ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/keyboard.C
Revision: 1.14
Committed: Sat Mar 12 23:35:14 2005 UTC (19 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-5_3
Changes since 1.13: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 #include "../config.h"
2     #include "rxvt.h"
3 root 1.7
4     #ifdef KEYSYM_RESOURCE
5    
6     #include <cstring>
7    
8 root 1.1 #include "keyboard.h"
9     #include "command.h"
10    
11 root 1.13 /* an intro to the data structure:
12     *
13     * vector keymap[] is grouped.
14     *
15     * inside each group, elements are sorted by the criteria given by compare_priority().
16     * the lookup of keysym is done in two steps:
17     * 1) locate the group corresponds to the keysym;
18     * 2) do a linear search inside the group.
19     *
20     * array hash[] effectively defines a map from a keysym to a group in keymap[].
21     *
22     * each group has its address(the index of first group element in keymap[]),
23     * which is computed and stored in hash[].
24     * hash[] stores the addresses in the form of:
25     * index: 0 I1 I2 I3 In
26     * value: 0...0, A1...A1, A2...A2, A3...A3, ..., An...An
27     * where
28     * A1 = 0;
29     * Ai+1 = N1 + N2 + ... + Ni.
30     * it is computed from hash_budget_size[]:
31     * index: 0 I1 I2 I3 In
32     * value: 0...0, N1, 0...0, N2, 0...0, N3, ..., Nn, 0...0
33     * 0...0, 0.......0, N1.....N1, N1+N2...N1+N2, ... (the compution of hash[])
34     * or we can say
35     * hash_budget_size[Ii] = Ni; hash_budget_size[elsewhere] = 0,
36     * where
37     * set {I1, I2, ..., In} = { hashkey of keymap[0]->keysym, ..., keymap[keymap.size-1]->keysym }
38     * where hashkey of keymap[i]->keysym = keymap[i]->keysym & KEYSYM_HASH_MASK
39     * n(the number of groups) = the number of non-zero member of hash_budget_size[];
40     * Ni(the size of group i) = hash_budget_size[Ii].
41     */
42    
43 root 1.12 #if STOCK_KEYMAP
44 root 1.1 ////////////////////////////////////////////////////////////////////////////////
45     // default keycode translation map and keyevent handlers
46    
47 root 1.2 keysym_t keyboard_manager::stock_keymap[] = {
48 root 1.1 /* examples */
49 root 1.10 /* keysym, state, range, handler, str */
50     //{XK_ISO_Left_Tab, 0, 1, keysym_t::NORMAL, "\033[Z"},
51     //{ 'a', 0, 26, keysym_t::RANGE_META8, "a" "%c"},
52     //{ 'a', ControlMask, 26, keysym_t::RANGE_META8, "" "%c"},
53     //{ XK_Left, 0, 4, keysym_t::LIST, ".\033[.DACB."},
54     //{ XK_Left, ShiftMask, 4, keysym_t::LIST, ".\033[.dacb."},
55     //{ XK_Left, ControlMask, 4, keysym_t::LIST, ".\033O.dacb."},
56     //{ XK_Tab, ControlMask, 1, keysym_t::NORMAL, "\033<C-Tab>"},
57     //{ XK_apostrophe, ControlMask, 1, keysym_t::NORMAL, "\033<C-'>"},
58     //{ XK_slash, ControlMask, 1, keysym_t::NORMAL, "\033<C-/>"},
59     //{ XK_semicolon, ControlMask, 1, keysym_t::NORMAL, "\033<C-;>"},
60     //{ XK_grave, ControlMask, 1, keysym_t::NORMAL, "\033<C-`>"},
61     //{ XK_comma, ControlMask, 1, keysym_t::NORMAL, "\033<C-\054>"},
62     //{ XK_Return, ControlMask, 1, keysym_t::NORMAL, "\033<C-Return>"},
63     //{ XK_Return, ShiftMask, 1, keysym_t::NORMAL, "\033<S-Return>"},
64     //{ ' ', ShiftMask, 1, keysym_t::NORMAL, "\033<S-Space>"},
65     //{ '.', ControlMask, 1, keysym_t::NORMAL, "\033<C-.>"},
66     //{ '0', ControlMask, 10, keysym_t::RANGE, "0" "\033<C-%c>"},
67     //{ '0', MetaMask|ControlMask, 10, keysym_t::RANGE, "0" "\033<M-C-%c>"},
68     //{ 'a', MetaMask|ControlMask, 26, keysym_t::RANGE, "a" "\033<M-C-%c>"},
69 root 1.1 };
70 root 1.12 #endif
71 root 1.1
72 root 1.2 static void
73     output_string (rxvt_term *rt, const char *str)
74 root 1.1 {
75 root 1.10 if (strncmp (str, "command:", 8) == 0)
76     rt->cmd_write ((unsigned char *)str + 8, strlen (str) - 8);
77 root 1.1 else
78 root 1.2 rt->tt_write ((unsigned char *)str, strlen (str));
79 root 1.1 }
80    
81 root 1.2 static void
82     output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen)
83 root 1.1 {
84     if (state & rt->ModMetaMask)
85     {
86     #ifdef META8_OPTION
87 root 1.2 if (rt->meta_char == 0x80) /* set 8-bit on */
88 root 1.1 {
89     for (char *ch = buf; ch < buf + buflen; ch++)
90     *ch |= 0x80;
91     }
92 root 1.2 else if (rt->meta_char == C0_ESC) /* escape prefix */
93 root 1.1 #endif
94     {
95 root 1.5 const unsigned char ch = C0_ESC;
96 root 1.1 rt->tt_write (&ch, 1);
97     }
98     }
99    
100 root 1.2 rt->tt_write ((unsigned char *) buf, buflen);
101 root 1.1 }
102    
103 root 1.2 static int
104     format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize)
105 root 1.1 {
106 root 1.7 size_t len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]);
107 root 1.1
108 root 1.7 if (len >= (size_t)bufsize)
109 root 1.1 {
110 root 1.7 rxvt_warn ("format_keyrange_string: formatting failed, ignoring key.\n");
111 root 1.5 *buf = 0;
112 root 1.1 }
113    
114     return len;
115     }
116    
117     ////////////////////////////////////////////////////////////////////////////////
118     // return: #bits of '1'
119 root 1.7 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
120     # define bitcount(n) (__extension__ ({ uint32_t n__ = (n); __builtin_popcount (n); }))
121     #else
122 root 1.2 static int
123 root 1.7 bitcount (uint16_t n)
124 root 1.1 {
125     int i;
126 root 1.2
127 root 1.7 for (i = 0; n; ++i, n &= n - 1)
128 root 1.2 ;
129    
130 root 1.1 return i;
131     }
132 root 1.7 #endif
133 root 1.1
134     // return: priority_of_a - priority_of_b
135 root 1.2 static int
136 root 1.1 compare_priority (keysym_t *a, keysym_t *b)
137     {
138     // (the more '1's in state; the less range): the greater priority
139 root 1.2 int ca = bitcount (a->state /* & OtherModMask */);
140     int cb = bitcount (b->state /* & OtherModMask */);
141    
142 root 1.1 if (ca != cb)
143     return ca - cb;
144     //else if (a->state != b->state) // this behavior is to be disscussed
145     // return b->state - a->state;
146     else
147     return b->range - a->range;
148     }
149    
150     ////////////////////////////////////////////////////////////////////////////////
151 root 1.2 keyboard_manager::keyboard_manager ()
152 root 1.1 {
153 root 1.2 keymap.reserve (256);
154 root 1.4 hash [0] = 1; // hash[0] != 0 indicates uninitialized data
155 root 1.1 }
156    
157     keyboard_manager::~keyboard_manager ()
158     {
159     clear ();
160     }
161    
162     void
163     keyboard_manager::clear ()
164     {
165 root 1.2 keymap.clear ();
166     hash [0] = 2;
167 root 1.1
168 root 1.2 for (unsigned int i = 0; i < user_translations.size (); ++i)
169 root 1.1 {
170 root 1.2 free ((void *)user_translations [i]);
171     user_translations [i] = 0;
172 root 1.1 }
173    
174 root 1.2 for (unsigned int i = 0; i < user_keymap.size (); ++i)
175 root 1.1 {
176 root 1.2 delete user_keymap [i];
177     user_keymap [i] = 0;
178 root 1.1 }
179    
180 root 1.2 user_keymap.clear ();
181     user_translations.clear ();
182 root 1.1 }
183    
184     // a wrapper for register_keymap,
185     // so that outside codes don't have to know so much details.
186     //
187     // the string 'trans' is copied to an internal managed buffer,
188     // so the caller can free memory of 'trans' at any time.
189     void
190 root 1.2 keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans)
191 root 1.1 {
192     keysym_t *key = new keysym_t;
193 root 1.2 wchar_t *wc = rxvt_mbstowcs (trans);
194     const char *translation = rxvt_wcstoutf8 (wc);
195     free (wc);
196 root 1.1
197 root 1.2 if (key && translation)
198 root 1.1 {
199     key->keysym = keysym;
200 root 1.2 key->state = state;
201     key->range = 1;
202     key->str = translation;
203     key->type = keysym_t::NORMAL;
204    
205     if (strncmp (translation, "list", 4) == 0 && translation [4])
206     {
207     char *middle = strchr (translation + 5, translation [4]);
208     char *suffix = strrchr (translation + 5, translation [4]);
209    
210     if (suffix && middle && suffix > middle + 1)
211     {
212     key->type = keysym_t::LIST;
213     key->range = suffix - middle - 1;
214 root 1.1
215 root 1.2 strcpy (translation, translation + 4);
216     }
217     else
218 root 1.7 rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation);
219 root 1.1 }
220    
221 root 1.2 user_keymap.push_back (key);
222     user_translations.push_back (translation);
223 root 1.1 register_keymap (key);
224     }
225     else
226     {
227     delete key;
228 root 1.2 free ((void *)translation);
229 root 1.1 rxvt_fatal ("out of memory, aborting.\n");
230     }
231     }
232    
233     void
234     keyboard_manager::register_keymap (keysym_t *key)
235     {
236 root 1.2 if (keymap.size () == keymap.capacity ())
237     keymap.reserve (keymap.size () * 2);
238 root 1.1
239 root 1.2 keymap.push_back (key);
240     hash[0] = 3;
241 root 1.1 }
242    
243     void
244     keyboard_manager::register_done ()
245     {
246 root 1.12 #if STOCK_KEYMAP
247     int n = sizeof (stock_keymap) / sizeof (keysym_t);
248 root 1.1
249 root 1.12 //TODO: shield against repeated calls and empty keymap
250     //if (keymap.back () != &stock_keymap[n - 1])
251     for (int i = 0; i < n; ++i)
252 root 1.2 register_keymap (&stock_keymap[i]);
253 root 1.12 #endif
254 root 1.1
255     purge_duplicate_keymap ();
256    
257     setup_hash ();
258     }
259    
260 root 1.2 bool
261     keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state)
262 root 1.1 {
263 root 1.2 assert (hash[0] == 0 && "register_done() need to be called");
264 root 1.1
265 root 1.14 state &= OtherModMask; // mask out uninteresting modifiers
266    
267 root 1.6 if (state & term->ModMetaMask) state |= MetaMask;
268     if (state & term->ModNumLockMask) state |= NumLockMask;
269     if (state & term->ModLevel3Mask) state |= Level3Mask;
270 root 1.3
271     if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask))
272     state |= AppKeypadMask;
273    
274 root 1.1 int index = find_keysym (keysym, state);
275    
276     if (index >= 0)
277     {
278 root 1.2 const keysym_t &key = *keymap [index];
279    
280     int keysym_offset = keysym - key.keysym;
281    
282     wchar_t *wc = rxvt_utf8towcs (key.str);
283     char *str = rxvt_wcstombs (wc);
284 root 1.11 // TODO: do (some) translations, unescaping etc, here (allow \u escape etc.)
285 root 1.2 free (wc);
286    
287     switch (key.type)
288     {
289     case keysym_t::NORMAL:
290     output_string (term, str);
291     break;
292    
293     case keysym_t::RANGE:
294     {
295     char buf[STRING_MAX];
296    
297     if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0)
298     output_string (term, buf);
299     }
300     break;
301    
302     case keysym_t::RANGE_META8:
303     {
304     int len;
305     char buf[STRING_MAX];
306    
307     len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf));
308     if (len > 0)
309     output_string_meta8 (term, state, buf, len);
310     }
311     break;
312    
313     case keysym_t::LIST:
314     {
315     char buf[STRING_MAX];
316    
317     char *prefix, *middle, *suffix;
318    
319     prefix = str;
320     middle = strchr (prefix + 1, *prefix);
321     suffix = strrchr (middle + 1, *prefix);
322    
323     memcpy (buf, prefix + 1, middle - prefix - 1);
324     buf [middle - prefix - 1] = middle [keysym_offset + 1];
325     strcpy (buf + (middle - prefix), suffix + 1);
326    
327     output_string (term, buf);
328     }
329     break;
330     }
331    
332     free (str);
333    
334 root 1.1 return true;
335     }
336     else
337 root 1.11 return false;
338 root 1.1 }
339    
340 root 1.2 // purge duplicate keymap entries
341     void keyboard_manager::purge_duplicate_keymap ()
342 root 1.1 {
343 root 1.2 for (unsigned int i = 0; i < keymap.size (); ++i)
344 root 1.1 {
345     for (unsigned int j = 0; j < i; ++j)
346     {
347 root 1.4 if (keymap [i] == keymap [j])
348 root 1.1 {
349 root 1.4 while (keymap [i] == keymap.back ())
350 root 1.2 keymap.pop_back ();
351    
352     if (i < keymap.size ())
353 root 1.1 {
354 root 1.2 keymap[i] = keymap.back ();
355     keymap.pop_back ();
356 root 1.1 }
357 root 1.11
358 root 1.1 break;
359     }
360     }
361     }
362     }
363    
364     void
365     keyboard_manager::setup_hash ()
366     {
367     unsigned int i, index, hashkey;
368 root 1.2 vector <keysym_t *> sorted_keymap;
369     uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget
370     uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget
371 root 1.1
372     memset (hash_budget_size, 0, sizeof (hash_budget_size));
373     memset (hash_budget_counter, 0, sizeof (hash_budget_counter));
374    
375 root 1.11 // determine hash bucket size
376 root 1.2 for (i = 0; i < keymap.size (); ++i)
377 root 1.11 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
378     {
379     hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
380     ++hash_budget_size [hashkey];
381     }
382 root 1.1
383     // now we know the size of each budget
384     // compute the index of each budget
385 root 1.4 hash [0] = 0;
386 root 1.2 for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i)
387 root 1.1 {
388 root 1.4 index += hash_budget_size [i - 1];
389 root 1.11 hash [i] = index;
390 root 1.1 }
391 root 1.2
392 root 1.1 // and allocate just enough space
393 root 1.4 sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0);
394 root 1.1
395     // fill in sorted_keymap
396     // it is sorted in each budget
397 root 1.2 for (i = 0; i < keymap.size (); ++i)
398 root 1.11 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
399     {
400     hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
401    
402     index = hash [hashkey] + hash_budget_counter [hashkey];
403    
404     while (index > hash [hashkey]
405     && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0)
406     {
407     sorted_keymap [index] = sorted_keymap [index - 1];
408     --index;
409     }
410    
411     sorted_keymap [index] = keymap [i];
412     ++hash_budget_counter [hashkey];
413     }
414 root 1.1
415 root 1.2 keymap.swap (sorted_keymap);
416 root 1.1
417     #if defined (DEBUG_STRICT) || defined (DEBUG_KEYBOARD)
418     // check for invariants
419     for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i)
420     {
421 root 1.2 index = hash[i];
422 root 1.4 for (int j = 0; j < hash_budget_size [i]; ++j)
423 root 1.1 {
424 root 1.4 if (keymap [index + j]->range == 1)
425     assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK));
426 root 1.2
427 root 1.1 if (j)
428 root 1.4 assert (compare_priority (keymap [index + j - 1],
429     keymap [index + j]) >= 0);
430 root 1.1 }
431     }
432    
433     // this should be able to detect most possible bugs
434     for (i = 0; i < sorted_keymap.size (); ++i)
435     {
436     keysym_t *a = sorted_keymap[i];
437     for (int j = 0; j < a->range; ++j)
438     {
439 root 1.7 int index = find_keysym (a->keysym + j, a->state);
440 root 1.6
441 root 1.1 assert (index >= 0);
442 root 1.4 keysym_t *b = keymap [index];
443 root 1.2 assert (i == (signed) index || // the normally expected result
444 root 1.10 (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same or a closer match
445 root 1.1 }
446     }
447     #endif
448     }
449    
450     int
451     keyboard_manager::find_keysym (KeySym keysym, unsigned int state)
452     {
453 root 1.2 int hashkey = keysym & KEYSYM_HASH_MASK;
454     unsigned int index = hash [hashkey];
455 root 1.11 unsigned int end = hashkey < KEYSYM_HASH_BUDGETS - 1
456     ? hash [hashkey + 1]
457     : keymap.size ();
458 root 1.1
459 root 1.11 for (; index < end; ++index)
460 root 1.1 {
461 root 1.4 keysym_t *key = keymap [index];
462 root 1.2
463 root 1.11 if (key->keysym <= keysym && keysym < key->keysym + key->range
464 root 1.1 // match only the specified bits in state and ignore others
465 root 1.7 && (key->state & state) == key->state)
466 root 1.2 return index;
467 root 1.1 }
468    
469     return -1;
470     }
471    
472     #endif /* KEYSYM_RESOURCE */
473     // vim:et:ts=2:sw=2