compat_features;
115     unsigned incompat_features;
116     unsigned header_length; /* size of aio_ring */
117    
118     struct io_event io_events[0];
119     };
120    
121 root 1.30 /*
122     * define some syscall wrappers for common architectures
123     * this is mostly for nice looks during debugging, not performance.
124     * our syscalls return < 0, not == -1, on error. which is good
125     * enough for linux aio.
126     * TODO: arm is also common nowadays, maybe even mips and x86
127     * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
128     */
129 root 1.32 #if __GNUC__ && __linux && ECB_AMD64 && !defined __OPTIMIZE_SIZE__
130     /* the costly errno access probably kills this for size optimisation */
131 root 1.30
132     #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5) \
133     ({ \
134     long res; \
135     register unsigned long r5 __asm__ ("r8" ); \
136     register unsigned long r4 __asm__ ("r10"); \
137     register unsigned long r3 __asm__ ("rdx"); \
138     register unsigned long r2 __asm__ ("rsi"); \
139     register unsigned long r1 __asm__ ("rdi"); \
140     if (narg >= 5) r5 = (unsigned long)(arg5); \
141     if (narg >= 4) r4 = (unsigned long)(arg4); \
142     if (narg >= 3) r3 = (unsigned long)(arg3); \
143     if (narg >= 2) r2 = (unsigned long)(arg2); \
144     if (narg >= 1) r1 = (unsigned long)(arg1); \
145     __asm__ __volatile__ ( \
146     "syscall\n\t" \
147     : "=a" (res) \
148     : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
149     : "cc", "r11", "cx", "memory"); \
150     errno = -res; \
151     res; \
152     })
153    
154     #endif
155    
156     #ifdef ev_syscall
157     #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0
158     #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0)
159     #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0)
160     #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0)
161     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0)
162     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5)
163     #else
164     #define ev_syscall0(nr) syscall (nr)
165     #define ev_syscall1(nr,arg1) syscall (nr, arg1)
166     #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
167     #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
168     #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
169     #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
170     #endif
171    
172 root 1.6 inline_size
173     int
174 root 1.20 evsys_io_setup (unsigned nr_events, aio_context_t *ctx_idp)
175 root 1.1 {
176 root 1.30 return ev_syscall2 (SYS_io_setup, nr_events, ctx_idp);
177 root 1.1 }
178    
179 root 1.6 inline_size
180     int
181 root 1.20 evsys_io_destroy (aio_context_t ctx_id)
182 root 1.1 {
183 root 1.30 return ev_syscall1 (SYS_io_destroy, ctx_id);
184 root 1.1 }
185    
186 root 1.6 inline_size
187     int
188 root 1.20 evsys_io_submit (aio_context_t ctx_id, long nr, struct iocb *cbp[])
189 root 1.1 {
190 root 1.30 return ev_syscall3 (SYS_io_submit, ctx_id, nr, cbp);
191 root 1.1 }
192    
193 root 1.6 inline_size
194     int
195 root 1.20 evsys_io_cancel (aio_context_t ctx_id, struct iocb *cbp, struct io_event *result)
196 root 1.1 {
197 root 1.30 return ev_syscall3 (SYS_io_cancel, ctx_id, cbp, result);
198 root 1.1 }
199    
200 root 1.6 inline_size
201     int
202 root 1.20 evsys_io_getevents (aio_context_t ctx_id, long min_nr, long nr, struct io_event *events, struct timespec *timeout)
203 root 1.1 {
204 root 1.30 return ev_syscall5 (SYS_io_getevents, ctx_id, min_nr, nr, events, timeout);
205 root 1.1 }
206    
207     /*****************************************************************************/
208     /* actual backed implementation */
209    
210 root 1.25 ecb_cold
211     static int
212     linuxaio_nr_events (EV_P)
213     {
214     /* we start with 16 iocbs and incraese from there
215     * that's tiny, but the kernel has a rather low system-wide
216     * limit that can be reached quickly, so let's be parsimonious
217     * with this resource.
218     * Rest assured, the kernel generously rounds up small and big numbers
219     * in different ways (but doesn't seem to charge you for it).
220     * The 15 here is because the kernel usually has a power of two as aio-max-nr,
221     * and this helps to take advantage of that limit.
222     */
223    
224     /* we try to fill 4kB pages exactly.
225     * the ring buffer header is 32 bytes, every io event is 32 bytes.
226     * the kernel takes the io requests number, doubles it, adds 2
227     * and adds the ring buffer.
228     * the way we use this is by starting low, and then roughly doubling the
229     * size each time we hit a limit.
230     */
231    
232     int requests = 15 << linuxaio_iteration;
233     int one_page = (4096
234     / sizeof (struct io_event) ) / 2; /* how many fit into one page */
235     int first_page = ((4096 - sizeof (struct aio_ring))
236     / sizeof (struct io_event) - 2) / 2; /* how many fit into the first page */
237    
238     /* if everything fits into one page, use count exactly */
239     if (requests > first_page)
240     /* otherwise, round down to full pages and add the first page */
241     requests = requests / one_page * one_page + first_page;
242    
243     return requests;
244     }
245    
246 root 1.27 /* we use out own wrapper structure in case we ever want to do something "clever" */
247 root 1.1 typedef struct aniocb
248     {
249     struct iocb io;
250     /*int inuse;*/
251     } *ANIOCBP;
252    
253     inline_size
254     void
255 root 1.22 linuxaio_array_needsize_iocbp (ANIOCBP *base, int offset, int count)
256 root 1.1 {
257     while (count--)
258     {
259 root 1.27 /* TODO: quite the overhead to allocate every iocb separately, maybe use our own allocator? */
260 root 1.22 ANIOCBP iocb = (ANIOCBP)ev_malloc (sizeof (*iocb));
261    
262     /* full zero initialise is probably not required at the moment, but
263     * this is not well documented, so we better do it.
264     */
265     memset (iocb, 0, sizeof (*iocb));
266    
267     iocb->io.aio_lio_opcode = IOCB_CMD_POLL;
268     iocb->io.aio_data = offset;
269     iocb->io.aio_fildes = offset;
270    
271     base [offset++] = iocb;
272 root 1.1 }
273     }
274    
275 root 1.6 ecb_cold
276 root 1.1 static void
277     linuxaio_free_iocbp (EV_P)
278     {
279     while (linuxaio_iocbpmax--)
280     ev_free (linuxaio_iocbps [linuxaio_iocbpmax]);
281    
282 root 1.6 linuxaio_iocbpmax = 0; /* next resize will completely reallocate the array, at some overhead */
283 root 1.1 }
284    
285     static void
286     linuxaio_modify (EV_P_ int fd, int oev, int nev)
287     {
288     array_needsize (ANIOCBP, linuxaio_iocbps, linuxaio_iocbpmax, fd + 1, linuxaio_array_needsize_iocbp);
289 root 1.22 ANIOCBP iocb = linuxaio_iocbps [fd];
290 root 1.1
291 root 1.10 if (iocb->io.aio_reqprio < 0)
292     {
293 root 1.25 /* we handed this fd over to epoll, so undo this first */
294 root 1.34 /* we do it manually because the optimisations on epoll_modify won't do us any good */
295 root 1.10 epoll_ctl (backend_fd, EPOLL_CTL_DEL, fd, 0);
296 root 1.30 anfds [fd].emask = 0;
297 root 1.10 iocb->io.aio_reqprio = 0;
298     }
299    
300 root 1.1 if (iocb->io.aio_buf)
301 root 1.34 {
302     evsys_io_cancel (linuxaio_ctx, &iocb->io, (struct io_event *)0);
303     /* on relevant kernels, io_cancel fails with EINPROGRES if everything is fine */
304 root 1.36 assert (("libev: linuxaio unexpected io_cancel failed", errno == EINPROGRESS));
305 root 1.34 }
306 root 1.1
307     if (nev)
308     {
309 root 1.22 iocb->io.aio_buf =
310 root 1.1 (nev & EV_READ ? POLLIN : 0)
311     | (nev & EV_WRITE ? POLLOUT : 0);
312    
313     /* queue iocb up for io_submit */
314     /* this assumes we only ever get one call per fd per loop iteration */
315     ++linuxaio_submitcnt;
316     array_needsize (struct iocb *, linuxaio_submits, linuxaio_submitmax, linuxaio_submitcnt, array_needsize_noinit);
317     linuxaio_submits [linuxaio_submitcnt - 1] = &iocb->io;
318     }
319     }
320    
321 root 1.19 static void
322 root 1.25 linuxaio_epoll_cb (EV_P_ struct ev_io *w, int revents)
323 root 1.19 {
324 root 1.25 epoll_poll (EV_A_ 0);
325 root 1.19 }
326    
327 root 1.35 inline_speed
328     void
329 root 1.25 linuxaio_fd_rearm (EV_P_ int fd)
330 root 1.19 {
331 root 1.25 anfds [fd].events = 0;
332     linuxaio_iocbps [fd]->io.aio_buf = 0;
333     fd_change (EV_A_ fd, EV_ANFD_REIFY);
334 root 1.19 }
335    
336 root 1.1 static void
337     linuxaio_parse_events (EV_P_ struct io_event *ev, int nr)
338     {
339     while (nr)
340     {
341     int fd = ev->data;
342     int res = ev->res;
343    
344 root 1.2 assert (("libev: iocb fd must be in-bounds", fd >= 0 && fd < anfdmax));
345 root 1.1
346     /* feed events, we do not expect or handle POLLNVAL */
347 root 1.21 fd_event (
348     EV_A_
349     fd,
350     (res & (POLLOUT | POLLERR | POLLHUP) ? EV_WRITE : 0)
351     | (res & (POLLIN | POLLERR | POLLHUP) ? EV_READ : 0)
352     );
353 root 1.1
354 root 1.35 /* linux aio is oneshot: rearm fd. TODO: this does more work than strictly needed */
355 root 1.25 linuxaio_fd_rearm (EV_A_ fd);
356    
357 root 1.1 --nr;
358     ++ev;
359     }
360     }
361    
362 root 1.27 /* get any events from ring buffer, return true if any were handled */
363 root 1.1 static int
364     linuxaio_get_events_from_ring (EV_P)
365     {
366     struct aio_ring *ring = (struct aio_ring *)linuxaio_ctx;
367    
368 root 1.13 /* the kernel reads and writes both of these variables, */
369     /* as a C extension, we assume that volatile use here */
370     /* both makes reads atomic and once-only */
371     unsigned head = *(volatile unsigned *)&ring->head;
372 root 1.1 unsigned tail = *(volatile unsigned *)&ring->tail;
373    
374 root 1.6 if (head == tail)
375     return 0;
376    
377 root 1.12 /* make sure the events up to tail are visible */
378 root 1.9 ECB_MEMORY_FENCE_ACQUIRE;
379    
380 root 1.1 /* parse all available events, but only once, to avoid starvation */
381     if (tail > head) /* normal case around */
382     linuxaio_parse_events (EV_A_ ring->io_events + head, tail - head);
383 root 1.6 else /* wrapped around */
384 root 1.1 {
385     linuxaio_parse_events (EV_A_ ring->io_events + head, ring->nr - head);
386     linuxaio_parse_events (EV_A_ ring->io_events, tail);
387     }
388    
389 root 1.28 ECB_MEMORY_FENCE_RELEASE;
390 root 1.16 /* as an extension to C, we hope that the volatile will make this atomic and once-only */
391 root 1.11 *(volatile unsigned *)&ring->head = tail;
392 root 1.1
393     return 1;
394     }
395    
396 root 1.37 inline_size
397     int
398     linuxaio_ringbuf_valid (EV_P)
399     {
400     struct aio_ring *ring = (struct aio_ring *)linuxaio_ctx;
401    
402     return expect_true (ring->magic == AIO_RING_MAGIC)
403     && ring->incompat_features == EV_AIO_RING_INCOMPAT_FEATURES
404     && ring->header_length == sizeof (struct aio_ring); /* TODO: or use it to find io_event[0]? */
405     }
406    
407 root 1.1 /* read at least one event from kernel, or timeout */
408     inline_size
409     void
410     linuxaio_get_events (EV_P_ ev_tstamp timeout)
411     {
412     struct timespec ts;
413 root 1.37 struct io_event ioev[8]; /* 256 octet stack space */
414     int want = 1; /* how many events to request */
415     int ringbuf_valid = linuxaio_ringbuf_valid (EV_A);
416    
417     if (expect_true (ringbuf_valid))
418     {
419     /* if the ring buffer has any events, we don't wait or call the kernel at all */
420     if (linuxaio_get_events_from_ring (EV_A))
421     return;
422    
423     /* if the ring buffer is empty, and we don't have a timeout, then don't call the kernel */
424     if (!timeout)
425     return;
426     }
427     else
428     /* no ringbuffer, request slightly larger batch */
429     want = sizeof (ioev) / sizeof (ioev [0]);
430    
431     /* no events, so wait for some
432     * for fairness reasons, we do this in a loop, to fetch all events
433     */
434     for (;;)
435     {
436     int res;
437 root 1.1
438 root 1.37 EV_RELEASE_CB;
439 root 1.1
440 root 1.37 ts.tv_sec = (long)timeout;
441     ts.tv_nsec = (long)((timeout - ts.tv_sec) * 1e9);
442 root 1.1
443 root 1.37 res = evsys_io_getevents (linuxaio_ctx, 1, want, ioev, &ts);
444 root 1.19
445 root 1.37 EV_ACQUIRE_CB;
446 root 1.1
447 root 1.37 if (res < 0)
448     if (errno == EINTR)
449     /* ignored, retry */;
450     else
451     ev_syserr ("(libev) linuxaio io_getevents");
452     else if (res)
453     {
454     /* at least one event available, handle them */
455     linuxaio_parse_events (EV_A_ ioev, res);
456 root 1.1
457 root 1.37 if (expect_true (ringbuf_valid))
458     {
459     /* if we have a ring buffer, handle any remaining events in it */
460     linuxaio_get_events_from_ring (EV_A);
461 root 1.19
462 root 1.37 /* at this point, we should have handled all outstanding events */
463     break;
464     }
465     else if (res < want)
466     /* otherwise, if there were fewere events than we wanted, we assume there are no more */
467     break;
468     }
469     else
470     break; /* no events from the kernel, we are done */
471    
472     timeout = 0; /* only wait in the first iteration */
473 root 1.1 }
474     }
475    
476 root 1.31 inline_size
477     int
478 root 1.25 linuxaio_io_setup (EV_P)
479     {
480     linuxaio_ctx = 0;
481     return evsys_io_setup (linuxaio_nr_events (EV_A), &linuxaio_ctx);
482     }
483    
484 root 1.1 static void
485     linuxaio_poll (EV_P_ ev_tstamp timeout)
486     {
487     int submitted;
488    
489     /* first phase: submit new iocbs */
490    
491     /* io_submit might return less than the requested number of iocbs */
492     /* this is, afaics, only because of errors, but we go by the book and use a loop, */
493 root 1.27 /* which allows us to pinpoint the erroneous iocb */
494 root 1.1 for (submitted = 0; submitted < linuxaio_submitcnt; )
495     {
496 root 1.20 int res = evsys_io_submit (linuxaio_ctx, linuxaio_submitcnt - submitted, linuxaio_submits + submitted);
497 root 1.1
498 root 1.17 if (expect_false (res < 0))
499 root 1.25 if (errno == EINVAL)
500 root 1.10 {
501 root 1.15 /* This happens for unsupported fds, officially, but in my testing,
502 root 1.10 * also randomly happens for supported fds. We fall back to good old
503     * poll() here, under the assumption that this is a very rare case.
504 root 1.19 * See https://lore.kernel.org/patchwork/patch/1047453/ to see
505     * discussion about such a case (ttys) where polling for POLLIN
506     * fails but POLLIN|POLLOUT works.
507 root 1.10 */
508     struct iocb *iocb = linuxaio_submits [submitted];
509 root 1.25 epoll_modify (EV_A_ iocb->aio_fildes, 0, anfds [iocb->aio_fildes].events);
510     iocb->aio_reqprio = -1; /* mark iocb as epoll */
511 root 1.10
512 root 1.25 res = 1; /* skip this iocb - another iocb, another chance */
513     }
514     else if (errno == EAGAIN)
515     {
516     /* This happens when the ring buffer is full, or some other shit we
517 root 1.27 * don't know and isn't documented. Most likely because we have too
518 root 1.25 * many requests and linux aio can't be assed to handle them.
519     * In this case, we try to allocate a larger ring buffer, freeing
520     * ours first. This might fail, in which case we have to fall back to 100%
521     * epoll.
522     * God, how I hate linux not getting its act together. Ever.
523     */
524     evsys_io_destroy (linuxaio_ctx);
525     linuxaio_submitcnt = 0;
526    
527     /* rearm all fds with active iocbs */
528     {
529     int fd;
530     for (fd = 0; fd < linuxaio_iocbpmax; ++fd)
531     if (linuxaio_iocbps [fd]->io.aio_buf)
532     linuxaio_fd_rearm (EV_A_ fd);
533     }
534    
535     ++linuxaio_iteration;
536     if (linuxaio_io_setup (EV_A) < 0)
537     {
538     /* to bad, we can't get a new aio context, go 100% epoll */
539     linuxaio_free_iocbp (EV_A);
540     ev_io_stop (EV_A_ &linuxaio_epoll_w);
541     ev_ref (EV_A);
542     linuxaio_ctx = 0;
543     backend_modify = epoll_modify;
544     backend_poll = epoll_poll;
545     }
546 root 1.21
547 root 1.25 timeout = 0;
548     /* it's easiest to handle this mess in another iteration */
549     return;
550 root 1.10 }
551 root 1.21 else if (errno == EBADF)
552     {
553 root 1.34 assert (("libev: event loop rejected bad fd", errno != EBADF));
554 root 1.21 fd_kill (EV_A_ linuxaio_submits [submitted]->aio_fildes);
555    
556     res = 1; /* skip this iocb */
557     }
558 root 1.1 else
559 root 1.8 ev_syserr ("(libev) linuxaio io_submit");
560 root 1.1
561     submitted += res;
562     }
563    
564     linuxaio_submitcnt = 0;
565    
566     /* second phase: fetch and parse events */
567    
568     linuxaio_get_events (EV_A_ timeout);
569     }
570    
571     inline_size
572     int
573     linuxaio_init (EV_P_ int flags)
574     {
575     /* would be great to have a nice test for IOCB_CMD_POLL instead */
576 root 1.2 /* also: test some semi-common fd types, such as files and ttys in recommended_backends */
577 root 1.27 /* 4.18 introduced IOCB_CMD_POLL, 4.19 made epoll work, and we need that */
578 root 1.15 if (ev_linux_version () < 0x041300)
579     return 0;
580 root 1.25
581     if (!epoll_init (EV_A_ 0))
582 root 1.1 return 0;
583    
584 root 1.25 linuxaio_iteration = 0;
585 root 1.1
586 root 1.25 if (linuxaio_io_setup (EV_A) < 0)
587 root 1.10 {
588 root 1.25 epoll_destroy (EV_A);
589 root 1.10 return 0;
590     }
591    
592     ev_io_init (EV_A_ &linuxaio_epoll_w, linuxaio_epoll_cb, backend_fd, EV_READ);
593 root 1.19 ev_set_priority (&linuxaio_epoll_w, EV_MAXPRI);
594 root 1.10 ev_io_start (EV_A_ &linuxaio_epoll_w);
595 root 1.14 ev_unref (EV_A); /* watcher should not keep loop alive */
596 root 1.10
597 root 1.1 backend_modify = linuxaio_modify;
598     backend_poll = linuxaio_poll;
599    
600     linuxaio_iocbpmax = 0;
601     linuxaio_iocbps = 0;
602    
603     linuxaio_submits = 0;
604     linuxaio_submitmax = 0;
605     linuxaio_submitcnt = 0;
606    
607     return EVBACKEND_LINUXAIO;
608     }
609    
610     inline_size
611     void
612     linuxaio_destroy (EV_P)
613     {
614 root 1.25 epoll_destroy (EV_A);
615 root 1.1 linuxaio_free_iocbp (EV_A);
616 root 1.33 evsys_io_destroy (linuxaio_ctx); /* fails in child, aio context is destroyed */
617 root 1.1 }
618    
619     inline_size
620     void
621     linuxaio_fork (EV_P)
622     {
623 root 1.6 /* this frees all iocbs, which is very heavy-handed */
624 root 1.2 linuxaio_destroy (EV_A);
625 root 1.6 linuxaio_submitcnt = 0; /* all pointers were invalidated */
626 root 1.2
627 root 1.25 linuxaio_iteration = 0; /* we start over in the child */
628    
629     while (linuxaio_io_setup (EV_A) < 0)
630 root 1.8 ev_syserr ("(libev) linuxaio io_setup");
631 root 1.2
632 root 1.33 /* forking epoll should also effectively unregister all fds from the backend */
633 root 1.25 epoll_fork (EV_A);
634 root 1.10
635     ev_io_stop (EV_A_ &linuxaio_epoll_w);
636 root 1.25 ev_io_set (EV_A_ &linuxaio_epoll_w, backend_fd, EV_READ);
637 root 1.10 ev_io_start (EV_A_ &linuxaio_epoll_w);
638    
639 root 1.25 /* epoll_fork already did this. hopefully */
640     /*fd_rearm_all (EV_A);*/
641 root 1.1 }
642