ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/keyboard.C
Revision: 1.6
Committed: Sun Jan 16 19:20:30 2005 UTC (19 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.5: +4 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 #include "../config.h"
2     #include "rxvt.h"
3     #include "keyboard.h"
4     #include "command.h"
5     #include <string.h>
6     #include <X11/X.h>
7    
8     #ifdef KEYSYM_RESOURCE
9    
10     ////////////////////////////////////////////////////////////////////////////////
11     // default keycode translation map and keyevent handlers
12    
13 root 1.2 keysym_t keyboard_manager::stock_keymap[] = {
14 root 1.1 /* examples */
15 root 1.2 /* keysym, state, range, handler, str */
16     //{XK_ISO_Left_Tab, 0, 1, NORMAL, "\033[Z"},
17     //{ 'a', 0, 26, RANGE_META8, "a" "%c"},
18     //{ 'a', ControlMask, 26, RANGE_META8, "" "%c"},
19     //{ XK_Left, 0, 4, LIST, "DACBZ" "\033[Z"},
20     //{ XK_Left, ShiftMask, 4, LIST, "dacbZ" "\033[Z"},
21     //{ XK_Left, ControlMask, 4, LIST, "dacbZ" "\033OZ"},
22     //{ XK_Tab, ControlMask, 1, NORMAL, "\033<C-Tab>"},
23     //{ XK_apostrophe, ControlMask, 1, NORMAL, "\033<C-'>"},
24     //{ XK_slash, ControlMask, 1, NORMAL, "\033<C-/>"},
25     //{ XK_semicolon, ControlMask, 1, NORMAL, "\033<C-;>"},
26     //{ XK_grave, ControlMask, 1, NORMAL, "\033<C-`>"},
27     //{ XK_comma, ControlMask, 1, NORMAL, "\033<C-\054>"},
28     //{ XK_Return, ControlMask, 1, NORMAL, "\033<C-Return>"},
29     //{ XK_Return, ShiftMask, 1, NORMAL, "\033<S-Return>"},
30     //{ ' ', ShiftMask, 1, NORMAL, "\033<S-Space>"},
31     //{ '.', ControlMask, 1, NORMAL, "\033<C-.>"},
32     //{ '0', ControlMask, 10, RANGE, "0" "\033<C-%c>"},
33     //{ '0', MetaMask|ControlMask, 10, RANGE, "0" "\033<M-C-%c>"},
34     //{ 'a', MetaMask|ControlMask, 26, RANGE, "a" "\033<M-C-%c>"},
35 root 1.1 };
36    
37 root 1.2 static void
38     output_string (rxvt_term *rt, const char *str)
39 root 1.1 {
40     assert (rt && str);
41 root 1.2
42 root 1.1 if (strncmp (str, "proto:", 6) == 0)
43 root 1.2 rt->cmd_write ((unsigned char *)str + 6, strlen (str) - 6);
44 root 1.1 else
45 root 1.2 rt->tt_write ((unsigned char *)str, strlen (str));
46 root 1.1 }
47    
48 root 1.2 static void
49     output_string_meta8 (rxvt_term *rt, unsigned int state, char *buf, int buflen)
50 root 1.1 {
51     if (state & rt->ModMetaMask)
52     {
53     #ifdef META8_OPTION
54 root 1.2 if (rt->meta_char == 0x80) /* set 8-bit on */
55 root 1.1 {
56     for (char *ch = buf; ch < buf + buflen; ch++)
57     *ch |= 0x80;
58     }
59 root 1.2 else if (rt->meta_char == C0_ESC) /* escape prefix */
60 root 1.1 #endif
61     {
62 root 1.5 const unsigned char ch = C0_ESC;
63 root 1.1 rt->tt_write (&ch, 1);
64     }
65     }
66    
67 root 1.2 rt->tt_write ((unsigned char *) buf, buflen);
68 root 1.1 }
69    
70 root 1.2 static int
71     format_keyrange_string (const char *str, int keysym_offset, char *buf, int bufsize)
72 root 1.1 {
73 root 1.2 int len = snprintf (buf, bufsize, str + 1, keysym_offset + str [0]);
74 root 1.1
75     if (len >= bufsize)
76     {
77 root 1.5 rxvt_warn ("buffer overflowed!\n");
78     *buf = 0;
79 root 1.1 }
80     else if (len < 0)
81     {
82 root 1.5 rxvt_warn ("keyrange_translator(), snprintf error");
83     *buf = 0;
84 root 1.1 }
85    
86     return len;
87     }
88    
89     ////////////////////////////////////////////////////////////////////////////////
90     // return: #bits of '1'
91 root 1.2 static int
92 root 1.1 bitcount (unsigned int n)
93     {
94     int i;
95 root 1.2
96     for (i = 0; n; ++i, n &= (n - 1))
97     ;
98    
99 root 1.1 return i;
100     }
101    
102     // return: priority_of_a - priority_of_b
103 root 1.2 static int
104 root 1.1 compare_priority (keysym_t *a, keysym_t *b)
105     {
106     assert (a && b);
107    
108     // (the more '1's in state; the less range): the greater priority
109 root 1.2 int ca = bitcount (a->state /* & OtherModMask */);
110     int cb = bitcount (b->state /* & OtherModMask */);
111    
112 root 1.1 if (ca != cb)
113     return ca - cb;
114     //else if (a->state != b->state) // this behavior is to be disscussed
115     // return b->state - a->state;
116     else
117     return b->range - a->range;
118     }
119    
120     ////////////////////////////////////////////////////////////////////////////////
121 root 1.2 keyboard_manager::keyboard_manager ()
122 root 1.1 {
123 root 1.2 keymap.reserve (256);
124 root 1.4 hash [0] = 1; // hash[0] != 0 indicates uninitialized data
125 root 1.1 }
126    
127     keyboard_manager::~keyboard_manager ()
128     {
129     clear ();
130     }
131    
132     void
133     keyboard_manager::clear ()
134     {
135 root 1.2 keymap.clear ();
136     hash [0] = 2;
137 root 1.1
138 root 1.2 for (unsigned int i = 0; i < user_translations.size (); ++i)
139 root 1.1 {
140 root 1.2 free ((void *)user_translations [i]);
141     user_translations [i] = 0;
142 root 1.1 }
143    
144 root 1.2 for (unsigned int i = 0; i < user_keymap.size (); ++i)
145 root 1.1 {
146 root 1.2 delete user_keymap [i];
147     user_keymap [i] = 0;
148 root 1.1 }
149    
150 root 1.2 user_keymap.clear ();
151     user_translations.clear ();
152 root 1.1 }
153    
154     // a wrapper for register_keymap,
155     // so that outside codes don't have to know so much details.
156     //
157     // the string 'trans' is copied to an internal managed buffer,
158     // so the caller can free memory of 'trans' at any time.
159     void
160 root 1.2 keyboard_manager::register_user_translation (KeySym keysym, unsigned int state, const char *trans)
161 root 1.1 {
162 root 1.2 assert (trans);
163 root 1.1
164     keysym_t *key = new keysym_t;
165 root 1.2 wchar_t *wc = rxvt_mbstowcs (trans);
166     const char *translation = rxvt_wcstoutf8 (wc);
167     free (wc);
168 root 1.1
169 root 1.2 if (key && translation)
170 root 1.1 {
171     key->keysym = keysym;
172 root 1.2 key->state = state;
173     key->range = 1;
174     key->str = translation;
175     key->type = keysym_t::NORMAL;
176    
177     if (strncmp (translation, "list", 4) == 0 && translation [4])
178     {
179     char *middle = strchr (translation + 5, translation [4]);
180     char *suffix = strrchr (translation + 5, translation [4]);
181    
182     if (suffix && middle && suffix > middle + 1)
183     {
184     key->type = keysym_t::LIST;
185     key->range = suffix - middle - 1;
186 root 1.1
187 root 1.2 strcpy (translation, translation + 4);
188     }
189     else
190     {
191     key->range = 1;
192     rxvt_warn ("cannot parse list-type keysym '%s', treating as normal keysym.\n", translation);
193     }
194 root 1.1 }
195 root 1.2 else
196 root 1.1
197 root 1.2 user_keymap.push_back (key);
198     user_translations.push_back (translation);
199 root 1.1 register_keymap (key);
200     }
201     else
202     {
203     delete key;
204 root 1.2 free ((void *)translation);
205 root 1.1 rxvt_fatal ("out of memory, aborting.\n");
206     }
207     }
208    
209     void
210     keyboard_manager::register_keymap (keysym_t *key)
211     {
212     assert (key);
213     assert (key->range >= 1);
214    
215 root 1.2 if (keymap.size () == keymap.capacity ())
216     keymap.reserve (keymap.size () * 2);
217 root 1.1
218 root 1.2 keymap.push_back (key);
219     hash[0] = 3;
220 root 1.1 }
221    
222     void
223     keyboard_manager::register_done ()
224     {
225 root 1.2 unsigned int i, n = sizeof (stock_keymap) / sizeof (keysym_t);
226 root 1.1
227 root 1.2 if (keymap.back () != &stock_keymap[n - 1])
228     for (i = 0; i < n; ++i)
229     register_keymap (&stock_keymap[i]);
230 root 1.1
231     purge_duplicate_keymap ();
232    
233     setup_hash ();
234     }
235    
236 root 1.2 bool
237     keyboard_manager::dispatch (rxvt_term *term, KeySym keysym, unsigned int state)
238 root 1.1 {
239 root 1.2 assert (hash[0] == 0 && "register_done() need to be called");
240 root 1.1
241 root 1.6 if (state & term->ModMetaMask) state |= MetaMask;
242     if (state & term->ModNumLockMask) state |= NumLockMask;
243     if (state & term->ModLevel3Mask) state |= Level3Mask;
244 root 1.3
245     if (!!(term->priv_modes & PrivMode_aplKP) != !!(state & ShiftMask))
246     state |= AppKeypadMask;
247    
248 root 1.1 int index = find_keysym (keysym, state);
249    
250     if (index >= 0)
251     {
252 root 1.2 assert (term && keymap [index]);
253     const keysym_t &key = *keymap [index];
254    
255     int keysym_offset = keysym - key.keysym;
256    
257     wchar_t *wc = rxvt_utf8towcs (key.str);
258     char *str = rxvt_wcstombs (wc);
259     // TODO: do translations, unescaping etc, here (allow \u escape etc.)
260     free (wc);
261    
262     switch (key.type)
263     {
264     case keysym_t::NORMAL:
265     output_string (term, str);
266     break;
267    
268     case keysym_t::RANGE:
269     {
270     char buf[STRING_MAX];
271    
272     if (format_keyrange_string (str, keysym_offset, buf, sizeof (buf)) > 0)
273     output_string (term, buf);
274     }
275     break;
276    
277     case keysym_t::RANGE_META8:
278     {
279     int len;
280     char buf[STRING_MAX];
281    
282     len = format_keyrange_string (str, keysym_offset, buf, sizeof (buf));
283     if (len > 0)
284     output_string_meta8 (term, state, buf, len);
285     }
286     break;
287    
288     case keysym_t::LIST:
289     {
290     char buf[STRING_MAX];
291    
292     char *prefix, *middle, *suffix;
293    
294     prefix = str;
295     middle = strchr (prefix + 1, *prefix);
296     suffix = strrchr (middle + 1, *prefix);
297    
298     memcpy (buf, prefix + 1, middle - prefix - 1);
299     buf [middle - prefix - 1] = middle [keysym_offset + 1];
300     strcpy (buf + (middle - prefix), suffix + 1);
301    
302     output_string (term, buf);
303     }
304     break;
305     }
306    
307     free (str);
308    
309 root 1.1 return true;
310     }
311     else
312 root 1.2 {
313     // fprintf(stderr,"[%x:%x]",state,keysym);
314     return false;
315     }
316 root 1.1 }
317    
318 root 1.2 // purge duplicate keymap entries
319     void keyboard_manager::purge_duplicate_keymap ()
320 root 1.1 {
321 root 1.2 for (unsigned int i = 0; i < keymap.size (); ++i)
322 root 1.1 {
323     for (unsigned int j = 0; j < i; ++j)
324     {
325 root 1.4 if (keymap [i] == keymap [j])
326 root 1.1 {
327 root 1.4 while (keymap [i] == keymap.back ())
328 root 1.2 keymap.pop_back ();
329    
330     if (i < keymap.size ())
331 root 1.1 {
332 root 1.2 keymap[i] = keymap.back ();
333     keymap.pop_back ();
334 root 1.1 }
335     break;
336     }
337     }
338     }
339     }
340    
341     void
342     keyboard_manager::setup_hash ()
343     {
344     unsigned int i, index, hashkey;
345 root 1.2 vector <keysym_t *> sorted_keymap;
346     uint16_t hash_budget_size[KEYSYM_HASH_BUDGETS]; // size of each budget
347     uint16_t hash_budget_counter[KEYSYM_HASH_BUDGETS]; // #elements in each budget
348 root 1.1
349     memset (hash_budget_size, 0, sizeof (hash_budget_size));
350     memset (hash_budget_counter, 0, sizeof (hash_budget_counter));
351    
352     // count keysyms for corresponding hash budgets
353 root 1.2 for (i = 0; i < keymap.size (); ++i)
354 root 1.1 {
355 root 1.4 assert (keymap [i]);
356     hashkey = (keymap [i]->keysym & KEYSYM_HASH_MASK);
357     ++hash_budget_size [hashkey];
358 root 1.1 }
359    
360     // keysym A with range>1 is counted one more time for
361     // every keysym B lies in its range
362 root 1.2 for (i = 0; i < keymap.size (); ++i)
363 root 1.1 {
364 root 1.2 if (keymap[i]->range > 1)
365 root 1.1 {
366 root 1.4 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j > 0; --j)
367 root 1.1 {
368 root 1.4 hashkey = ((keymap [i]->keysym + j) & KEYSYM_HASH_MASK);
369     if (hash_budget_size [hashkey])
370     ++hash_budget_size [hashkey];
371 root 1.1 }
372     }
373     }
374    
375     // now we know the size of each budget
376     // compute the index of each budget
377 root 1.4 hash [0] = 0;
378 root 1.2 for (index = 0, i = 1; i < KEYSYM_HASH_BUDGETS; ++i)
379 root 1.1 {
380 root 1.4 index += hash_budget_size [i - 1];
381     hash[i] = (hash_budget_size [i] ? index : hash [i - 1]);
382 root 1.1 }
383 root 1.2
384 root 1.1 // and allocate just enough space
385 root 1.2 //sorted_keymap.reserve (hash[i - 1] + hash_budget_size[i - 1]);
386 root 1.4 sorted_keymap.insert (sorted_keymap.begin (), index + hash_budget_size [i - 1], 0);
387 root 1.1
388     // fill in sorted_keymap
389     // it is sorted in each budget
390 root 1.2 for (i = 0; i < keymap.size (); ++i)
391 root 1.1 {
392 root 1.4 for (int j = min (keymap [i]->range, KEYSYM_HASH_BUDGETS) - 1; j >= 0; --j)
393 root 1.1 {
394 root 1.4 hashkey = ((keymap [i]->keysym + j) & KEYSYM_HASH_MASK);
395 root 1.2
396 root 1.4 if (hash_budget_size [hashkey])
397 root 1.1 {
398 root 1.4 index = hash [hashkey] + hash_budget_counter [hashkey];
399 root 1.2
400 root 1.4 while (index > hash [hashkey]
401     && compare_priority (keymap [i], sorted_keymap [index - 1]) > 0)
402 root 1.1 {
403 root 1.4 sorted_keymap [index] = sorted_keymap [index - 1];
404 root 1.1 --index;
405     }
406 root 1.2
407 root 1.4 sorted_keymap [index] = keymap [i];
408     ++hash_budget_counter [hashkey];
409 root 1.1 }
410     }
411     }
412    
413 root 1.2 keymap.swap (sorted_keymap);
414 root 1.1
415     #if defined (DEBUG_STRICT) || defined (DEBUG_KEYBOARD)
416     // check for invariants
417     for (i = 0; i < KEYSYM_HASH_BUDGETS; ++i)
418     {
419 root 1.2 index = hash[i];
420 root 1.4 for (int j = 0; j < hash_budget_size [i]; ++j)
421 root 1.1 {
422 root 1.4 if (keymap [index + j]->range == 1)
423     assert (i == (keymap [index + j]->keysym & KEYSYM_HASH_MASK));
424 root 1.2
425 root 1.1 if (j)
426 root 1.4 assert (compare_priority (keymap [index + j - 1],
427     keymap [index + j]) >= 0);
428 root 1.1 }
429     }
430    
431     // this should be able to detect most possible bugs
432     for (i = 0; i < sorted_keymap.size (); ++i)
433     {
434     keysym_t *a = sorted_keymap[i];
435     for (int j = 0; j < a->range; ++j)
436     {
437 root 1.2 int index = find_keysym (a->keysym + j, a->state & OtherModMask);
438 root 1.6
439 root 1.1 assert (index >= 0);
440 root 1.4 keysym_t *b = keymap [index];
441 root 1.2 assert (i == (signed) index || // the normally expected result
442     (a->keysym + j) >= b->keysym && (a->keysym + j) <= (b->keysym + b->range) && compare_priority (a, b) <= 0); // is effectively the same
443 root 1.1 }
444     }
445     #endif
446     }
447    
448     int
449     keyboard_manager::find_keysym (KeySym keysym, unsigned int state)
450     {
451 root 1.2 int hashkey = keysym & KEYSYM_HASH_MASK;
452     unsigned int index = hash [hashkey];
453 root 1.1
454 root 1.2 for (; index < keymap.size (); ++index)
455 root 1.1 {
456 root 1.4 keysym_t *key = keymap [index];
457 root 1.1 assert (key);
458 root 1.2
459     if (key->keysym <= keysym && key->keysym + key->range > keysym
460 root 1.1 // match only the specified bits in state and ignore others
461 root 1.2 && (key->state & OtherModMask) == (key->state & state))
462     return index;
463     else if (key->keysym > keysym && key->range == 1)
464 root 1.1 return -1;
465     }
466    
467     return -1;
468     }
469    
470     #endif /* KEYSYM_RESOURCE */
471     // vim:et:ts=2:sw=2