ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libgender/util.C
Revision: 1.6
Committed: Mon Oct 4 07:04:58 2004 UTC (19 years, 8 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.5: +12 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.3 /*
2     * math support
3     * most of the more complicated code is taken from mesa.
4     */
5    
6 root 1.2 #include <cstdio> // ugly
7 root 1.1 #include <cmath>
8    
9 root 1.4 #include <sys/time.h>
10     #include <time.h>
11 root 1.2
12 root 1.1 #include "util.h"
13    
14 root 1.3 #define DEG2RAD (M_PI / 180.)
15    
16 root 1.6 void renormalize (sector &s, point &p)
17     {
18     float i;
19    
20     p.x = modff (p.x, &i); s.x += (int)i;
21     p.y = modff (p.y, &i); s.y += (int)i;
22     p.z = modff (p.z, &i); s.z += (int)i;
23     }
24    
25 root 1.1 const vec3 normalize (const vec3 &v)
26     {
27 root 1.3 GLfloat s = abs (v);
28    
29     if (!s)
30     return v;
31 root 1.1
32 root 1.3 s = 1. / s;
33 root 1.1 return vec3 (v.x * s, v.y * s, v.z * s);
34     }
35    
36     const vec3 cross (const vec3 &a, const vec3 &b)
37     {
38     return vec3 (
39 root 1.3 a.y * b.z - a.z * b.y,
40     a.z * b.x - a.x * b.z,
41     a.x * b.y - a.y * b.x
42     );
43 root 1.2 }
44    
45     void gl_matrix::diagonal (GLfloat v)
46     {
47     for (int i = 4; i--; )
48     for (int j = 4; j--; )
49     data[i][j] = i == j ? v : 0.;
50     }
51    
52     const gl_matrix operator *(const gl_matrix &a, const gl_matrix &b)
53     {
54     gl_matrix r;
55    
56 root 1.3 // taken from mesa
57     for (int i = 0; i < 4; i++)
58     {
59     const GLfloat ai0=a(i,0), ai1=a(i,1), ai2=a(i,2), ai3=a(i,3);
60    
61     r(i,0) = ai0 * b(0,0) + ai1 * b(1,0) + ai2 * b(2,0) + ai3 * b(3,0);
62     r(i,1) = ai0 * b(0,1) + ai1 * b(1,1) + ai2 * b(2,1) + ai3 * b(3,1);
63     r(i,2) = ai0 * b(0,2) + ai1 * b(1,2) + ai2 * b(2,2) + ai3 * b(3,2);
64     r(i,3) = ai0 * b(0,3) + ai1 * b(1,3) + ai2 * b(2,3) + ai3 * b(3,3);
65     }
66 root 1.2
67 root 1.3 return r;
68     }
69 root 1.2
70 root 1.3 void gl_matrix::rotate (GLfloat angle, const vec3 &axis)
71     {
72     gl_matrix m;
73     GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
74 root 1.2
75 root 1.3 s = (GLfloat) sinf (angle * DEG2RAD);
76     c = (GLfloat) cosf (angle * DEG2RAD);
77    
78     const GLfloat mag = abs (axis);
79    
80     if (mag <= 1.0e-4)
81     return; /* no rotation, leave mat as-is */
82    
83     const vec3 n = axis * (1. / mag);
84    
85     /*
86     * Arbitrary axis rotation matrix.
87     *
88     * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
89     * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
90     * (which is about the X-axis), and the two composite transforms
91     * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
92     * from the arbitrary axis to the X-axis then back. They are
93     * all elementary rotations.
94     *
95     * Rz' is a rotation about the Z-axis, to bring the axis vector
96     * into the x-z plane. Then Ry' is applied, rotating about the
97     * Y-axis to bring the axis vector parallel with the X-axis. The
98     * rotation about the X-axis is then performed. Ry and Rz are
99     * simply the respective inverse transforms to bring the arbitrary
100     * axis back to it's original orientation. The first transforms
101     * Rz' and Ry' are considered inverses, since the data from the
102     * arbitrary axis gives you info on how to get to it, not how
103     * to get away from it, and an inverse must be applied.
104     *
105     * The basic calculation used is to recognize that the arbitrary
106     * axis vector (x, y, z), since it is of unit length, actually
107     * represents the sines and cosines of the angles to rotate the
108     * X-axis to the same orientation, with theta being the angle about
109     * Z and phi the angle about Y (in the order described above)
110     * as follows:
111     *
112     * cos ( theta ) = x / sqrt ( 1 - z^2 )
113     * sin ( theta ) = y / sqrt ( 1 - z^2 )
114     *
115     * cos ( phi ) = sqrt ( 1 - z^2 )
116     * sin ( phi ) = z
117     *
118     * Note that cos ( phi ) can further be inserted to the above
119     * formulas:
120     *
121     * cos ( theta ) = x / cos ( phi )
122     * sin ( theta ) = y / sin ( phi )
123     *
124     * ...etc. Because of those relations and the standard trigonometric
125     * relations, it is pssible to reduce the transforms down to what
126     * is used below. It may be that any primary axis chosen will give the
127     * same results (modulo a sign convention) using this method.
128     *
129     * Particularly nice is to notice that all divisions that might
130     * have caused trouble when parallel to certain planes or
131     * axis go away with care paid to reducing the expressions.
132     * After checking, it does perform correctly under all cases, since
133     * in all the cases of division where the denominator would have
134     * been zero, the numerator would have been zero as well, giving
135     * the expected result.
136     */
137    
138     xx = n.x * n.x;
139     yy = n.y * n.y;
140     zz = n.z * n.z;
141     xy = n.x * n.y;
142     yz = n.y * n.z;
143     zx = n.z * n.x;
144     xs = n.x * s;
145     ys = n.y * s;
146     zs = n.z * s;
147     one_c = 1.0F - c;
148    
149     m(0,0) = (one_c * xx) + c;
150     m(0,1) = (one_c * xy) - zs;
151     m(0,2) = (one_c * zx) + ys;
152     m(0,3) = 0;
153    
154     m(1,0) = (one_c * xy) + zs;
155     m(1,1) = (one_c * yy) + c;
156     m(1,2) = (one_c * yz) - xs;
157     m(1,3) = 0;
158    
159     m(2,0) = (one_c * zx) - ys;
160     m(2,1) = (one_c * yz) + xs;
161     m(2,2) = (one_c * zz) + c;
162     m(2,3) = 0;
163    
164     m(3,0) = 0;
165     m(3,1) = 0;
166     m(3,2) = 0;
167     m(3,3) = 1;
168    
169     (*this) = (*this) * m;
170     }
171    
172     const vec3 operator *(const gl_matrix &a, const vec3 &v)
173     {
174     return vec3 (
175     a(0,0) * v.x + a(1,0) * v.y + a(2,0) * v.z + a(3,0),
176     a(0,1) * v.x + a(1,1) * v.y + a(2,1) * v.z + a(3,1),
177     a(0,2) * v.x + a(1,2) * v.y + a(2,2) * v.z + a(3,2)
178     );
179 root 1.2 }
180    
181     void gl_matrix::print ()
182     {
183     printf ("\n");
184     printf ("[ %f, %f, %f, %f ]\n", data[0][0], data[1][0], data[2][0], data[3][0]);
185     printf ("[ %f, %f, %f, %f ]\n", data[0][1], data[1][1], data[2][1], data[3][1]);
186     printf ("[ %f, %f, %f, %f ]\n", data[0][2], data[1][2], data[2][2], data[3][2]);
187     printf ("[ %f, %f, %f, %f ]\n", data[0][3], data[1][3], data[2][3], data[3][3]);
188     }
189    
190     void gl_matrix::translate (const vec3 &v)
191     {
192     gl_matrix m(1);
193    
194     m(3,0) = v.x;
195     m(3,1) = v.y;
196     m(3,2) = v.z;
197     m(3,3) = 1;
198    
199     (*this) = (*this) * m;
200 root 1.1 }
201    
202     void box::add (const box &o)
203     {
204     a.x = min (a.x, o.a.x);
205     a.y = min (a.y, o.a.y);
206     a.z = min (a.z, o.a.z);
207     b.x = max (b.x, o.b.x);
208     b.y = max (b.y, o.b.y);
209     b.z = max (b.z, o.b.z);
210     }
211    
212 root 1.5 void box::add (const sector &p)
213 root 1.1 {
214     a.x = min (a.x, p.x);
215     a.y = min (a.y, p.y);
216     a.z = min (a.z, p.z);
217     b.x = max (b.x, p.x);
218     b.y = max (b.y, p.y);
219     b.z = max (b.z, p.z);
220 root 1.5 }
221    
222     void box::add (const point &p)
223     {
224     a.x = min (a.x, (soffs)floorf (p.x));
225     a.y = min (a.y, (soffs)floorf (p.y));
226     a.z = min (a.z, (soffs)floorf (p.z));
227 root 1.6 b.x = max (b.x, (soffs)ceilf (p.x));
228     b.y = max (b.y, (soffs)ceilf (p.y));
229     b.z = max (b.z, (soffs)ceilf (p.z));
230 root 1.1 }
231 root 1.4
232     struct timer timer;
233     static double base;
234     double timer::now = 0.;
235     double timer::diff;
236    
237     void timer::frame ()
238     {
239     struct timeval tv;
240     gettimeofday (&tv, 0);
241    
242     double next = tv.tv_sec - base + tv.tv_usec / 1.e6;
243    
244     diff = next - now;
245     now = next;
246     }
247    
248     timer::timer ()
249     {
250     struct timeval tv;
251     gettimeofday (&tv, 0);
252     base = tv.tv_sec + tv.tv_usec / 1.e6;
253     }
254    
255 root 1.1