ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/perl/background
Revision: 1.74
Committed: Sat Jul 14 08:42:54 2012 UTC (11 years, 10 months ago) by root
Branch: MAIN
Changes since 1.73: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 #! perl
2    
3 root 1.16 #:META:X_RESOURCE:%.expr:string:background expression
4 root 1.46 #:META:X_RESOURCE:%.border:boolean:respect the terminal border
5     #:META:X_RESOURCE:%.interval:seconds:minimum time between updates
6 root 1.33
7 root 1.41 =head1 NAME
8 root 1.33
9 root 1.41 background - manage terminal background
10    
11     =head1 SYNOPSIS
12 root 1.33
13 root 1.36 urxvt --background-expr 'background expression'
14     --background-border
15 root 1.46 --background-interval seconds
16 root 1.33
17 root 1.41 =head1 DESCRIPTION
18 root 1.33
19 root 1.36 This extension manages the terminal background by creating a picture that
20     is behind the text, replacing the normal background colour.
21    
22     It does so by evaluating a Perl expression that I<calculates> the image on
23     the fly, for example, by grabbing the root background or loading a file.
24    
25     While the full power of Perl is available, the operators have been design
26     to be as simple as possible.
27    
28     For example, to load an image and scale it to the window size, you would
29     use:
30    
31 root 1.64 urxvt --background-expr 'scale keep { load "/path/to/mybg.png" }'
32 root 1.36
33     Or specified as a X resource:
34    
35 root 1.64 URxvt.background-expr: scale keep { load "/path/to/mybg.png" }
36 root 1.36
37 root 1.41 =head1 THEORY OF OPERATION
38 root 1.36
39     At startup, just before the window is mapped for the first time, the
40     expression is evaluated and must yield an image. The image is then
41     extended as necessary to cover the whole terminal window, and is set as a
42     background pixmap.
43    
44     If the image contains an alpha channel, then it will be used as-is in
45     visuals that support alpha channels (for example, for a compositing
46     manager). In other visuals, the terminal background colour will be used to
47     replace any transparency.
48    
49     When the expression relies, directly or indirectly, on the window size,
50     position, the root pixmap, or a timer, then it will be remembered. If not,
51     then it will be removed.
52    
53     If any of the parameters that the expression relies on changes (when the
54     window is moved or resized, its position or size changes; when the root
55     pixmap is replaced by another one the root background changes; or when the
56     timer elapses), then the expression will be evaluated again.
57    
58 root 1.64 For example, an expression such as C<scale keep { load "$HOME/mybg.png"
59     }> scales the image to the window size, so it relies on the window size
60     and will be reevaluated each time it is changed, but not when it moves for
61 root 1.36 example. That ensures that the picture always fills the terminal, even
62 sf-exg 1.51 after its size changes.
63 root 1.36
64 root 1.41 =head2 EXPRESSIONS
65 root 1.36
66     Expressions are normal Perl expressions, in fact, they are Perl blocks -
67     which means you could use multiple lines and statements:
68    
69 root 1.64 scale keep {
70     again 3600;
71     if (localtime now)[6]) {
72     return load "$HOME/weekday.png";
73     } else {
74     return load "$HOME/sunday.png";
75     }
76 root 1.36 }
77    
78 root 1.68 This inner expression is evaluated once per hour (and whenever the
79 sf-exg 1.73 terminal window is resized). It sets F<sunday.png> as background on
80 root 1.68 Sundays, and F<weekday.png> on all other days.
81 root 1.36
82     Fortunately, we expect that most expressions will be much simpler, with
83     little Perl knowledge needed.
84    
85     Basically, you always start with a function that "generates" an image
86     object, such as C<load>, which loads an image from disk, or C<root>, which
87     returns the root window background image:
88    
89     load "$HOME/mypic.png"
90    
91     The path is usually specified as a quoted string (the exact rules can be
92     found in the L<perlop> manpage). The F<$HOME> at the beginning of the
93     string is expanded to the home directory.
94    
95     Then you prepend one or more modifiers or filtering expressions, such as
96     C<scale>:
97    
98     scale load "$HOME/mypic.png"
99    
100     Just like a mathematical expression with functions, you should read these
101     expressions from right to left, as the C<load> is evaluated first, and
102     its result becomes the argument to the C<scale> function.
103    
104     Many operators also allow some parameters preceding the input image
105     that modify its behaviour. For example, C<scale> without any additional
106     arguments scales the image to size of the terminal window. If you specify
107 root 1.43 an additional argument, it uses it as a scale factor (multiply by 100 to
108     get a percentage):
109 root 1.36
110 root 1.43 scale 2, load "$HOME/mypic.png"
111 root 1.36
112     This enlarges the image by a factor of 2 (200%). As you can see, C<scale>
113     has now two arguments, the C<200> and the C<load> expression, while
114     C<load> only has one argument. Arguments are separated from each other by
115     commas.
116    
117     Scale also accepts two arguments, which are then separate factors for both
118     horizontal and vertical dimensions. For example, this halves the image
119     width and doubles the image height:
120    
121 root 1.43 scale 0.5, 2, load "$HOME/mypic.png"
122 root 1.36
123 root 1.68 IF you try out these expressions, you might suffer from some sluggishness,
124 sf-exg 1.73 because each time the terminal is resized, it loads the PNG image again
125 root 1.68 and scales it. Scaling is usually fast (and unavoidable), but loading the
126     image can be quite time consuming. This is where C<keep> comes in handy:
127 root 1.39
128 root 1.64 scale 0.5, 2, keep { load "$HOME/mypic.png" }
129 root 1.39
130 root 1.64 The C<keep> operator executes all the statements inside the braces only
131     once, or when it thinks the outcome might change. In other cases it
132     returns the last value computed by the brace block.
133 root 1.39
134 root 1.64 This means that the C<load> is only executed once, which makes it much
135 sf-exg 1.65 faster, but also means that more memory is being used, because the loaded
136 root 1.64 image must be kept in memory at all times. In this expression, the
137     trade-off is likely worth it.
138 root 1.39
139 root 1.64 But back to effects: Other effects than scaling are also readily
140     available, for example, you can tile the image to fill the whole window,
141     instead of resizing it:
142 root 1.39
143 root 1.64 tile keep { load "$HOME/mypic.png" }
144 root 1.39
145 root 1.64 In fact, images returned by C<load> are in C<tile> mode by default, so the
146     C<tile> operator is kind of superfluous.
147 root 1.39
148 root 1.64 Another common effect is to mirror the image, so that the same edges
149     touch:
150 root 1.36
151 root 1.64 mirror keep { load "$HOME/mypic.png" }
152 root 1.36
153 root 1.64 Another common background expression is:
154 root 1.63
155 root 1.64 rootalign root
156 root 1.39
157 root 1.64 This one first takes a snapshot of the screen background image, and then
158 sf-exg 1.65 moves it to the upper left corner of the screen (as opposed to the upper
159 root 1.64 left corner of the terminal window)- the result is pseudo-transparency:
160     the image seems to be static while the window is moved around.
161    
162 root 1.71 =head2 COLOUR SPECIFICATIONS
163    
164 sf-exg 1.73 Whenever an operator expects a "colour", then this can be specified in one
165 root 1.71 of two ways: Either as string with an X11 colour specification, such as:
166    
167     "red" # named colour
168     "#f00" # simple rgb
169     "[50]red" # red with 50% alpha
170     "TekHVC:300/50/50" # anything goes
171    
172     OR as an array reference with one, three or four components:
173    
174     [0.5] # 50% gray, 100% alpha
175     [0.5, 0, 0] # dark red, no green or blur, 100% alpha
176     [0.5, 0, 0, 0.7] # same with explicit 70% alpha
177    
178 root 1.64 =head2 CACHING AND SENSITIVITY
179    
180     Since some operations (such as C<load> and C<blur>) can take a long time,
181     caching results can be very important for a smooth operation. Caching can
182     also be useful to reduce memory usage, though, for example, when an image
183     is cached by C<load>, it could be shared by multiple terminal windows
184     running inside urxvtd.
185    
186     =head3 C<keep { ... }> caching
187    
188     The most important way to cache expensive operations is to use C<keep {
189     ... }>. The C<keep> operator takes a block of multiple statements enclosed
190     by C<{}> and keeps the return value in memory.
191    
192     An expression can be "sensitive" to various external events, such as
193 sf-exg 1.65 scaling or moving the window, root background changes and timers. Simply
194 sf-exg 1.67 using an expression (such as C<scale> without parameters) that depends on
195 root 1.64 certain changing values (called "variables"), or using those variables
196     directly, will make an expression sensitive to these events - for example,
197     using C<scale> or C<TW> will make the expression sensitive to the terminal
198     size, and thus to resizing events.
199 root 1.39
200 root 1.64 When such an event happens, C<keep> will automatically trigger a
201     reevaluation of the whole expression with the new value of the expression.
202 root 1.39
203 root 1.64 C<keep> is most useful for expensive operations, such as C<blur>:
204 root 1.39
205 root 1.68 rootalign keep { blur 20, root }
206 root 1.39
207 root 1.64 This makes a blurred copy of the root background once, and on subsequent
208     calls, just root-aligns it. Since C<blur> is usually quite slow and
209     C<rootalign> is quite fast, this trades extra memory (for the cached
210     blurred pixmap) with speed (blur only needs to be redone when root
211     changes).
212 root 1.39
213 root 1.64 =head3 C<load> caching
214 root 1.36
215 root 1.64 The C<load> operator itself does not keep images in memory, but as long as
216     the image is still in memory, C<load> will use the in-memory image instead
217     of loading it freshly from disk.
218 root 1.63
219 root 1.64 That means that this expression:
220 root 1.63
221 root 1.64 keep { load "$HOME/path..." }
222 root 1.63
223 root 1.64 Not only caches the image in memory, other terminal instances that try to
224     C<load> it can reuse that in-memory copy.
225 root 1.63
226 root 1.41 =head1 REFERENCE
227 root 1.33
228 root 1.41 =head2 COMMAND LINE SWITCHES
229 root 1.36
230     =over 4
231    
232     =item --background-expr perl-expression
233    
234     Specifies the Perl expression to evaluate.
235    
236     =item --background-border
237    
238     By default, the expression creates an image that fills the full window,
239     overwriting borders and any other areas, such as the scrollbar.
240    
241     Specifying this flag changes the behaviour, so that the image only
242     replaces the background of the character area.
243    
244 root 1.46 =item --background-interval seconds
245    
246 sf-exg 1.51 Since some operations in the underlying XRender extension can effectively
247 root 1.46 freeze your X-server for prolonged time, this extension enforces a minimum
248     time between updates, which is normally about 0.1 seconds.
249    
250     If you want to do updates more often, you can decrease this safety
251     interval with this switch.
252    
253 root 1.36 =back
254    
255 root 1.33 =cut
256 root 1.12
257 root 1.52 our %_IMG_CACHE;
258 root 1.36 our $HOME;
259 root 1.63 our ($self, $frame);
260 root 1.29 our ($x, $y, $w, $h);
261 root 1.3
262 root 1.16 # enforce at least this interval between updates
263 root 1.46 our $MIN_INTERVAL = 6/59.951;
264 root 1.9
265 root 1.1 {
266     package urxvt::bgdsl; # background language
267    
268 root 1.63 sub FR_PARENT() { 0 } # parent frame, if any - must be #0
269     sub FR_CACHE () { 1 } # cached values
270     sub FR_AGAIN () { 2 } # what this expr is sensitive to
271     sub FR_STATE () { 3 } # watchers etc.
272    
273 root 1.43 use List::Util qw(min max sum shuffle);
274    
275 root 1.15 =head2 PROVIDERS/GENERATORS
276    
277 root 1.31 These functions provide an image, by loading it from disk, grabbing it
278 sf-exg 1.32 from the root screen or by simply generating it. They are used as starting
279 root 1.31 points to get an image you can play with.
280    
281 root 1.15 =over 4
282    
283     =item load $path
284    
285 root 1.29 Loads the image at the given C<$path>. The image is set to plane tiling
286     mode.
287    
288 sf-exg 1.65 If the image is already in memory (e.g. because another terminal instance
289 root 1.64 uses it), then the in-memory copy us returned instead.
290 root 1.54
291 root 1.64 =item load_uc $path
292    
293     Load uncached - same as load, but does not cache the image, which means it
294 root 1.72 is I<always> loaded from the filesystem again, even if another copy of it
295     is in memory at the time.
296 root 1.29
297 root 1.15 =cut
298    
299 root 1.72 sub load_uc($) {
300     $self->new_img_from_file ($_[0])
301     }
302    
303 root 1.63 sub load($) {
304 root 1.54 my ($path) = @_;
305    
306     $_IMG_CACHE{$path} || do {
307 root 1.72 my $img = load_uc $path;
308 root 1.54 Scalar::Util::weaken ($_IMG_CACHE{$path} = $img);
309     $img
310     }
311     }
312    
313 root 1.31 =item root
314    
315     Returns the root window pixmap, that is, hopefully, the background image
316 root 1.62 of your screen.
317 root 1.31
318     This function makes your expression root sensitive, that means it will be
319     reevaluated when the bg image changes.
320    
321     =cut
322    
323 root 1.2 sub root() {
324 root 1.63 $frame->[FR_AGAIN]{rootpmap} = 1;
325 root 1.52 $self->new_img_from_root
326 root 1.1 }
327    
328 root 1.31 =item solid $colour
329    
330     =item solid $width, $height, $colour
331    
332     Creates a new image and completely fills it with the given colour. The
333     image is set to tiling mode.
334    
335 root 1.40 If C<$width> and C<$height> are omitted, it creates a 1x1 image, which is
336 root 1.31 useful for solid backgrounds or for use in filtering effects.
337    
338     =cut
339    
340 root 1.42 sub solid($;$$) {
341 root 1.31 my $colour = pop;
342    
343 root 1.59 my $img = $self->new_img (urxvt::PictStandardARGB32, 0, 0, $_[0] || 1, $_[1] || 1);
344 root 1.31 $img->fill ($colour);
345 root 1.15 $img
346     }
347    
348 root 1.45 =item clone $img
349 root 1.31
350 root 1.45 Returns an exact copy of the image. This is useful if you want to have
351     multiple copies of the same image to apply different effects to.
352 root 1.31
353 root 1.20 =cut
354    
355 root 1.45 sub clone($) {
356     $_[0]->clone
357 root 1.20 }
358    
359 root 1.56 =item merge $img ...
360    
361 root 1.57 Takes any number of images and merges them together, creating a single
362 root 1.62 image containing them all. The tiling mode of the first image is used as
363 sf-exg 1.65 the tiling mode of the resulting image.
364 root 1.56
365 root 1.61 This function is called automatically when an expression returns multiple
366     images.
367    
368 root 1.56 =cut
369    
370     sub merge(@) {
371 root 1.61 return $_[0] unless $#_;
372    
373 root 1.58 # rather annoyingly clumsy, but optimisation is for another time
374    
375 root 1.59 my $x0 = +1e9;
376     my $y0 = +1e9;
377 root 1.58 my $x1 = -1e9;
378     my $y1 = -1e9;
379    
380     for (@_) {
381     my ($x, $y, $w, $h) = $_->geometry;
382    
383     $x0 = $x if $x0 > $x;
384     $y0 = $y if $y0 > $y;
385    
386     $x += $w;
387     $y += $h;
388    
389 root 1.59 $x1 = $x if $x1 < $x;
390     $y1 = $y if $y1 < $y;
391 root 1.58 }
392    
393 root 1.59 my $base = $self->new_img (urxvt::PictStandardARGB32, $x0, $y0, $x1 - $x0, $y1 - $y0);
394 root 1.62 $base->repeat_mode ($_[0]->repeat_mode);
395 root 1.58 $base->fill ([0, 0, 0, 0]);
396    
397 root 1.59 $base->draw ($_)
398 root 1.58 for @_;
399    
400     $base
401 root 1.56 }
402    
403 root 1.28 =head2 TILING MODES
404    
405     The following operators modify the tiling mode of an image, that is, the
406     way that pixels outside the image area are painted when the image is used.
407 root 1.15
408     =over 4
409    
410 root 1.28 =item tile $img
411    
412     Tiles the whole plane with the image and returns this new image - or in
413     other words, it returns a copy of the image in plane tiling mode.
414    
415 root 1.34 Example: load an image and tile it over the background, without
416     resizing. The C<tile> call is superfluous because C<load> already defaults
417     to tiling mode.
418    
419     tile load "mybg.png"
420    
421 root 1.28 =item mirror $img
422    
423     Similar to tile, but reflects the image each time it uses a new copy, so
424     that top edges always touch top edges, right edges always touch right
425     edges and so on (with normal tiling, left edges always touch right edges
426     and top always touch bottom edges).
427    
428 root 1.36 Example: load an image and mirror it over the background, avoiding sharp
429 root 1.34 edges at the image borders at the expense of mirroring the image itself
430    
431     mirror load "mybg.png"
432    
433 root 1.28 =item pad $img
434    
435     Takes an image and modifies it so that all pixels outside the image area
436     become transparent. This mode is most useful when you want to place an
437     image over another image or the background colour while leaving all
438     background pixels outside the image unchanged.
439    
440 root 1.36 Example: load an image and display it in the upper left corner. The rest
441 sf-exg 1.51 of the space is left "empty" (transparent or whatever your compositor does
442 root 1.34 in alpha mode, else background colour).
443    
444     pad load "mybg.png"
445    
446 root 1.28 =item extend $img
447    
448     Extends the image over the whole plane, using the closest pixel in the
449 sf-exg 1.51 area outside the image. This mode is mostly useful when you use more complex
450 root 1.28 filtering operations and want the pixels outside the image to have the
451     same values as the pixels near the edge.
452    
453 root 1.34 Example: just for curiosity, how does this pixel extension stuff work?
454    
455     extend move 50, 50, load "mybg.png"
456    
457 root 1.15 =cut
458    
459 root 1.28 sub pad($) {
460     my $img = $_[0]->clone;
461     $img->repeat_mode (urxvt::RepeatNone);
462     $img
463     }
464    
465     sub tile($) {
466     my $img = $_[0]->clone;
467     $img->repeat_mode (urxvt::RepeatNormal);
468     $img
469     }
470    
471     sub mirror($) {
472     my $img = $_[0]->clone;
473     $img->repeat_mode (urxvt::RepeatReflect);
474     $img
475     }
476 root 1.4
477 root 1.28 sub extend($) {
478 root 1.24 my $img = $_[0]->clone;
479 root 1.28 $img->repeat_mode (urxvt::RepeatPad);
480 root 1.24 $img
481     }
482    
483 root 1.28 =back
484    
485 root 1.45 =head2 VARIABLE VALUES
486 root 1.28
487 root 1.45 The following functions provide variable data such as the terminal window
488     dimensions. They are not (Perl-) variables, they just return stuff that
489     varies. Most of them make your expression sensitive to some events, for
490     example using C<TW> (terminal width) means your expression is evaluated
491     again when the terminal is resized.
492 root 1.28
493     =over 4
494    
495 root 1.45 =item TX
496    
497     =item TY
498    
499     Return the X and Y coordinates of the terminal window (the terminal
500     window is the full window by default, and the character area only when in
501     border-respect mode).
502    
503     Using these functions make your expression sensitive to window moves.
504    
505     These functions are mainly useful to align images to the root window.
506    
507     Example: load an image and align it so it looks as if anchored to the
508 root 1.64 background (that's exactly what C<rootalign> does btw.):
509 root 1.45
510 root 1.64 move -TX, -TY, keep { load "mybg.png" }
511 root 1.45
512     =item TW
513    
514     Return the width (C<TW>) and height (C<TH>) of the terminal window (the
515     terminal window is the full window by default, and the character area only
516     when in border-respect mode).
517    
518     Using these functions make your expression sensitive to window resizes.
519    
520     These functions are mainly useful to scale images, or to clip images to
521     the window size to conserve memory.
522    
523     Example: take the screen background, clip it to the window size, blur it a
524     bit, align it to the window position and use it as background.
525    
526 root 1.64 clip move -TX, -TY, keep { blur 5, root }
527 root 1.45
528     =cut
529    
530 root 1.63 sub TX() { $frame->[FR_AGAIN]{position} = 1; $x }
531     sub TY() { $frame->[FR_AGAIN]{position} = 1; $y }
532     sub TW() { $frame->[FR_AGAIN]{size} = 1; $w }
533     sub TH() { $frame->[FR_AGAIN]{size} = 1; $h }
534 root 1.45
535     =item now
536    
537     Returns the current time as (fractional) seconds since the epoch.
538    
539     Using this expression does I<not> make your expression sensitive to time,
540     but the next two functions do.
541    
542     =item again $seconds
543    
544     When this function is used the expression will be reevaluated again in
545     C<$seconds> seconds.
546    
547     Example: load some image and rotate it according to the time of day (as if it were
548     the hour pointer of a clock). Update this image every minute.
549    
550 root 1.64 again 60;
551     rotate 50, 50, (now % 86400) * -72 / 8640, scale keep { load "myclock.png" }
552 root 1.28
553 root 1.45 =item counter $seconds
554    
555     Like C<again>, but also returns an increasing counter value, starting at
556     0, which might be useful for some simple animation effects.
557 root 1.28
558     =cut
559    
560 root 1.45 sub now() { urxvt::NOW }
561    
562     sub again($) {
563 root 1.63 $frame->[FR_AGAIN]{time} = $_[0];
564 root 1.45 }
565    
566     sub counter($) {
567 root 1.63 $frame->[FR_AGAIN]{time} = $_[0];
568     $frame->[FR_STATE]{counter} + 0
569 root 1.28 }
570    
571 root 1.45 =back
572    
573     =head2 SHAPE CHANGING OPERATORS
574    
575     The following operators modify the shape, size or position of the image.
576    
577     =over 4
578    
579 root 1.28 =item clip $img
580    
581     =item clip $width, $height, $img
582    
583     =item clip $x, $y, $width, $height, $img
584    
585     Clips an image to the given rectangle. If the rectangle is outside the
586     image area (e.g. when C<$x> or C<$y> are negative) or the rectangle is
587     larger than the image, then the tiling mode defines how the extra pixels
588     will be filled.
589    
590     If C<$x> an C<$y> are missing, then C<0> is assumed for both.
591    
592     If C<$width> and C<$height> are missing, then the window size will be
593     assumed.
594    
595     Example: load an image, blur it, and clip it to the window size to save
596     memory.
597    
598 root 1.64 clip keep { blur 10, load "mybg.png" }
599 root 1.28
600     =cut
601    
602 root 1.20 sub clip($;$$;$$) {
603 root 1.7 my $img = pop;
604 root 1.30 my $h = pop || TH;
605     my $w = pop || TW;
606 root 1.21 $img->sub_rect ($_[0], $_[1], $w, $h)
607 root 1.4 }
608    
609 root 1.28 =item scale $img
610    
611 root 1.43 =item scale $size_factor, $img
612 root 1.28
613 root 1.43 =item scale $width_factor, $height_factor, $img
614 root 1.28
615 root 1.43 Scales the image by the given factors in horizontal
616     (C<$width>) and vertical (C<$height>) direction.
617 root 1.28
618 root 1.43 If only one factor is give, it is used for both directions.
619 root 1.28
620 root 1.43 If no factors are given, scales the image to the window size without
621 root 1.28 keeping aspect.
622    
623     =item resize $width, $height, $img
624    
625     Resizes the image to exactly C<$width> times C<$height> pixels.
626    
627 root 1.43 =item fit $img
628    
629     =item fit $width, $height, $img
630    
631     Fits the image into the given C<$width> and C<$height> without changing
632     aspect, or the terminal size. That means it will be shrunk or grown until
633     the whole image fits into the given area, possibly leaving borders.
634    
635     =item cover $img
636    
637     =item cover $width, $height, $img
638    
639     Similar to C<fit>, but shrinks or grows until all of the area is covered
640     by the image, so instead of potentially leaving borders, it will cut off
641     image data that doesn't fit.
642    
643 root 1.28 =cut
644    
645 root 1.33 sub scale($;$;$) {
646 root 1.28 my $img = pop;
647    
648 root 1.43 @_ == 2 ? $img->scale ($_[0] * $img->w, $_[1] * $img->h)
649     : @_ ? $img->scale ($_[0] * $img->w, $_[0] * $img->h)
650 root 1.30 : $img->scale (TW, TH)
651 root 1.28 }
652    
653 root 1.2 sub resize($$$) {
654 root 1.7 my $img = pop;
655     $img->scale ($_[0], $_[1])
656 root 1.1 }
657    
658 root 1.43 sub fit($;$$) {
659     my $img = pop;
660     my $w = ($_[0] || TW) / $img->w;
661     my $h = ($_[1] || TH) / $img->h;
662     scale +(min $w, $h), $img
663     }
664    
665     sub cover($;$$) {
666     my $img = pop;
667     my $w = ($_[0] || TW) / $img->w;
668     my $h = ($_[1] || TH) / $img->h;
669     scale +(max $w, $h), $img
670     }
671    
672 root 1.36 =item move $dx, $dy, $img
673    
674     Moves the image by C<$dx> pixels in the horizontal, and C<$dy> pixels in
675     the vertical.
676    
677     Example: move the image right by 20 pixels and down by 30.
678    
679     move 20, 30, ...
680    
681 root 1.46 =item align $xalign, $yalign, $img
682    
683     Aligns the image according to a factor - C<0> means the image is moved to
684     the left or top edge (for C<$xalign> or C<$yalign>), C<0.5> means it is
685     exactly centered and C<1> means it touches the right or bottom edge.
686    
687     Example: remove any visible border around an image, center it vertically but move
688     it to the right hand side.
689    
690     align 1, 0.5, pad $img
691    
692 root 1.44 =item center $img
693    
694     =item center $width, $height, $img
695    
696     Centers the image, i.e. the center of the image is moved to the center of
697     the terminal window (or the box specified by C<$width> and C<$height> if
698     given).
699    
700 root 1.46 Example: load an image and center it.
701    
702 root 1.64 center keep { pad load "mybg.png" }
703 root 1.46
704 root 1.36 =item rootalign $img
705    
706     Moves the image so that it appears glued to the screen as opposed to the
707     window. This gives the illusion of a larger area behind the window. It is
708     exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the
709     top left of the screen.
710    
711     Example: load a background image, put it in mirror mode and root align it.
712    
713 root 1.64 rootalign keep { mirror load "mybg.png" }
714 root 1.36
715     Example: take the screen background and align it, giving the illusion of
716     transparency as long as the window isn't in front of other windows.
717    
718 root 1.46 rootalign root
719 root 1.36
720     =cut
721    
722 root 1.7 sub move($$;$) {
723 root 1.20 my $img = pop->clone;
724     $img->move ($_[0], $_[1]);
725     $img
726 root 1.1 }
727    
728 root 1.46 sub align($;$$) {
729     my $img = pop;
730    
731     move $_[0] * (TW - $img->w),
732     $_[1] * (TH - $img->h),
733     $img
734     }
735    
736 root 1.44 sub center($;$$) {
737     my $img = pop;
738     my $w = $_[0] || TW;
739 root 1.46 my $h = $_[1] || TH;
740 root 1.44
741     move 0.5 * ($w - $img->w), 0.5 * ($h - $img->h), $img
742     }
743    
744 root 1.36 sub rootalign($) {
745     move -TX, -TY, $_[0]
746 root 1.1 }
747    
748 root 1.64 =item rotate $center_x, $center_y, $degrees, $img
749 root 1.52
750 root 1.64 Rotates the image clockwise by C<$degrees> degrees, around the point at
751     C<$center_x> and C<$center_y> (specified as factor of image width/height).
752 root 1.52
753 root 1.64 Example: rotate the image by 90 degrees around it's center.
754 root 1.52
755 root 1.64 rotate 0.5, 0.5, 90, keep { load "$HOME/mybg.png" }
756 root 1.52
757     =cut
758    
759 root 1.53 sub rotate($$$$) {
760 root 1.52 my $img = pop;
761     $img->rotate (
762 root 1.60 $_[0] * ($img->w + $img->x),
763     $_[1] * ($img->h + $img->y),
764 root 1.52 $_[2] * (3.14159265 / 180),
765     )
766     }
767    
768 root 1.45 =back
769    
770     =head2 COLOUR MODIFICATIONS
771    
772     The following operators change the pixels of the image.
773    
774     =over 4
775    
776 root 1.70 =item tint $color, $img
777    
778     Tints the image in the given colour.
779    
780     Example: tint the image red.
781    
782     tint "red", load "rgb.png"
783    
784     Example: the same, but specify the colour by component.
785    
786     tint [1, 0, 0], load "rgb.png"
787    
788     =cut
789    
790     sub tint($$) {
791     $_[1]->tint ($_[0])
792     }
793    
794 root 1.36 =item contrast $factor, $img
795    
796     =item contrast $r, $g, $b, $img
797    
798     =item contrast $r, $g, $b, $a, $img
799    
800     Adjusts the I<contrast> of an image.
801    
802 root 1.45 The first form applies a single C<$factor> to red, green and blue, the
803     second form applies separate factors to each colour channel, and the last
804     form includes the alpha channel.
805    
806     Values from 0 to 1 lower the contrast, values higher than 1 increase the
807     contrast.
808    
809     Due to limitations in the underlying XRender extension, lowering contrast
810     also reduces brightness, while increasing contrast currently also
811     increases brightness.
812 root 1.38
813 root 1.45 =item brightness $bias, $img
814 root 1.36
815     =item brightness $r, $g, $b, $img
816    
817     =item brightness $r, $g, $b, $a, $img
818    
819 root 1.38 Adjusts the brightness of an image.
820    
821 root 1.45 The first form applies a single C<$bias> to red, green and blue, the
822     second form applies separate biases to each colour channel, and the last
823     form includes the alpha channel.
824    
825     Values less than 0 reduce brightness, while values larger than 0 increase
826     it. Useful range is from -1 to 1 - the former results in a black, the
827     latter in a white picture.
828    
829 sf-exg 1.51 Due to idiosyncrasies in the underlying XRender extension, biases less
830 root 1.45 than zero can be I<very> slow.
831    
832 root 1.36 =cut
833 root 1.1
834 root 1.2 sub contrast($$;$$;$) {
835 root 1.7 my $img = pop;
836     my ($r, $g, $b, $a) = @_;
837 root 1.4
838 root 1.49 ($g, $b) = ($r, $r) if @_ < 3;
839     $a = 1 if @_ < 4;
840 root 1.4
841 root 1.1 $img = $img->clone;
842 root 1.37 $img->contrast ($r, $g, $b, $a);
843 root 1.1 $img
844     }
845    
846 root 1.2 sub brightness($$;$$;$) {
847 root 1.7 my $img = pop;
848     my ($r, $g, $b, $a) = @_;
849 root 1.4
850 root 1.49 ($g, $b) = ($r, $r) if @_ < 3;
851     $a = 1 if @_ < 4;
852 root 1.4
853 root 1.1 $img = $img->clone;
854     $img->brightness ($r, $g, $b, $a);
855     $img
856     }
857    
858 root 1.38 =item blur $radius, $img
859    
860     =item blur $radius_horz, $radius_vert, $img
861    
862     Gaussian-blurs the image with (roughly) C<$radius> pixel radius. The radii
863     can also be specified separately.
864    
865 root 1.39 Blurring is often I<very> slow, at least compared or other
866     operators. Larger blur radii are slower than smaller ones, too, so if you
867     don't want to freeze your screen for long times, start experimenting with
868     low values for radius (<5).
869    
870 root 1.38 =cut
871    
872 root 1.36 sub blur($$;$) {
873     my $img = pop;
874     $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
875     }
876    
877 root 1.52 =back
878    
879     =head2 OTHER STUFF
880 root 1.38
881 root 1.56 Anything that didn't fit any of the other categories, even after applying
882 root 1.52 force and closing our eyes.
883    
884     =over 4
885    
886 root 1.66 =item keep { ... }
887 root 1.52
888 root 1.66 This operator takes a code block as argument, that is, one or more
889 root 1.52 statements enclosed by braces.
890    
891 root 1.68 The trick is that this code block is only evaluated when the outcome
892     changes - on other calls the C<keep> simply returns the image it computed
893     previously (yes, it should only be used with images). Or in other words,
894     C<keep> I<caches> the result of the code block so it doesn't need to be
895     computed again.
896    
897     This can be extremely useful to avoid redoing slow operations - for
898     example, if your background expression takes the root background, blurs it
899     and then root-aligns it it would have to blur the root background on every
900     window move or resize.
901    
902     Another example is C<load>, which can be quite slow.
903 root 1.52
904 root 1.63 In fact, urxvt itself encloses the whole expression in some kind of
905 root 1.68 C<keep> block so it only is reevaluated as required.
906 root 1.63
907 root 1.68 Putting the blur into a C<keep> block will make sure the blur is only done
908     once, while the C<rootalign> is still done each time the window moves.
909 root 1.52
910 sf-exg 1.73 rootalign keep { blur 10, root }
911 root 1.52
912 root 1.63 This leaves the question of how to force reevaluation of the block,
913     in case the root background changes: If expression inside the block
914     is sensitive to some event (root background changes, window geometry
915     changes), then it will be reevaluated automatically as needed.
916 root 1.38
917     =cut
918    
919 root 1.68 sub keep(&) {
920 root 1.63 my $id = $_[0]+0;
921    
922     local $frame = $self->{frame_cache}{$id} ||= [$frame];
923    
924     unless ($frame->[FR_CACHE]) {
925     $frame->[FR_CACHE] = [ $_[0]() ];
926    
927     my $self = $self;
928     my $frame = $frame;
929     Scalar::Util::weaken $frame;
930     $self->compile_frame ($frame, sub {
931     # clear this frame cache, also for all parents
932     for (my $frame = $frame; $frame; $frame = $frame->[0]) {
933     undef $frame->[FR_CACHE];
934     }
935    
936     $self->recalculate;
937     });
938 root 1.55 };
939    
940     # in scalar context we always return the first original result, which
941     # is not quite how perl works.
942     wantarray
943 root 1.63 ? @{ $frame->[FR_CACHE] }
944     : $frame->[FR_CACHE][0]
945 root 1.52 }
946    
947 root 1.68 # sub keep_clear() {
948     # delete $self->{frame_cache};
949     # }
950 root 1.36
951 root 1.15 =back
952    
953     =cut
954    
955 root 1.1 }
956    
957     sub parse_expr {
958 root 1.63 my $expr = eval
959     "sub {\n"
960     . "package urxvt::bgdsl;\n"
961     . "#line 0 'background expression'\n"
962     . "$_[0]\n"
963     . "}";
964 root 1.1 die if $@;
965     $expr
966     }
967    
968     # compiles a parsed expression
969     sub set_expr {
970     my ($self, $expr) = @_;
971    
972 root 1.74 $self->{root} = []; # the outermost frame
973 root 1.1 $self->{expr} = $expr;
974     $self->recalculate;
975     }
976    
977 root 1.63 # takes a hash of sensitivity indicators and installs watchers
978     sub compile_frame {
979     my ($self, $frame, $cb) = @_;
980    
981     my $state = $frame->[urxvt::bgdsl::FR_STATE] ||= {};
982     my $again = $frame->[urxvt::bgdsl::FR_AGAIN];
983    
984     # don't keep stuff alive
985     Scalar::Util::weaken $state;
986    
987     if ($again->{nested}) {
988     $state->{nested} = 1;
989     } else {
990     delete $state->{nested};
991     }
992    
993     if (my $interval = $again->{time}) {
994     $state->{time} = [$interval, urxvt::timer->new->after ($interval)->interval ($interval)]
995     if $state->{time}[0] != $interval;
996    
997     # callback *might* have changed, although we could just rule that out
998     $state->{time}[1]->cb (sub {
999     ++$state->{counter};
1000     $cb->();
1001     });
1002     } else {
1003     delete $state->{time};
1004     }
1005    
1006     if ($again->{position}) {
1007     $state->{position} = $self->on (position_change => $cb);
1008     } else {
1009     delete $state->{position};
1010     }
1011    
1012     if ($again->{size}) {
1013     $state->{size} = $self->on (size_change => $cb);
1014     } else {
1015     delete $state->{size};
1016     }
1017    
1018     if ($again->{rootpmap}) {
1019     $state->{rootpmap} = $self->on (rootpmap_change => $cb);
1020     } else {
1021     delete $state->{rootpmap};
1022     }
1023     }
1024    
1025 root 1.1 # evaluate the current bg expression
1026     sub recalculate {
1027 root 1.33 my ($arg_self) = @_;
1028 root 1.1
1029 root 1.10 # rate limit evaluation
1030    
1031 root 1.33 if ($arg_self->{next_refresh} > urxvt::NOW) {
1032     $arg_self->{next_refresh_timer} = urxvt::timer->new->after ($arg_self->{next_refresh} - urxvt::NOW)->cb (sub {
1033     $arg_self->recalculate;
1034 root 1.9 });
1035 root 1.12 return;
1036 root 1.9 }
1037    
1038 root 1.33 $arg_self->{next_refresh} = urxvt::NOW + $MIN_INTERVAL;
1039 root 1.9
1040 root 1.10 # set environment to evaluate user expression
1041 root 1.6
1042 root 1.63 local $self = $arg_self;
1043     local $HOME = $ENV{HOME};
1044 root 1.74 local $frame = $self->{root};
1045 root 1.1
1046 root 1.63 ($x, $y, $w, $h) = $self->background_geometry ($self->{border});
1047 root 1.22
1048 root 1.10 # evaluate user expression
1049    
1050 root 1.63 my @img = eval { $self->{expr}->() };
1051 root 1.61 die $@ if $@;
1052 root 1.63 die "background-expr did not return anything.\n" unless @img;
1053     die "background-expr: expected image(s), got something else.\n"
1054     if grep { !UNIVERSAL::isa $_, "urxvt::img" } @img;
1055 root 1.1
1056 root 1.63 my $img = urxvt::bgdsl::merge @img;
1057 root 1.10
1058 root 1.63 $frame->[FR_AGAIN]{size} = 1
1059 root 1.55 if $img->repeat_mode != urxvt::RepeatNormal;
1060    
1061 root 1.63 # if the expression is sensitive to external events, prepare reevaluation then
1062     $self->compile_frame ($frame, sub { $arg_self->recalculate });
1063 root 1.9
1064 root 1.10 # clear stuff we no longer need
1065    
1066 root 1.63 # unless (%{ $frame->[FR_STATE] }) {
1067     # delete $self->{state};
1068     # delete $self->{expr};
1069     # }
1070 root 1.5
1071 root 1.34 # set background pixmap
1072 root 1.1
1073 root 1.33 $self->set_background ($img, $self->{border});
1074 root 1.1 $self->scr_recolour (0);
1075     $self->want_refresh;
1076     }
1077    
1078     sub on_start {
1079     my ($self) = @_;
1080    
1081 root 1.47 my $expr = $self->x_resource ("%.expr")
1082 root 1.33 or return;
1083    
1084 root 1.48 $self->has_render
1085     or die "background extension needs RENDER extension 0.10 or higher, ignoring background-expr.\n";
1086    
1087 root 1.33 $self->set_expr (parse_expr $expr);
1088 root 1.47 $self->{border} = $self->x_resource_boolean ("%.border");
1089 root 1.1
1090 root 1.47 $MIN_INTERVAL = $self->x_resource ("%.interval");
1091 root 1.46
1092 root 1.1 ()
1093     }
1094