ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/keyboard.C
Revision: 1.26
Committed: Mon Oct 9 23:12:45 2006 UTC (17 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-8_1, rel-8_2, rel-8_0
Changes since 1.25: +1 -1 lines
Log Message:
misc fixes inspired by an idiot

File Contents

# User Rev Content
1 root 1.25 /*----------------------------------------------------------------------*
2     * File: keyboard.C
3     *----------------------------------------------------------------------*
4     *
5     * All portions of code are copyright by their respective author/s.
6     * Copyright (c) 2005 WU Fengguang
7     * Copyright (c) 2005-2006 Marc Lehmann <pcg@goof.com>
8     *
9     * This program is free software; you can redistribute it and/or modify
10     * it under the terms of the GNU General Public License as published by
11     * the Free Software Foundation; either version 2 of the License, or
12     * (at your option) any later version.
13     *
14     * This program is distributed in the hope that it will be useful,
15     * but WITHOUT ANY WARRANTY; without even the implied warranty of
16     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17     * GNU General Public License for more details.
18     *
19     * You should have received a copy of the GNU General Public License
20     * along with this program; if not, write to the Free Software
21     * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22     *----------------------------------------------------------------------*/
23    
24 root 1.1 #include "../config.h"
25     #include "rxvt.h"
26 root 1.7
27     #ifdef KEYSYM_RESOURCE
28    
29     #include <cstring>
30    
31 root 1.18 #include "rxvtperl.h"
32 root 1.1 #include "keyboard.h"
33     #include "command.h"
34    
35 root 1.13 /* an intro to the data structure:
36     *
37     * vector keymap[] is grouped.
38     *
39     * inside each group, elements are sorted by the criteria given by compare_priority().
40     * the lookup of keysym is done in two steps:
41     * 1) locate the group corresponds to the keysym;
42     * 2) do a linear search inside the group.
43     *
44     * array hash[] effectively defines a map from a keysym to a group in keymap[].
45     *
46     * each group has its address(the index of first group element in keymap[]),
47     * which is computed and stored in hash[].
48     * hash[] stores the addresses in the form of:
49     * index: 0 I1 I2 I3 In
50     * value: 0...0, A1...A1, A2...A2, A3...A3, ..., An...An
51     * where
52     * A1 = 0;
53     * Ai+1 = N1 + N2 + ... + Ni.
54     * it is computed from hash_budget_size[]:
55     * index: 0 I1 I2 I3 In
56     * value: 0...0, N1, 0...0, N2, 0...0, N3, ..., Nn, 0...0
57     * 0...0, 0.......0, N1.....N1, N1+N2...N1+N2, ... (the compution of hash[])
58     * or we can say
59     * hash_budget_size[Ii] = Ni; hash_budget_size[elsewhere] = 0,
60     * where
61     * set {I1, I2, ..., In} = { hashkey of keymap[0]->keysym, ..., keymap[keymap.size-1]->keysym }
62     * where hashkey of keymap[i]->keysym = keymap[i]->keysym & KEYSYM_HASH_MASK
63     * n(the number of groups) = the number of non-zero member of hash_budget_size[];
64     * Ni(the size of group i) = hash_budget_size[Ii].
65     */
66    
67 root 1.12 #if STOCK_KEYMAP
68 root 1.1 ////////////////////////////////////////////////////////////////////////////////
69     // default keycode translation map and keyevent handlers
70    
71 root 1.2 keysym_t keyboard_manager::stock_keymap[] = {
72 root 1.1 /* examples */
73 root 1.10 /* keysym, state, range, handler, str */
74 root 1.22 //{XK_ISO_Left_Tab, 0, 1, keysym_t::STRING, "\033[Z"},
75 root 1.10 //{ 'a', 0, 26, keysym_t::RANGE_META8, "a" "%c"},
76     //{ 'a', ControlMask, 26, keysym_t::RANGE_META8, "" "%c"},
77     //{ XK_Left, 0, 4, keysym_t::LIST, ".\033[.DACB."},
78     //{ XK_Left, ShiftMask, 4, keysym_t::LIST, ".\033[.dacb."},
79     //{ XK_Left, ControlMask, 4, keysym_t::LIST, ".\033O.dacb."},
80 root 1.22 //{ XK_Tab, ControlMask, 1, keysym_t::STRING, "\033<C-Tab>"},
81     //{ XK_apostrophe, ControlMask, 1, keysym_t::STRING, "\033<C-'>"},
82     //{ XK_slash, ControlMask, 1, keysym_t::STRING, "\033<C-/>"},
83     //{ XK_semicolon, ControlMask, 1, keysym_t::STRING, "\033<C-;>"},
84     //{ XK_grave, ControlMask, 1, keysym_t::STRING, "\033<C-`>"},
85     //{ XK_comma, ControlMask, 1, keysym_t::STRING, "\033<C-\054>"},
86     //{ XK_Return, ControlMask, 1, keysym_t::STRING, "\033<C-Return>"},
87     //{ XK_Return, ShiftMask, 1, keysym_t::STRING, "\033<S-Return>"},
88     //{ ' ', ShiftMask, 1, keysym_t::STRING, "\033<S-Space>"},
89     //{ '.', ControlMask, 1, keysym_t::STRING, "\033<C-.>"},
90 root 1.10 //{ '0', ControlMask, 10, keysym_t::RANGE, "0" "\033<C-%c>"},
91     //{ '0', MetaMask|ControlMask, 10, keysym_t::RANGE, "0" "\033<M-C-%c>"},
92     //{ 'a', MetaMask|ControlMask, 26, keysym_t::RANGE, "a" "\033<M-C-%c>"},
93 root 1.1 };
94 root 1.12 #endif
95 root 1.1
96 root 1.2 static void
97     output_string (rxvt_term *rt, const char *str)
98 root 1.1 {
99 root 1.10 if (strncmp (str, "command:", 8) == 0)
100 root 1.19 rt->cmd_write (str + 8, strlen (str) - 8);
101 root 1.18 else if (strncmp (str, "perl:", 5) == 0)
102 root 1.24 HOOK_INVOKE((rt, HOOK_USER_COMMAND, DT_STR, str + 5, DT_END));
103 root 1.1 else
104 root 1.19 rt->tt_write (str, strlen (str));
105 root 1.1 }
106    
107 root 1.2 static void
108     output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen)
109 root 1.1 {
110     if (state & rt->ModMetaMask)
111     {
112     #ifdef META8_OPTION
113 root 1.2 if (rt->meta_char == 0x80) /* set 8-bit on */
114 root 1.1 {
115     for (char *ch = buf; ch < buf + buflen; ch++)
116     *ch |= 0x80;
117     }
118 root 1.2 else if (rt->meta_char == C0_ESC) /* escape prefix */
119 root 1.1 #endif
120     {
121 root 1.19 const char ch = C0_ESC;
122 root 1.1 rt->tt_write (&ch, 1);
123     }
124     }
125    
126 root 1.19 rt->tt_write (buf, buflen);
127 root 1.1 }
128    
129 root 1.2 static int
130     format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize)
131 root 1.1 {
132 root 1.7 size_t len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]);
133 root 1.1
134 root 1.7 if (len >= (size_t)bufsize)
135 root 1.1 {
136 root 1.7 rxvt_warn ("format_keyrange_string: formatting failed, ignoring key.\n");
137 root 1.5 *buf = 0;
138 root 1.1 }
139    
140     return len;
141     }
142    
143     ////////////////////////////////////////////////////////////////////////////////
144     // return: #bits of '1'
145 root 1.7 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)
146 root 1.17 # define bitcount(n) (__extension__ ({ uint32_t n__ = (n); __builtin_popcount (n__); }))
147 root 1.7 #else
148 root 1.2 static int
149 root 1.7 bitcount (uint16_t n)
150 root 1.1 {
151     int i;
152 root 1.2
153 root 1.7 for (i = 0; n; ++i, n &= n - 1)
154 root 1.2 ;
155    
156 root 1.1 return i;
157     }
158 root 1.7 #endif
159 root 1.1
160     // return: priority_of_a - priority_of_b
161 root 1.2 static int
162 root 1.1 compare_priority (keysym_t *a, keysym_t *b)
163     {
164     // (the more '1's in state; the less range): the greater priority
165 root 1.2 int ca = bitcount (a->state /* & OtherModMask */);
166     int cb = bitcount (b->state /* & OtherModMask */);
167    
168 root 1.1 if (ca != cb)
169     return ca - cb;
170     //else if (a->state != b->state) // this behavior is to be disscussed
171     // return b->state - a->state;
172     else
173     return b->range - a->range;
174     }
175    
176     ////////////////////////////////////////////////////////////////////////////////
177 root 1.2 keyboard_manager::keyboard_manager ()
178 root 1.1 {
179 root 1.2 keymap.reserve (256);
180 root 1.4 hash [0] = 1; // hash[0] != 0 indicates uninitialized data
181 root 1.1 }
182    
183     keyboard_manager::~keyboard_manager ()
184     {
185     clear ();
186     }
187    
188     void
189     keyboard_manager::clear ()
190     {
191 root 1.2 keymap.clear ();
192     hash [0] = 2;
193 root 1.1
194 root 1.2 for (unsigned int i = 0; i < user_translations.size (); ++i)
195 root 1.1 {
196 root 1.2 free ((void *)user_translations [i]);
197     user_translations [i] = 0;
198 root 1.1 }
199    
200 root 1.2 for (unsigned int i = 0; i < user_keymap.size (); ++i)
201 root 1.1 {
202 root 1.2 delete user_keymap [i];
203     user_keymap [i] = 0;
204 root 1.1 }
205    
206 root 1.2 user_keymap.clear ();
207     user_translations.clear ();
208 root 1.1 }
209    
210     // a wrapper for register_keymap,
211     // so that outside codes don't have to know so much details.
212     //
213     // the string 'trans' is copied to an internal managed buffer,
214     // so the caller can free memory of 'trans' at any time.
215     void
216 root 1.2 keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans)
217 root 1.1 {
218     keysym_t *key = new keysym_t;
219 root 1.2 wchar_t *wc = rxvt_mbstowcs (trans);
220 root 1.19 char *translation = rxvt_wcstoutf8 (wc);
221 root 1.2 free (wc);
222 root 1.1
223 root 1.2 if (key && translation)
224 root 1.1 {
225     key->keysym = keysym;
226 root 1.2 key->state = state;
227     key->range = 1;
228     key->str = translation;
229 root 1.22 key->type = keysym_t::STRING;
230 root 1.2
231     if (strncmp (translation, "list", 4) == 0 && translation [4])
232     {
233     char *middle = strchr (translation + 5, translation [4]);
234     char *suffix = strrchr (translation + 5, translation [4]);
235    
236     if (suffix && middle && suffix > middle + 1)
237     {
238     key->type = keysym_t::LIST;
239     key->range = suffix - middle - 1;
240 root 1.1
241 root 1.26 memmove (translation, translation + 4, strlen (translation + 4) + 1);
242 root 1.2 }
243     else
244 root 1.7 rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation);
245 root 1.1 }
246 root 1.16 else if (strncmp (translation, "builtin:", 8) == 0)
247     key->type = keysym_t::BUILTIN;
248 root 1.1
249 root 1.2 user_keymap.push_back (key);
250     user_translations.push_back (translation);
251 root 1.1 register_keymap (key);
252     }
253     else
254     {
255     delete key;
256 root 1.2 free ((void *)translation);
257 root 1.1 rxvt_fatal ("out of memory, aborting.\n");
258     }
259     }
260    
261     void
262     keyboard_manager::register_keymap (keysym_t *key)
263     {
264 root 1.2 if (keymap.size () == keymap.capacity ())
265     keymap.reserve (keymap.size () * 2);
266 root 1.1
267 root 1.2 keymap.push_back (key);
268     hash[0] = 3;
269 root 1.1 }
270    
271     void
272     keyboard_manager::register_done ()
273     {
274 root 1.12 #if STOCK_KEYMAP
275     int n = sizeof (stock_keymap) / sizeof (keysym_t);
276 root 1.1
277 root 1.12 //TODO: shield against repeated calls and empty keymap
278     //if (keymap.back () != &stock_keymap[n - 1])
279     for (int i = 0; i < n; ++i)
280 root 1.2 register_keymap (&stock_keymap[i]);
281 root 1.12 #endif
282 root 1.1
283     purge_duplicate_keymap ();
284    
285     setup_hash ();
286     }
287    
288 root 1.2 bool
289     keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state)
290 root 1.1 {
291 root 1.2 assert (hash[0] == 0 && "register_done() need to be called");
292 root 1.1
293 root 1.14 state &= OtherModMask; // mask out uninteresting modifiers
294    
295 root 1.6 if (state & term->ModMetaMask) state |= MetaMask;
296     if (state & term->ModNumLockMask) state |= NumLockMask;
297     if (state & term->ModLevel3Mask) state |= Level3Mask;
298 root 1.3
299     if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask))
300     state |= AppKeypadMask;
301    
302 root 1.1 int index = find_keysym (keysym, state);
303    
304     if (index >= 0)
305     {
306 root 1.2 const keysym_t &key = *keymap [index];
307    
308 root 1.16 if (key.type != keysym_t::BUILTIN)
309     {
310     int keysym_offset = keysym - key.keysym;
311 root 1.2
312 root 1.16 wchar_t *wc = rxvt_utf8towcs (key.str);
313     char *str = rxvt_wcstombs (wc);
314     // TODO: do (some) translations, unescaping etc, here (allow \u escape etc.)
315     free (wc);
316 root 1.2
317 root 1.16 switch (key.type)
318     {
319 root 1.22 case keysym_t::STRING:
320 root 1.16 output_string (term, str);
321     break;
322 root 1.2
323 root 1.16 case keysym_t::RANGE:
324     {
325     char buf[STRING_MAX];
326 root 1.2
327 root 1.16 if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0)
328     output_string (term, buf);
329     }
330     break;
331 root 1.2
332 root 1.16 case keysym_t::RANGE_META8:
333     {
334     int len;
335     char buf[STRING_MAX];
336 root 1.2
337 root 1.16 len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf));
338     if (len > 0)
339     output_string_meta8 (term, state, buf, len);
340     }
341     break;
342 root 1.2
343 root 1.16 case keysym_t::LIST:
344     {
345     char buf[STRING_MAX];
346 root 1.2
347 root 1.16 char *prefix, *middle, *suffix;
348 root 1.2
349 root 1.16 prefix = str;
350     middle = strchr (prefix + 1, *prefix);
351     suffix = strrchr (middle + 1, *prefix);
352 root 1.2
353 root 1.16 memcpy (buf, prefix + 1, middle - prefix - 1);
354     buf [middle - prefix - 1] = middle [keysym_offset + 1];
355     strcpy (buf + (middle - prefix), suffix + 1);
356 root 1.2
357 root 1.16 output_string (term, buf);
358     }
359     break;
360 root 1.2 }
361    
362 root 1.16 free (str);
363 root 1.2
364 root 1.16 return true;
365     }
366 root 1.1 }
367 root 1.16
368     return false;
369 root 1.1 }
370    
371 root 1.2 // purge duplicate keymap entries
372     void keyboard_manager::purge_duplicate_keymap ()
373 root 1.1 {
374 root 1.2 for (unsigned int i = 0; i < keymap.size (); ++i)
375 root 1.1 {
376     for (unsigned int j = 0; j < i; ++j)
377     {
378 root 1.4 if (keymap [i] == keymap [j])
379 root 1.1 {
380 root 1.4 while (keymap [i] == keymap.back ())
381 root 1.2 keymap.pop_back ();
382    
383     if (i < keymap.size ())
384 root 1.1 {
385 root 1.2 keymap[i] = keymap.back ();
386     keymap.pop_back ();
387 root 1.1 }
388 root 1.11
389 root 1.1 break;
390     }
391     }
392     }
393     }
394    
395     void
396     keyboard_manager::setup_hash ()
397     {
398     unsigned int i, index, hashkey;
399 root 1.2 vector <keysym_t *> sorted_keymap;
400     uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget
401     uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget
402 root 1.1
403     memset (hash_budget_size, 0, sizeof (hash_budget_size));
404     memset (hash_budget_counter, 0, sizeof (hash_budget_counter));
405    
406 root 1.11 // determine hash bucket size
407 root 1.2 for (i = 0; i < keymap.size (); ++i)
408 root 1.11 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
409     {
410     hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
411     ++hash_budget_size [hashkey];
412     }
413 root 1.1
414     // now we know the size of each budget
415     // compute the index of each budget
416 root 1.4 hash [0] = 0;
417 root 1.2 for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i)
418 root 1.1 {
419 root 1.4 index += hash_budget_size [i - 1];
420 root 1.11 hash [i] = index;
421 root 1.1 }
422 root 1.2
423 root 1.1 // and allocate just enough space
424 root 1.4 sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0);
425 root 1.1
426     // fill in sorted_keymap
427     // it is sorted in each budget
428 root 1.2 for (i = 0; i < keymap.size (); ++i)
429 root 1.11 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
430     {
431     hashkey = (keymap [i]->keysym + j) & KEYSYM_HASH_MASK;
432    
433     index = hash [hashkey] + hash_budget_counter [hashkey];
434    
435     while (index > hash [hashkey]
436     && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0)
437     {
438     sorted_keymap [index] = sorted_keymap [index - 1];
439     --index;
440     }
441    
442     sorted_keymap [index] = keymap [i];
443     ++hash_budget_counter [hashkey];
444     }
445 root 1.1
446 root 1.2 keymap.swap (sorted_keymap);
447 root 1.1
448 root 1.23 #ifdef DEBUG_STRICT
449 root 1.1 // check for invariants
450     for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i)
451     {
452 root 1.2 index = hash[i];
453 root 1.4 for (int j = 0; j < hash_budget_size [i]; ++j)
454 root 1.1 {
455 root 1.4 if (keymap [index + j]->range == 1)
456     assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK));
457 root 1.2
458 root 1.1 if (j)
459 root 1.4 assert (compare_priority (keymap [index + j - 1],
460     keymap [index + j]) >= 0);
461 root 1.1 }
462     }
463    
464     // this should be able to detect most possible bugs
465     for (i = 0; i < sorted_keymap.size (); ++i)
466     {
467     keysym_t *a = sorted_keymap[i];
468     for (int j = 0; j < a->range; ++j)
469     {
470 root 1.7 int index = find_keysym (a->keysym + j, a->state);
471 root 1.6
472 root 1.1 assert (index >= 0);
473 root 1.4 keysym_t *b = keymap [index];
474 root 1.2 assert (i == (signed) index || // the normally expected result
475 root 1.10 (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same or a closer match
476 root 1.1 }
477     }
478     #endif
479     }
480    
481     int
482     keyboard_manager::find_keysym (KeySym keysym, unsigned int state)
483     {
484 root 1.2 int hashkey = keysym & KEYSYM_HASH_MASK;
485     unsigned int index = hash [hashkey];
486 root 1.11 unsigned int end = hashkey < KEYSYM_HASH_BUDGETS - 1
487     ? hash [hashkey + 1]
488     : keymap.size ();
489 root 1.1
490 root 1.11 for (; index < end; ++index)
491 root 1.1 {
492 root 1.4 keysym_t *key = keymap [index];
493 root 1.2
494 root 1.11 if (key->keysym <= keysym && keysym < key->keysym + key->range
495 root 1.1 // match only the specified bits in state and ignore others
496 root 1.16 && (key->state & state) == key->state)
497 root 1.2 return index;
498 root 1.1 }
499    
500     return -1;
501     }
502    
503     #endif /* KEYSYM_RESOURCE */
504     // vim:et:ts=2:sw=2