ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/microscheme/init.scm
Revision: 1.25
Committed: Tue Dec 1 07:10:21 2015 UTC (8 years, 6 months ago) by root
Branch: MAIN
Changes since 1.24: +31 -12 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 ; Initialization file for TinySCHEME 1.41
2    
3 root 1.15 (gc-verbose #t)
4    
5 root 1.1 ;;;; Utility to ease macro creation
6     (define (macro-expand form)
7     ((eval (get-closure-code (eval (car form)))) form))
8    
9     (define (macro-expand-all form)
10     (if (macro? form)
11     (macro-expand-all (macro-expand form))
12     form))
13    
14     (define *compile-hook* macro-expand-all)
15    
16    
17     (macro (unless form)
18     `(if (not ,(cadr form)) (begin ,@(cddr form))))
19    
20     (macro (when form)
21     `(if ,(cadr form) (begin ,@(cddr form))))
22    
23     ; DEFINE-MACRO Contributed by Andy Gaynor
24     (macro (define-macro dform)
25     (if (symbol? (cadr dform))
26     `(macro ,@(cdr dform))
27     (let ((form (gensym)))
28     `(macro (,(caadr dform) ,form)
29     (apply (lambda ,(cdadr dform) ,@(cddr dform)) (cdr ,form))))))
30    
31     ; Utilities for math. Notice that inexact->exact is primitive,
32     ; but exact->inexact is not.
33     (define exact? integer?)
34 root 1.16 (define exact-integer? integer?)
35 root 1.1 (define (inexact? x) (and (real? x) (not (integer? x))))
36 root 1.19 (define (exact->inexact n) (* n 1.0))
37     (define exact inexact->exact)
38     (define inexact exact->inexact)
39 root 1.1 (define (even? n) (= (remainder n 2) 0))
40     (define (odd? n) (not (= (remainder n 2) 0)))
41     (define (zero? n) (= n 0))
42     (define (positive? n) (> n 0))
43     (define (negative? n) (< n 0))
44     (define complex? number?)
45     (define rational? real?)
46     (define (abs n) (if (>= n 0) n (- n)))
47     (define (<> n1 n2) (not (= n1 n2)))
48 root 1.18 (define (square n) (* n n))
49 root 1.19 ;; missing: numerator denominator rationalize exact-integer-sqrt
50 root 1.1
51 root 1.16 ; min and max must return inexact if any arg is inexact
52 root 1.1 (define (max . lst)
53     (foldr (lambda (a b)
54     (if (> a b)
55 root 1.16 (if (exact? b) a (exact->inexact a))
56     (if (exact? a) b (exact->inexact b))))
57 root 1.1 (car lst) (cdr lst)))
58     (define (min . lst)
59     (foldr (lambda (a b)
60     (if (< a b)
61 root 1.16 (if (exact? b) a (exact->inexact a))
62     (if (exact? a) b (exact->inexact b))))
63 root 1.1 (car lst) (cdr lst)))
64    
65     (define (succ x) (+ x 1))
66     (define (pred x) (- x 1))
67     (define gcd
68     (lambda a
69     (if (null? a)
70     0
71     (let ((aa (abs (car a)))
72     (bb (abs (cadr a))))
73     (if (= bb 0)
74     aa
75     (gcd bb (remainder aa bb)))))))
76     (define lcm
77     (lambda a
78     (if (null? a)
79     1
80     (let ((aa (abs (car a)))
81     (bb (abs (cadr a))))
82     (if (or (= aa 0) (= bb 0))
83     0
84     (abs (* (quotient aa (gcd aa bb)) bb)))))))
85    
86    
87     (define (string . charlist)
88     (list->string charlist))
89    
90     (define (list->string charlist)
91     (let* ((len (length charlist))
92     (newstr (make-string len))
93     (fill-string!
94     (lambda (str i len charlist)
95     (if (= i len)
96     str
97     (begin (string-set! str i (car charlist))
98     (fill-string! str (+ i 1) len (cdr charlist)))))))
99     (fill-string! newstr 0 len charlist)))
100    
101     (define (string-fill! s e)
102     (let ((n (string-length s)))
103     (let loop ((i 0))
104     (if (= i n)
105     s
106     (begin (string-set! s i e) (loop (succ i)))))))
107    
108     (define (string->list s)
109     (let loop ((n (pred (string-length s))) (l '()))
110     (if (= n -1)
111     l
112     (loop (pred n) (cons (string-ref s n) l)))))
113    
114 root 1.22 ;TODO string-upcase
115     ;TODO string-downcase
116     ;TODO string-foldcase
117     ;TODO string-copy!
118     ;TODO string-fill!
119    
120     (define substring string-copy)
121 root 1.1
122     (define (string->anyatom str pred)
123     (let* ((a (string->atom str)))
124     (if (pred a) a
125     (error "string->xxx: not a xxx" a))))
126    
127     (define (string->number str . base)
128     (let ((n (string->atom str (if (null? base) 10 (car base)))))
129     (if (number? n) n #f)))
130    
131     (define (anyatom->string n pred)
132     (if (pred n)
133     (atom->string n)
134     (error "xxx->string: not a xxx" n)))
135    
136     (define (number->string n . base)
137     (atom->string n (if (null? base) 10 (car base))))
138    
139    
140     (define (char-cmp? cmp a b)
141     (cmp (char->integer a) (char->integer b)))
142     (define (char-ci-cmp? cmp a b)
143     (cmp (char->integer (char-downcase a)) (char->integer (char-downcase b))))
144    
145     (define (char=? a b) (char-cmp? = a b))
146     (define (char<? a b) (char-cmp? < a b))
147     (define (char>? a b) (char-cmp? > a b))
148     (define (char<=? a b) (char-cmp? <= a b))
149     (define (char>=? a b) (char-cmp? >= a b))
150    
151     (define (char-ci=? a b) (char-ci-cmp? = a b))
152     (define (char-ci<? a b) (char-ci-cmp? < a b))
153     (define (char-ci>? a b) (char-ci-cmp? > a b))
154     (define (char-ci<=? a b) (char-ci-cmp? <= a b))
155     (define (char-ci>=? a b) (char-ci-cmp? >= a b))
156    
157 root 1.22 (define (digit-value ch)
158     (if (and (char<=? #\0 ch) (char<=? ch #\9))
159     (- (char->integer ch) (char->integer #\0))
160     #f))
161    
162     (define char-foldcase char-downcase)
163    
164 root 1.1 ; Note the trick of returning (cmp x y)
165     (define (string-cmp? chcmp cmp a b)
166     (let ((na (string-length a)) (nb (string-length b)))
167     (let loop ((i 0))
168     (cond
169     ((= i na)
170     (if (= i nb) (cmp 0 0) (cmp 0 1)))
171     ((= i nb)
172     (cmp 1 0))
173     ((chcmp = (string-ref a i) (string-ref b i))
174     (loop (succ i)))
175     (else
176     (chcmp cmp (string-ref a i) (string-ref b i)))))))
177    
178    
179     (define (string=? a b) (string-cmp? char-cmp? = a b))
180     (define (string<? a b) (string-cmp? char-cmp? < a b))
181     (define (string>? a b) (string-cmp? char-cmp? > a b))
182     (define (string<=? a b) (string-cmp? char-cmp? <= a b))
183     (define (string>=? a b) (string-cmp? char-cmp? >= a b))
184    
185     (define (string-ci=? a b) (string-cmp? char-ci-cmp? = a b))
186     (define (string-ci<? a b) (string-cmp? char-ci-cmp? < a b))
187     (define (string-ci>? a b) (string-cmp? char-ci-cmp? > a b))
188     (define (string-ci<=? a b) (string-cmp? char-ci-cmp? <= a b))
189     (define (string-ci>=? a b) (string-cmp? char-ci-cmp? >= a b))
190    
191     (define (list . x) x)
192    
193     (define (foldr f x lst)
194     (if (null? lst)
195     x
196     (foldr f (f x (car lst)) (cdr lst))))
197    
198     (define (unzip1-with-cdr . lists)
199     (unzip1-with-cdr-iterative lists '() '()))
200    
201     (define (unzip1-with-cdr-iterative lists cars cdrs)
202     (if (null? lists)
203     (cons cars cdrs)
204     (let ((car1 (caar lists))
205     (cdr1 (cdar lists)))
206     (unzip1-with-cdr-iterative
207     (cdr lists)
208     (append cars (list car1))
209     (append cdrs (list cdr1))))))
210    
211     (define (map proc . lists)
212     (if (null? lists)
213     (apply proc)
214     (if (null? (car lists))
215     '()
216     (let* ((unz (apply unzip1-with-cdr lists))
217     (cars (car unz))
218     (cdrs (cdr unz)))
219     (cons (apply proc cars) (apply map (cons proc cdrs)))))))
220    
221     (define (for-each proc . lists)
222     (if (null? lists)
223     (apply proc)
224     (if (null? (car lists))
225     #t
226     (let* ((unz (apply unzip1-with-cdr lists))
227     (cars (car unz))
228     (cdrs (cdr unz)))
229     (apply proc cars) (apply map (cons proc cdrs))))))
230    
231 root 1.20 (define (make-list k . fill) (vector->list (vector k (car fill))))
232    
233     (define (list-copy l) (vector->list (list->vector l)))
234    
235 root 1.1 (define (list-tail x k)
236     (if (zero? k)
237     x
238     (list-tail (cdr x) (- k 1))))
239    
240     (define (list-ref x k)
241     (car (list-tail x k)))
242    
243     (define (last-pair x)
244     (if (pair? (cdr x))
245     (last-pair (cdr x))
246     x))
247    
248     (define (head stream) (car stream))
249    
250     (define (tail stream) (force (cdr stream)))
251    
252     (define (vector-equal? x y)
253     (and (vector? x) (vector? y) (= (vector-length x) (vector-length y))
254     (let ((n (vector-length x)))
255     (let loop ((i 0))
256     (if (= i n)
257     #t
258     (and (equal? (vector-ref x i) (vector-ref y i))
259     (loop (succ i))))))))
260    
261     (define (list->vector x)
262     (apply vector x))
263    
264 root 1.22 ;TODO vector-fill! v e start end
265 root 1.1 (define (vector-fill! v e)
266     (let ((n (vector-length v)))
267     (let loop ((i 0))
268     (if (= i n)
269     v
270     (begin (vector-set! v i e) (loop (succ i)))))))
271    
272     (define (vector->list v)
273     (let loop ((n (pred (vector-length v))) (l '()))
274     (if (= n -1)
275     l
276     (loop (pred n) (cons (vector-ref v n) l)))))
277    
278 root 1.22 ;TODO vector->string vector start end
279    
280     (define (string->vector . args)
281     (list->vector (string->list (apply string-copy args))))
282    
283     ;TODO vector-copy v s e
284     ;TODO vector-copy! to at v s e
285    
286     (define (vector-append hd . tl)
287     (if (null? tl)
288     hd
289     (list->vector (append (hd (vector->list (vector-append tl)))))))
290    
291 root 1.1 ;; The following quasiquote macro is due to Eric S. Tiedemann.
292     ;; Copyright 1988 by Eric S. Tiedemann; all rights reserved.
293     ;;
294     ;; Subsequently modified to handle vectors: D. Souflis
295    
296     (macro
297     quasiquote
298     (lambda (l)
299     (define (mcons f l r)
300     (if (and (pair? r)
301     (eq? (car r) 'quote)
302     (eq? (car (cdr r)) (cdr f))
303     (pair? l)
304     (eq? (car l) 'quote)
305     (eq? (car (cdr l)) (car f)))
306     (if (or (procedure? f) (number? f) (string? f))
307     f
308     (list 'quote f))
309     (if (eqv? l vector)
310     (apply l (eval r))
311     (list 'cons l r)
312     )))
313     (define (mappend f l r)
314     (if (or (null? (cdr f))
315     (and (pair? r)
316     (eq? (car r) 'quote)
317     (eq? (car (cdr r)) '())))
318     l
319     (list 'append l r)))
320     (define (foo level form)
321     (cond ((not (pair? form))
322     (if (or (procedure? form) (number? form) (string? form))
323     form
324     (list 'quote form))
325     )
326     ((eq? 'quasiquote (car form))
327     (mcons form ''quasiquote (foo (+ level 1) (cdr form))))
328     (#t (if (zero? level)
329     (cond ((eq? (car form) 'unquote) (car (cdr form)))
330     ((eq? (car form) 'unquote-splicing)
331     (error "Unquote-splicing wasn't in a list:"
332     form))
333     ((and (pair? (car form))
334     (eq? (car (car form)) 'unquote-splicing))
335     (mappend form (car (cdr (car form)))
336     (foo level (cdr form))))
337     (#t (mcons form (foo level (car form))
338     (foo level (cdr form)))))
339     (cond ((eq? (car form) 'unquote)
340     (mcons form ''unquote (foo (- level 1)
341     (cdr form))))
342     ((eq? (car form) 'unquote-splicing)
343     (mcons form ''unquote-splicing
344     (foo (- level 1) (cdr form))))
345     (#t (mcons form (foo level (car form))
346     (foo level (cdr form)))))))))
347     (foo 0 (car (cdr l)))))
348    
349     ;;;;;Helper for the dynamic-wind definition. By Tom Breton (Tehom)
350     (define (shared-tail x y)
351     (let ((len-x (length x))
352     (len-y (length y)))
353     (define (shared-tail-helper x y)
354     (if
355     (eq? x y)
356     x
357     (shared-tail-helper (cdr x) (cdr y))))
358    
359     (cond
360     ((> len-x len-y)
361     (shared-tail-helper
362     (list-tail x (- len-x len-y))
363     y))
364     ((< len-x len-y)
365     (shared-tail-helper
366     x
367     (list-tail y (- len-y len-x))))
368     (#t (shared-tail-helper x y)))))
369    
370     ;;;;;Dynamic-wind by Tom Breton (Tehom)
371    
372     ;;Guarded because we must only eval this once, because doing so
373     ;;redefines call/cc in terms of old call/cc
374     (unless (defined? 'dynamic-wind)
375     (let
376     ;;These functions are defined in the context of a private list of
377     ;;pairs of before/after procs.
378     ( (*active-windings* '())
379     ;;We'll define some functions into the larger environment, so
380     ;;we need to know it.
381     (outer-env (current-environment)))
382    
383     ;;Poor-man's structure operations
384     (define before-func car)
385     (define after-func cdr)
386     (define make-winding cons)
387    
388     ;;Manage active windings
389     (define (activate-winding! new)
390     ((before-func new))
391     (set! *active-windings* (cons new *active-windings*)))
392     (define (deactivate-top-winding!)
393     (let ((old-top (car *active-windings*)))
394     ;;Remove it from the list first so it's not active during its
395     ;;own exit.
396     (set! *active-windings* (cdr *active-windings*))
397     ((after-func old-top))))
398    
399     (define (set-active-windings! new-ws)
400     (unless (eq? new-ws *active-windings*)
401     (let ((shared (shared-tail new-ws *active-windings*)))
402    
403     ;;Define the looping functions.
404     ;;Exit the old list. Do deeper ones last. Don't do
405     ;;any shared ones.
406     (define (pop-many)
407     (unless (eq? *active-windings* shared)
408     (deactivate-top-winding!)
409     (pop-many)))
410     ;;Enter the new list. Do deeper ones first so that the
411     ;;deeper windings will already be active. Don't do any
412     ;;shared ones.
413     (define (push-many new-ws)
414     (unless (eq? new-ws shared)
415     (push-many (cdr new-ws))
416     (activate-winding! (car new-ws))))
417    
418     ;;Do it.
419     (pop-many)
420     (push-many new-ws))))
421    
422     ;;The definitions themselves.
423     (eval
424     `(define call-with-current-continuation
425     ;;It internally uses the built-in call/cc, so capture it.
426     ,(let ((old-c/cc call-with-current-continuation))
427     (lambda (func)
428     ;;Use old call/cc to get the continuation.
429     (old-c/cc
430     (lambda (continuation)
431     ;;Call func with not the continuation itself
432     ;;but a procedure that adjusts the active
433     ;;windings to what they were when we made
434     ;;this, and only then calls the
435     ;;continuation.
436     (func
437     (let ((current-ws *active-windings*))
438     (lambda (x)
439     (set-active-windings! current-ws)
440     (continuation x)))))))))
441     outer-env)
442     ;;We can't just say "define (dynamic-wind before thunk after)"
443     ;;because the lambda it's defined to lives in this environment,
444     ;;not in the global environment.
445     (eval
446     `(define dynamic-wind
447     ,(lambda (before thunk after)
448     ;;Make a new winding
449     (activate-winding! (make-winding before after))
450     (let ((result (thunk)))
451     ;;Get rid of the new winding.
452     (deactivate-top-winding!)
453     ;;The return value is that of thunk.
454     result)))
455     outer-env)))
456    
457     (define call/cc call-with-current-continuation)
458    
459 root 1.21 (define (symbol=? hd . tl)
460     (if (null? tl)
461     #t
462     (and (symbol? hd) (eq? hd (car tl)) (symbol=? (cdr tl)))))
463 root 1.1
464 root 1.23 (define (boolean=? hd . tl)
465     (if (null? tl)
466     #t
467     (and (boolean? hd) (eq? hd (car tl)) (boolean=? (cdr tl)))))
468    
469 root 1.1 ;;;;; atom? and equal? written by a.k
470    
471     ;;;; atom?
472     (define (atom? x)
473     (not (pair? x)))
474    
475     ;;;; equal?
476     (define (equal? x y)
477     (cond
478     ((pair? x)
479     (and (pair? y)
480     (equal? (car x) (car y))
481     (equal? (cdr x) (cdr y))))
482     ((vector? x)
483     (and (vector? y) (vector-equal? x y)))
484     ((string? x)
485     (and (string? y) (string=? x y)))
486     (else (eqv? x y))))
487    
488     ;;;; (do ((var init inc) ...) (endtest result ...) body ...)
489     ;;
490     (macro do
491     (lambda (do-macro)
492     (apply (lambda (do vars endtest . body)
493     (let ((do-loop (gensym)))
494     `(letrec ((,do-loop
495     (lambda ,(map (lambda (x)
496     (if (pair? x) (car x) x))
497     `,vars)
498     (if ,(car endtest)
499     (begin ,@(cdr endtest))
500     (begin
501     ,@body
502     (,do-loop
503     ,@(map (lambda (x)
504     (cond
505     ((not (pair? x)) x)
506     ((< (length x) 3) (car x))
507     (else (car (cdr (cdr x))))))
508     `,vars)))))))
509     (,do-loop
510     ,@(map (lambda (x)
511     (if (and (pair? x) (cdr x))
512     (car (cdr x))
513     '()))
514     `,vars)))))
515     do-macro)))
516    
517     ;;;; generic-member
518     (define (generic-member cmp obj lst)
519     (cond
520     ((null? lst) #f)
521     ((cmp obj (car lst)) lst)
522     (else (generic-member cmp obj (cdr lst)))))
523    
524     (define (memq obj lst)
525     (generic-member eq? obj lst))
526     (define (memv obj lst)
527     (generic-member eqv? obj lst))
528     (define (member obj lst)
529     (generic-member equal? obj lst))
530    
531     ;;;; generic-assoc
532     (define (generic-assoc cmp obj alst)
533     (cond
534     ((null? alst) #f)
535     ((cmp obj (caar alst)) (car alst))
536     (else (generic-assoc cmp obj (cdr alst)))))
537    
538     (define (assq obj alst)
539     (generic-assoc eq? obj alst))
540     (define (assv obj alst)
541     (generic-assoc eqv? obj alst))
542     (define (assoc obj alst)
543     (generic-assoc equal? obj alst))
544    
545     (define (acons x y z) (cons (cons x y) z))
546    
547     ;;;; Handy for imperative programs
548     ;;;; Used as: (define-with-return (foo x y) .... (return z) ...)
549     (macro (define-with-return form)
550     `(define ,(cadr form)
551     (call/cc (lambda (return) ,@(cddr form)))))
552    
553     ;;;; Simple exception handling
554     ;
555     ; Exceptions are caught as follows:
556     ;
557     ; (catch (do-something to-recover and-return meaningful-value)
558     ; (if-something goes-wrong)
559     ; (with-these calls))
560     ;
561     ; "Catch" establishes a scope spanning multiple call-frames
562     ; until another "catch" is encountered.
563     ;
564     ; Exceptions are thrown with:
565     ;
566     ; (throw "message")
567     ;
568     ; If used outside a (catch ...), reverts to (error "message)
569    
570     (define *handlers* (list))
571    
572     (define (push-handler proc)
573     (set! *handlers* (cons proc *handlers*)))
574    
575     (define (pop-handler)
576     (let ((h (car *handlers*)))
577     (set! *handlers* (cdr *handlers*))
578     h))
579    
580     (define (more-handlers?)
581     (pair? *handlers*))
582    
583     (define (throw . x)
584     (if (more-handlers?)
585     (apply (pop-handler))
586     (apply error x)))
587    
588 root 1.22 ; catch handler thunk
589 root 1.1 (macro (catch form)
590     (let ((label (gensym)))
591     `(call/cc (lambda (exit)
592     (push-handler (lambda () (exit ,(cadr form))))
593     (let ((,label (begin ,@(cddr form))))
594     (pop-handler)
595     ,label)))))
596    
597     (define *error-hook* throw)
598    
599 root 1.22 ; same as above, r7rs
600     (define (with-exception-handler handler thunk)
601     (catch (handler) (thunk)))
602    
603     (define (raise-continuable x)
604     (if (more-handlers?)
605     ((pop-handler) x)
606     (error x)))
607    
608     (define (raise x)
609     (raise-continuable x)
610     (error "raise: exception handler returned"))
611    
612 root 1.24 ;(with-exception-handler
613     ; (lambda () (display (list "xerror")))
614     ; (lambda () (begin (display ("aaa") (raise 5)))))
615 root 1.22
616     ;TODO: a lot more is missing, and it doesn't work
617 root 1.1
618     ;;;;; Definition of MAKE-ENVIRONMENT, to be used with two-argument EVAL
619    
620     (macro (make-environment form)
621     `(apply (lambda ()
622     ,@(cdr form)
623     (current-environment))))
624    
625     (define-macro (eval-polymorphic x . envl)
626     (display envl)
627     (let* ((env (if (null? envl) (current-environment) (eval (car envl))))
628     (xval (eval x env)))
629     (if (closure? xval)
630     (make-closure (get-closure-code xval) env)
631     xval)))
632    
633     ; Redefine this if you install another package infrastructure
634     ; Also redefine 'package'
635     (define *colon-hook* eval)
636    
637     ;;;;; I/O
638    
639     (define (input-output-port? p)
640     (and (input-port? p) (output-port? p)))
641    
642     (define (close-port p)
643     (cond
644     ((input-output-port? p) (close-input-port (close-output-port p)))
645     ((input-port? p) (close-input-port p))
646     ((output-port? p) (close-output-port p))
647     (else (throw "Not a port" p))))
648    
649     (define (call-with-input-file s p)
650     (let ((inport (open-input-file s)))
651     (if (eq? inport #f)
652     #f
653     (let ((res (p inport)))
654     (close-input-port inport)
655     res))))
656    
657     (define (call-with-output-file s p)
658     (let ((outport (open-output-file s)))
659     (if (eq? outport #f)
660     #f
661     (let ((res (p outport)))
662     (close-output-port outport)
663     res))))
664    
665     (define (with-input-from-file s p)
666     (let ((inport (open-input-file s)))
667     (if (eq? inport #f)
668     #f
669     (let ((prev-inport (current-input-port)))
670     (set-input-port inport)
671     (let ((res (p)))
672     (close-input-port inport)
673     (set-input-port prev-inport)
674     res)))))
675    
676     (define (with-output-to-file s p)
677     (let ((outport (open-output-file s)))
678     (if (eq? outport #f)
679     #f
680     (let ((prev-outport (current-output-port)))
681     (set-output-port outport)
682     (let ((res (p)))
683     (close-output-port outport)
684     (set-output-port prev-outport)
685     res)))))
686    
687     (define (with-input-output-from-to-files si so p)
688     (let ((inport (open-input-file si))
689     (outport (open-input-file so)))
690     (if (not (and inport outport))
691     (begin
692     (close-input-port inport)
693     (close-output-port outport)
694     #f)
695     (let ((prev-inport (current-input-port))
696     (prev-outport (current-output-port)))
697     (set-input-port inport)
698     (set-output-port outport)
699     (let ((res (p)))
700     (close-input-port inport)
701     (close-output-port outport)
702     (set-input-port prev-inport)
703     (set-output-port prev-outport)
704     res)))))
705    
706     ; Random number generator (maximum cycle)
707     (define *seed* 1)
708     (define (random-next)
709     (let* ((a 16807) (m 2147483647) (q (quotient m a)) (r (modulo m a)))
710     (set! *seed*
711     (- (* a (- *seed*
712     (* (quotient *seed* q) q)))
713     (* (quotient *seed* q) r)))
714     (if (< *seed* 0) (set! *seed* (+ *seed* m)))
715     *seed*))
716 root 1.3
717 root 1.1 ;; SRFI-0
718     ;; COND-EXPAND
719     ;; Implemented as a macro
720     (define *features* '(srfi-0))
721    
722     (define-macro (cond-expand . cond-action-list)
723     (cond-expand-runtime cond-action-list))
724    
725     (define (cond-expand-runtime cond-action-list)
726     (if (null? cond-action-list)
727     #t
728     (if (cond-eval (caar cond-action-list))
729     `(begin ,@(cdar cond-action-list))
730     (cond-expand-runtime (cdr cond-action-list)))))
731    
732     (define (cond-eval-and cond-list)
733     (foldr (lambda (x y) (and (cond-eval x) (cond-eval y))) #t cond-list))
734    
735     (define (cond-eval-or cond-list)
736     (foldr (lambda (x y) (or (cond-eval x) (cond-eval y))) #f cond-list))
737    
738     (define (cond-eval condition)
739     (cond
740     ((symbol? condition)
741     (if (member condition *features*) #t #f))
742     ((eq? condition #t) #t)
743     ((eq? condition #f) #f)
744     (else (case (car condition)
745     ((and) (cond-eval-and (cdr condition)))
746     ((or) (cond-eval-or (cdr condition)))
747     ((not) (if (not (null? (cddr condition)))
748     (error "cond-expand : 'not' takes 1 argument")
749     (not (cond-eval (cadr condition)))))
750     (else (error "cond-expand : unknown operator" (car condition)))))))
751    
752 root 1.7 ; compatibility functions added by schmorp@schmorp.de
753     (macro (defmacro dform)
754     (let ((name (cadr dform)) (formals (caddr dform)) (body (cdddr dform)))
755     `(define-macro (,name . ,formals) ,@body)))
756    
757 root 1.8 ;; r7rs
758     ; sring-map, vector-map, string-for-each, vector-for-each
759     ; bytevectors
760    
761 root 1.5 ;; srfi-1
762    
763     (define (check-arg pred val caller)
764     (let lp ((val val))
765     (if (pred val) val (lp (error "Bad argument" val pred caller)))))
766    
767 root 1.12 ; Some macros and functions that the SRFI 1 reference implementation
768     ; requires that it does not define and are not part of R5RS.
769    
770     (define-macro let-optionals
771     (lambda (input names . code)
772     (let ((input-left (gensym)))
773     `(let ((,input-left ,input))
774     ,(let next ((names names))
775     (if (null? names)
776     `(begin ,@code)
777     `(let ((,input-left (if (null? ,input-left)
778     '()
779     (cdr ,input-left)))
780     (,(caar names) (if (null? ,input-left)
781     ,(cadar names)
782     (car ,input-left))))
783     ,(next (cdr names)))))))))
784    
785     (define-macro receive
786     (lambda (names values . code)
787     `(call-with-values (lambda () ,values)
788     (lambda ,names ,@code))))
789    
790    
791     (define (:optional data default)
792     (if (null? data)
793     default
794     (car data)))
795    
796     (load "srfi-1.scm")
797    
798 root 1.24 ;; macros-by-example
799 root 1.12
800 root 1.24 (define append!
801     (lambda args
802     (cond ((null? args) '())
803     ((null? (cdr args)) (car args))
804 root 1.25 ((null? (car args)) (apply append! (cdr args)))
805 root 1.24 (else
806     (set-cdr! (last-pair (car args))
807 root 1.25 (apply append! (cdr args)))
808 root 1.24 (car args)))))
809    
810     (define (some pred lst . rest)
811     (cond ((null? rest)
812     (let mapf ((lst lst))
813     (and (not (null? lst))
814     (or (pred (car lst)) (mapf (cdr lst))))))
815     (else (let mapf ((lst lst) (rest rest))
816     (and (not (null? lst))
817     (or (apply pred (car lst) (map car rest))
818     (mapf (cdr lst) (map cdr rest))))))))
819    
820     (define (every pred lst . rest)
821     (cond ((null? rest)
822     (let mapf ((lst lst))
823     (or (null? lst)
824     (and (pred (car lst)) (mapf (cdr lst))))))
825     (else (let mapf ((lst lst) (rest rest))
826     (or (null? lst)
827     (and (apply pred (car lst) (map car rest))
828     (mapf (cdr lst) (map cdr rest))))))))
829 root 1.13
830 root 1.25 ;;;@ From: hugh@ear.mit.edu (Hugh Secker-Walker)
831     (define (nreverse rev-it)
832     ;;; Reverse order of elements of LIST by mutating cdrs.
833     (cond ((null? rev-it) rev-it)
834     ((not (list? rev-it))
835     (error "nreverse: Not a list in arg1" rev-it))
836     (else (do ((reved '() rev-it)
837     (rev-cdr (cdr rev-it) (cdr rev-cdr))
838     (rev-it rev-it rev-cdr))
839     ((begin (set-cdr! rev-it reved) (null? rev-cdr)) rev-it)))))
840    
841 root 1.24 (load "mbe.scm")
842 root 1.13
843 root 1.25 (load "srfi-55.scm")
844    
845     (register-extension '(srfi 1) (lambda () ())) ; list library, always loaded
846     (register-extension '(srfi 8) (lambda () ())) ; receive always available
847     ;(register-extension '(srfi 9) (lambda () (load "srfi-9.scmx")))
848     (register-extension '(srfi 11) (lambda () (load "srfi-11.scm"))) ; let-values
849     (register-extension '(srfi 13) (lambda () (load "srfi-13.scm"))) ; string library
850     (register-extension '(srfi 16) (lambda () (load "srfi-16.scm"))) ; casd-lambda
851     (register-extension '(srfi 23) (lambda () ())) ; error builtin
852     (register-extension '(srfi 42) (lambda () (load "srfi-42.scm"))) ; eager list comprehensions
853     (register-extension '(srfi 55) (lambda () ())) ; extension mechanism, always available
854     (register-extension '(srfi 61) (lambda () (load "srfi-61.scm"))) ; more general cond (=>)
855    
856     ;; end of init
857    
858     ;(load "test.scm")
859    
860 root 1.14 (load "test.scm")
861    
862 root 1.15 (gc-verbose #f)
863 root 1.25