ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/keyboard.C
Revision: 1.19
Committed: Wed Jan 4 04:42:45 2006 UTC (18 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-6_3
Changes since 1.18: +5 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 #include "../config.h"
2     #include "rxvt.h"
3 root 1.7
4     #ifdef KEYSYM_RESOURCE
5    
6     #include <cstring>
7    
8 root 1.18 #include "rxvtperl.h"
9 root 1.1 #include "keyboard.h"
10     #include "command.h"
11    
12 root 1.13 /* an intro to the data structure:
13     *
14     * vector keymap[] is grouped.
15     *
16     * inside each group, elements are sorted by the criteria given by compare_priority().
17     * the lookup of keysym is done in two steps:
18     * 1) locate the group corresponds to the keysym;
19     * 2) do a linear search inside the group.
20     *
21     * array hash[] effectively defines a map from a keysym to a group in keymap[].
22     *
23     * each group has its address(the index of first group element in keymap[]),
24     * which is computed and stored in hash[].
25     * hash[] stores the addresses in the form of:
26     * index: 0 I1 I2 I3 In
27     * value: 0...0, A1...A1, A2...A2, A3...A3, ..., An...An
28     * where
29     * A1 = 0;
30     * Ai+1 = N1 + N2 + ... + Ni.
31     * it is computed from hash_budget_size[]:
32     * index: 0 I1 I2 I3 In
33     * value: 0...0, N1, 0...0, N2, 0...0, N3, ..., Nn, 0...0
34     * 0...0, 0.......0, N1.....N1, N1+N2...N1+N2, ... (the compution of hash[])
35     * or we can say
36     * hash_budget_size[Ii] = Ni; hash_budget_size[elsewhere] = 0,
37     * where
38     * set {I1, I2, ..., In} = { hashkey of keymap[0]->keysym, ..., keymap[keymap.size-1]->keysym }
39     * where hashkey of keymap[i]->keysym = keymap[i]->keysym & KEYSYM_HASH_MASK
40     * n(the number of groups) = the number of non-zero member of hash_budget_size[];
41     * Ni(the size of group i) = hash_budget_size[Ii].
42     */
43    
44 root 1.12 #if STOCK_KEYMAP
45 root 1.1 ////////////////////////////////////////////////////////////////////////////////
46     // default keycode translation map and keyevent handlers
47    
48 root 1.2 keysym_t keyboard_manager::stock_keymap[] = {
49 root 1.1 /* examples */
50 root 1.10 /* keysym, state, range, handler, str */
51     //{XK_ISO_Left_Tab, 0, 1, keysym_t::NORMAL, "\033[Z"},
52     //{ 'a', 0, 26, keysym_t::RANGE_META8, "a" "%c"},
53     //{ 'a', ControlMask, 26, keysym_t::RANGE_META8, "" "%c"},
54     //{ XK_Left, 0, 4, keysym_t::LIST, ".\033[.DACB."},
55     //{ XK_Left, ShiftMask, 4, keysym_t::LIST, ".\033[.dacb."},
56     //{ XK_Left, ControlMask, 4, keysym_t::LIST, ".\033O.dacb."},
57     //{ XK_Tab, ControlMask, 1, keysym_t::NORMAL, "\033<C-Tab>"},
58     //{ XK_apostrophe, ControlMask, 1, keysym_t::NORMAL, "\033<C-'>"},
59     //{ XK_slash, ControlMask, 1, keysym_t::NORMAL, "\033<C-/>"},
60     //{ XK_semicolon, ControlMask, 1, keysym_t::NORMAL, "\033<C-;>"},
61     //{ XK_grave, ControlMask, 1, keysym_t::NORMAL, "\033<C-`>"},
62     //{ XK_comma, ControlMask, 1, keysym_t::NORMAL, "\033<C-\054>"},
63     //{ XK_Return, ControlMask, 1, keysym_t::NORMAL, "\033<C-Return>"},
64     //{ XK_Return, ShiftMask, 1, keysym_t::NORMAL, "\033<S-Return>"},
65     //{ ' ', ShiftMask, 1, keysym_t::NORMAL, "\033<S-Space>"},
66     //{ '.', ControlMask, 1, keysym_t::NORMAL, "\033<C-.>"},
67     //{ '0', ControlMask, 10, keysym_t::RANGE, "0" "\033<C-%c>"},
68     //{ '0', MetaMask|ControlMask, 10, keysym_t::RANGE, "0" "\033<M-C-%c>"},
69     //{ 'a', MetaMask|ControlMask, 26, keysym_t::RANGE, "a" "\033<M-C-%c>"},
70 root 1.1 };
71 root 1.12 #endif
72 root 1.1
73 root 1.2 static void
74     output_string (rxvt_term *rt, const char *str)
75 root 1.1 {
76 root 1.10 if (strncmp (str, "command:", 8) == 0)
77 root 1.19 rt->cmd_write (str + 8, strlen (str) - 8);
78 root 1.18 else if (strncmp (str, "perl:", 5) == 0)
79     PERL_INVOKE((rt, HOOK_KEYBOARD_COMMAND, DT_STRING, str + 5, DT_END));
80 root 1.1 else
81 root 1.19 rt->tt_write (str, strlen (str));
82 root 1.1 }
83    
84 root 1.2 static void
85     output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen)
86 root 1.1 {
87     if (state & rt->ModMetaMask)
88     {
89     #ifdef META8_OPTION
90 root 1.2 if (rt->meta_char == 0x80) /* set 8-bit on */
91 root 1.1 {
92     for (char *ch = buf; ch < buf + buflen; ch++)
93     *ch |= 0x80;
94     }
95 root 1.2 else if (rt->meta_char == C0_ESC) /* escape prefix */
96 root 1.1 #endif
97     {
98 root 1.19 const char ch = C0_ESC;
99 root 1.1 rt->tt_write (&ch, 1);
100     }
101     }
102    
103 root 1.19 rt->tt_write (buf, buflen);
104 root 1.1 }
105    
106 root 1.2 static int
107     format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize)
108 root 1.1 {
109 root 1.7 size_t len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]);
110 root 1.1
111 root 1.7 if (len >= (size_t)bufsize)
112 root 1.1 {
113 root 1.7 rxvt_warn ("format_keyrange_string: formatting failed, ignoring key.\n");
114 root 1.5 *buf = 0;
115 root 1.1 }
116    
117     return len;
118     }
119    
120     ////////////////////////////////////////////////////////////////////////////////
121     // return: #bits of '1'
122 root 1.7 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
123 root 1.17 # define bitcount(n) (__extension__ ({ uint32_t n__ = (n); __builtin_popcount (n__); }))
124 root 1.7 #else
125 root 1.2 static int
126 root 1.7 bitcount (uint16_t n)
127 root 1.1 {
128     int i;
129 root 1.2
130 root 1.7 for (i = 0; n; ++i, n &= n - 1)
131 root 1.2 ;
132    
133 root 1.1 return i;
134     }
135 root 1.7 #endif
136 root 1.1
137     // return: priority_of_a - priority_of_b
138 root 1.2 static int
139 root 1.1 compare_priority (keysym_t *a, keysym_t *b)
140     {
141     // (the more '1's in state; the less range): the greater priority
142 root 1.2 int ca = bitcount (a->state /* & OtherModMask */);
143     int cb = bitcount (b->state /* & OtherModMask */);
144    
145 root 1.1 if (ca != cb)
146     return ca - cb;
147     //else if (a->state != b->state) // this behavior is to be disscussed
148     // return b->state - a->state;
149     else
150     return b->range - a->range;
151     }
152    
153     ////////////////////////////////////////////////////////////////////////////////
154 root 1.2 keyboard_manager::keyboard_manager ()
155 root 1.1 {
156 root 1.2 keymap.reserve (256);
157 root 1.4 hash [0] = 1; // hash[0] != 0 indicates uninitialized data
158 root 1.1 }
159    
160     keyboard_manager::~keyboard_manager ()
161     {
162     clear ();
163     }
164    
165     void
166     keyboard_manager::clear ()
167     {
168 root 1.2 keymap.clear ();
169     hash [0] = 2;
170 root 1.1
171 root 1.2 for (unsigned int i = 0; i < user_translations.size (); ++i)
172 root 1.1 {
173 root 1.2 free ((void *)user_translations [i]);
174     user_translations [i] = 0;
175 root 1.1 }
176    
177 root 1.2 for (unsigned int i = 0; i < user_keymap.size (); ++i)
178 root 1.1 {
179 root 1.2 delete user_keymap [i];
180     user_keymap [i] = 0;
181 root 1.1 }
182    
183 root 1.2 user_keymap.clear ();
184     user_translations.clear ();
185 root 1.1 }
186    
187     // a wrapper for register_keymap,
188     // so that outside codes don't have to know so much details.
189     //
190     // the string 'trans' is copied to an internal managed buffer,
191     // so the caller can free memory of 'trans' at any time.
192     void
193 root 1.2 keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans)
194 root 1.1 {
195     keysym_t *key = new keysym_t;
196 root 1.2 wchar_t *wc = rxvt_mbstowcs (trans);
197 root 1.19 char *translation = rxvt_wcstoutf8 (wc);
198 root 1.2 free (wc);
199 root 1.1
200 root 1.2 if (key && translation)
201 root 1.1 {
202     key->keysym = keysym;
203 root 1.2 key->state = state;
204     key->range = 1;
205     key->str = translation;
206     key->type = keysym_t::NORMAL;
207    
208     if (strncmp (translation, "list", 4) == 0 && translation [4])
209     {
210     char *middle = strchr (translation + 5, translation [4]);
211     char *suffix = strrchr (translation + 5, translation [4]);
212    
213     if (suffix && middle && suffix > middle + 1)
214     {
215     key->type = keysym_t::LIST;
216     key->range = suffix - middle - 1;
217 root 1.1
218 root 1.2 strcpy (translation, translation + 4);
219     }
220     else
221 root 1.7 rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation);
222 root 1.1 }
223 root 1.16 else if (strncmp (translation, "builtin:", 8) == 0)
224     key->type = keysym_t::BUILTIN;
225 root 1.1
226 root 1.2 user_keymap.push_back (key);
227     user_translations.push_back (translation);
228 root 1.1 register_keymap (key);
229     }
230     else
231     {
232     delete key;
233 root 1.2 free ((void *)translation);
234 root 1.1 rxvt_fatal ("out of memory, aborting.\n");
235     }
236     }
237    
238     void
239     keyboard_manager::register_keymap (keysym_t *key)
240     {
241 root 1.2 if (keymap.size () == keymap.capacity ())
242     keymap.reserve (keymap.size () * 2);
243 root 1.1
244 root 1.2 keymap.push_back (key);
245     hash[0] = 3;
246 root 1.1 }
247    
248     void
249     keyboard_manager::register_done ()
250     {
251 root 1.12 #if STOCK_KEYMAP
252     int n = sizeof (stock_keymap) / sizeof (keysym_t);
253 root 1.1
254 root 1.12 //TODO: shield against repeated calls and empty keymap
255     //if (keymap.back () != &stock_keymap[n - 1])
256     for (int i = 0; i < n; ++i)
257 root 1.2 register_keymap (&stock_keymap[i]);
258 root 1.12 #endif
259 root 1.1
260     purge_duplicate_keymap ();
261    
262     setup_hash ();
263     }
264    
265 root 1.2 bool
266     keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state)
267 root 1.1 {
268 root 1.2 assert (hash[0] == 0 && "register_done() need to be called");
269 root 1.1
270 root 1.14 state &= OtherModMask; // mask out uninteresting modifiers
271    
272 root 1.6 if (state & term->ModMetaMask) state |= MetaMask;
273     if (state & term->ModNumLockMask) state |= NumLockMask;
274     if (state & term->ModLevel3Mask) state |= Level3Mask;
275 root 1.3
276     if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask))
277     state |= AppKeypadMask;
278    
279 root 1.1 int index = find_keysym (keysym, state);
280    
281     if (index >= 0)
282     {
283 root 1.2 const keysym_t &key = *keymap [index];
284    
285 root 1.16 if (key.type != keysym_t::BUILTIN)
286     {
287     int keysym_offset = keysym - key.keysym;
288 root 1.2
289 root 1.16 wchar_t *wc = rxvt_utf8towcs (key.str);
290     char *str = rxvt_wcstombs (wc);
291     // TODO: do (some) translations, unescaping etc, here (allow \u escape etc.)
292     free (wc);
293 root 1.2
294 root 1.16 switch (key.type)
295     {
296     case keysym_t::NORMAL:
297     output_string (term, str);
298     break;
299 root 1.2
300 root 1.16 case keysym_t::RANGE:
301     {
302     char buf[STRING_MAX];
303 root 1.2
304 root 1.16 if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0)
305     output_string (term, buf);
306     }
307     break;
308 root 1.2
309 root 1.16 case keysym_t::RANGE_META8:
310     {
311     int len;
312     char buf[STRING_MAX];
313 root 1.2
314 root 1.16 len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf));
315     if (len > 0)
316     output_string_meta8 (term, state, buf, len);
317     }
318     break;
319 root 1.2
320 root 1.16 case keysym_t::LIST:
321     {
322     char buf[STRING_MAX];
323 root 1.2
324 root 1.16 char *prefix, *middle, *suffix;
325 root 1.2
326 root 1.16 prefix = str;
327     middle = strchr (prefix + 1, *prefix);
328     suffix = strrchr (middle + 1, *prefix);
329 root 1.2
330 root 1.16 memcpy (buf, prefix + 1, middle - prefix - 1);
331     buf [middle - prefix - 1] = middle [keysym_offset + 1];
332     strcpy (buf + (middle - prefix), suffix + 1);
333 root 1.2
334 root 1.16 output_string (term, buf);
335     }
336     break;
337 root 1.2 }
338    
339 root 1.16 free (str);
340 root 1.2
341 root 1.16 return true;
342     }
343 root 1.1 }
344 root 1.16
345     return false;
346 root 1.1 }
347    
348 root 1.2 // purge duplicate keymap entries
349     void keyboard_manager::purge_duplicate_keymap ()
350 root 1.1 {
351 root 1.2 for (unsigned int i = 0; i < keymap.size (); ++i)
352 root 1.1 {
353     for (unsigned int j = 0; j < i; ++j)
354     {
355 root 1.4 if (keymap [i] == keymap [j])
356 root 1.1 {
357 root 1.4 while (keymap [i] == keymap.back ())
358 root 1.2 keymap.pop_back ();
359    
360     if (i < keymap.size ())
361 root 1.1 {
362 root 1.2 keymap[i] = keymap.back ();
363     keymap.pop_back ();
364 root 1.1 }
365 root 1.11
366 root 1.1 break;
367     }
368     }
369     }
370     }
371    
372     void
373     keyboard_manager::setup_hash ()
374     {
375     unsigned int i, index, hashkey;
376 root 1.2 vector <keysym_t *> sorted_keymap;
377     uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget
378     uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget
379 root 1.1
380     memset (hash_budget_size, 0, sizeof (hash_budget_size));
381     memset (hash_budget_counter, 0, sizeof (hash_budget_counter));
382    
383 root 1.11 // determine hash bucket size
384 root 1.2 for (i = 0; i < keymap.size (); ++i)
385 root 1.11 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
386     {
387     hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
388     ++hash_budget_size [hashkey];
389     }
390 root 1.1
391     // now we know the size of each budget
392     // compute the index of each budget
393 root 1.4 hash [0] = 0;
394 root 1.2 for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i)
395 root 1.1 {
396 root 1.4 index += hash_budget_size [i - 1];
397 root 1.11 hash [i] = index;
398 root 1.1 }
399 root 1.2
400 root 1.1 // and allocate just enough space
401 root 1.4 sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0);
402 root 1.1
403     // fill in sorted_keymap
404     // it is sorted in each budget
405 root 1.2 for (i = 0; i < keymap.size (); ++i)
406 root 1.11 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
407     {
408     hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
409    
410     index = hash [hashkey] + hash_budget_counter [hashkey];
411    
412     while (index > hash [hashkey]
413     && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0)
414     {
415     sorted_keymap [index] = sorted_keymap [index - 1];
416     --index;
417     }
418    
419     sorted_keymap [index] = keymap [i];
420     ++hash_budget_counter [hashkey];
421     }
422 root 1.1
423 root 1.2 keymap.swap (sorted_keymap);
424 root 1.1
425     #if defined (DEBUG_STRICT) || defined (DEBUG_KEYBOARD)
426     // check for invariants
427     for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i)
428     {
429 root 1.2 index = hash[i];
430 root 1.4 for (int j = 0; j < hash_budget_size [i]; ++j)
431 root 1.1 {
432 root 1.4 if (keymap [index + j]->range == 1)
433     assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK));
434 root 1.2
435 root 1.1 if (j)
436 root 1.4 assert (compare_priority (keymap [index + j - 1],
437     keymap [index + j]) >= 0);
438 root 1.1 }
439     }
440    
441     // this should be able to detect most possible bugs
442     for (i = 0; i < sorted_keymap.size (); ++i)
443     {
444     keysym_t *a = sorted_keymap[i];
445     for (int j = 0; j < a->range; ++j)
446     {
447 root 1.7 int index = find_keysym (a->keysym + j, a->state);
448 root 1.6
449 root 1.1 assert (index >= 0);
450 root 1.4 keysym_t *b = keymap [index];
451 root 1.2 assert (i == (signed) index || // the normally expected result
452 root 1.10 (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same or a closer match
453 root 1.1 }
454     }
455     #endif
456     }
457    
458     int
459     keyboard_manager::find_keysym (KeySym keysym, unsigned int state)
460     {
461 root 1.2 int hashkey = keysym & KEYSYM_HASH_MASK;
462     unsigned int index = hash [hashkey];
463 root 1.11 unsigned int end = hashkey < KEYSYM_HASH_BUDGETS - 1
464     ? hash [hashkey + 1]
465     : keymap.size ();
466 root 1.1
467 root 1.11 for (; index < end; ++index)
468 root 1.1 {
469 root 1.4 keysym_t *key = keymap [index];
470 root 1.2
471 root 1.11 if (key->keysym <= keysym && keysym < key->keysym + key->range
472 root 1.1 // match only the specified bits in state and ignore others
473 root 1.16 && (key->state & state) == key->state)
474 root 1.2 return index;
475 root 1.1 }
476    
477     return -1;
478     }
479    
480     #endif /* KEYSYM_RESOURCE */
481     // vim:et:ts=2:sw=2