ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/rxvt-unicode/src/perl/background
Revision: 1.75
Committed: Fri Aug 10 20:07:11 2012 UTC (11 years, 9 months ago) by root
Branch: MAIN
Changes since 1.74: +46 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 #! perl
2    
3 root 1.16 #:META:X_RESOURCE:%.expr:string:background expression
4 root 1.46 #:META:X_RESOURCE:%.border:boolean:respect the terminal border
5     #:META:X_RESOURCE:%.interval:seconds:minimum time between updates
6 root 1.33
7 root 1.41 =head1 NAME
8 root 1.33
9 root 1.41 background - manage terminal background
10    
11     =head1 SYNOPSIS
12 root 1.33
13 root 1.36 urxvt --background-expr 'background expression'
14     --background-border
15 root 1.46 --background-interval seconds
16 root 1.33
17 root 1.75 =head1 QUICK AND DIRTY CHEAT SHEET
18    
19     Just load a random jpeg image and tile the background with it without
20     scaling or anything else:
21    
22     load "/path/to/img.jpg"
23    
24     The same, but use mirroring/reflection instead of tiling:
25    
26     mirror load "/path/to/img.jpg"
27    
28     Load an image and scale it to exactly fill the terminal window:
29    
30     scale keep { load "/path/to/img.jpg" }
31    
32     Implement pseudo-transparency by using a suitably-aligned root pixmap
33     as window background:
34    
35     rootalign root
36    
37     Likewise, but keep a blurred copy:
38    
39     rootalign keep { blur 10, root }
40    
41 root 1.41 =head1 DESCRIPTION
42 root 1.33
43 root 1.36 This extension manages the terminal background by creating a picture that
44     is behind the text, replacing the normal background colour.
45    
46     It does so by evaluating a Perl expression that I<calculates> the image on
47     the fly, for example, by grabbing the root background or loading a file.
48    
49     While the full power of Perl is available, the operators have been design
50     to be as simple as possible.
51    
52     For example, to load an image and scale it to the window size, you would
53     use:
54    
55 root 1.64 urxvt --background-expr 'scale keep { load "/path/to/mybg.png" }'
56 root 1.36
57     Or specified as a X resource:
58    
59 root 1.64 URxvt.background-expr: scale keep { load "/path/to/mybg.png" }
60 root 1.36
61 root 1.41 =head1 THEORY OF OPERATION
62 root 1.36
63     At startup, just before the window is mapped for the first time, the
64     expression is evaluated and must yield an image. The image is then
65     extended as necessary to cover the whole terminal window, and is set as a
66     background pixmap.
67    
68     If the image contains an alpha channel, then it will be used as-is in
69     visuals that support alpha channels (for example, for a compositing
70     manager). In other visuals, the terminal background colour will be used to
71     replace any transparency.
72    
73     When the expression relies, directly or indirectly, on the window size,
74     position, the root pixmap, or a timer, then it will be remembered. If not,
75     then it will be removed.
76    
77     If any of the parameters that the expression relies on changes (when the
78     window is moved or resized, its position or size changes; when the root
79     pixmap is replaced by another one the root background changes; or when the
80     timer elapses), then the expression will be evaluated again.
81    
82 root 1.64 For example, an expression such as C<scale keep { load "$HOME/mybg.png"
83     }> scales the image to the window size, so it relies on the window size
84     and will be reevaluated each time it is changed, but not when it moves for
85 root 1.36 example. That ensures that the picture always fills the terminal, even
86 sf-exg 1.51 after its size changes.
87 root 1.36
88 root 1.41 =head2 EXPRESSIONS
89 root 1.36
90     Expressions are normal Perl expressions, in fact, they are Perl blocks -
91     which means you could use multiple lines and statements:
92    
93 root 1.64 scale keep {
94     again 3600;
95     if (localtime now)[6]) {
96     return load "$HOME/weekday.png";
97     } else {
98     return load "$HOME/sunday.png";
99     }
100 root 1.36 }
101    
102 root 1.68 This inner expression is evaluated once per hour (and whenever the
103 sf-exg 1.73 terminal window is resized). It sets F<sunday.png> as background on
104 root 1.68 Sundays, and F<weekday.png> on all other days.
105 root 1.36
106     Fortunately, we expect that most expressions will be much simpler, with
107     little Perl knowledge needed.
108    
109     Basically, you always start with a function that "generates" an image
110     object, such as C<load>, which loads an image from disk, or C<root>, which
111     returns the root window background image:
112    
113     load "$HOME/mypic.png"
114    
115     The path is usually specified as a quoted string (the exact rules can be
116     found in the L<perlop> manpage). The F<$HOME> at the beginning of the
117     string is expanded to the home directory.
118    
119     Then you prepend one or more modifiers or filtering expressions, such as
120     C<scale>:
121    
122     scale load "$HOME/mypic.png"
123    
124     Just like a mathematical expression with functions, you should read these
125     expressions from right to left, as the C<load> is evaluated first, and
126     its result becomes the argument to the C<scale> function.
127    
128     Many operators also allow some parameters preceding the input image
129     that modify its behaviour. For example, C<scale> without any additional
130     arguments scales the image to size of the terminal window. If you specify
131 root 1.43 an additional argument, it uses it as a scale factor (multiply by 100 to
132     get a percentage):
133 root 1.36
134 root 1.43 scale 2, load "$HOME/mypic.png"
135 root 1.36
136     This enlarges the image by a factor of 2 (200%). As you can see, C<scale>
137     has now two arguments, the C<200> and the C<load> expression, while
138     C<load> only has one argument. Arguments are separated from each other by
139     commas.
140    
141     Scale also accepts two arguments, which are then separate factors for both
142     horizontal and vertical dimensions. For example, this halves the image
143     width and doubles the image height:
144    
145 root 1.43 scale 0.5, 2, load "$HOME/mypic.png"
146 root 1.36
147 root 1.68 IF you try out these expressions, you might suffer from some sluggishness,
148 sf-exg 1.73 because each time the terminal is resized, it loads the PNG image again
149 root 1.68 and scales it. Scaling is usually fast (and unavoidable), but loading the
150     image can be quite time consuming. This is where C<keep> comes in handy:
151 root 1.39
152 root 1.64 scale 0.5, 2, keep { load "$HOME/mypic.png" }
153 root 1.39
154 root 1.64 The C<keep> operator executes all the statements inside the braces only
155     once, or when it thinks the outcome might change. In other cases it
156     returns the last value computed by the brace block.
157 root 1.39
158 root 1.64 This means that the C<load> is only executed once, which makes it much
159 sf-exg 1.65 faster, but also means that more memory is being used, because the loaded
160 root 1.64 image must be kept in memory at all times. In this expression, the
161     trade-off is likely worth it.
162 root 1.39
163 root 1.64 But back to effects: Other effects than scaling are also readily
164     available, for example, you can tile the image to fill the whole window,
165     instead of resizing it:
166 root 1.39
167 root 1.64 tile keep { load "$HOME/mypic.png" }
168 root 1.39
169 root 1.64 In fact, images returned by C<load> are in C<tile> mode by default, so the
170     C<tile> operator is kind of superfluous.
171 root 1.39
172 root 1.64 Another common effect is to mirror the image, so that the same edges
173     touch:
174 root 1.36
175 root 1.64 mirror keep { load "$HOME/mypic.png" }
176 root 1.36
177 root 1.64 Another common background expression is:
178 root 1.63
179 root 1.64 rootalign root
180 root 1.39
181 root 1.64 This one first takes a snapshot of the screen background image, and then
182 sf-exg 1.65 moves it to the upper left corner of the screen (as opposed to the upper
183 root 1.64 left corner of the terminal window)- the result is pseudo-transparency:
184     the image seems to be static while the window is moved around.
185    
186 root 1.71 =head2 COLOUR SPECIFICATIONS
187    
188 sf-exg 1.73 Whenever an operator expects a "colour", then this can be specified in one
189 root 1.71 of two ways: Either as string with an X11 colour specification, such as:
190    
191     "red" # named colour
192     "#f00" # simple rgb
193     "[50]red" # red with 50% alpha
194     "TekHVC:300/50/50" # anything goes
195    
196     OR as an array reference with one, three or four components:
197    
198     [0.5] # 50% gray, 100% alpha
199     [0.5, 0, 0] # dark red, no green or blur, 100% alpha
200     [0.5, 0, 0, 0.7] # same with explicit 70% alpha
201    
202 root 1.64 =head2 CACHING AND SENSITIVITY
203    
204     Since some operations (such as C<load> and C<blur>) can take a long time,
205     caching results can be very important for a smooth operation. Caching can
206     also be useful to reduce memory usage, though, for example, when an image
207     is cached by C<load>, it could be shared by multiple terminal windows
208     running inside urxvtd.
209    
210     =head3 C<keep { ... }> caching
211    
212     The most important way to cache expensive operations is to use C<keep {
213     ... }>. The C<keep> operator takes a block of multiple statements enclosed
214     by C<{}> and keeps the return value in memory.
215    
216     An expression can be "sensitive" to various external events, such as
217 sf-exg 1.65 scaling or moving the window, root background changes and timers. Simply
218 sf-exg 1.67 using an expression (such as C<scale> without parameters) that depends on
219 root 1.64 certain changing values (called "variables"), or using those variables
220     directly, will make an expression sensitive to these events - for example,
221     using C<scale> or C<TW> will make the expression sensitive to the terminal
222     size, and thus to resizing events.
223 root 1.39
224 root 1.64 When such an event happens, C<keep> will automatically trigger a
225     reevaluation of the whole expression with the new value of the expression.
226 root 1.39
227 root 1.64 C<keep> is most useful for expensive operations, such as C<blur>:
228 root 1.39
229 root 1.68 rootalign keep { blur 20, root }
230 root 1.39
231 root 1.64 This makes a blurred copy of the root background once, and on subsequent
232     calls, just root-aligns it. Since C<blur> is usually quite slow and
233     C<rootalign> is quite fast, this trades extra memory (for the cached
234     blurred pixmap) with speed (blur only needs to be redone when root
235     changes).
236 root 1.39
237 root 1.64 =head3 C<load> caching
238 root 1.36
239 root 1.64 The C<load> operator itself does not keep images in memory, but as long as
240     the image is still in memory, C<load> will use the in-memory image instead
241     of loading it freshly from disk.
242 root 1.63
243 root 1.64 That means that this expression:
244 root 1.63
245 root 1.64 keep { load "$HOME/path..." }
246 root 1.63
247 root 1.64 Not only caches the image in memory, other terminal instances that try to
248     C<load> it can reuse that in-memory copy.
249 root 1.63
250 root 1.41 =head1 REFERENCE
251 root 1.33
252 root 1.41 =head2 COMMAND LINE SWITCHES
253 root 1.36
254     =over 4
255    
256     =item --background-expr perl-expression
257    
258     Specifies the Perl expression to evaluate.
259    
260     =item --background-border
261    
262     By default, the expression creates an image that fills the full window,
263     overwriting borders and any other areas, such as the scrollbar.
264    
265     Specifying this flag changes the behaviour, so that the image only
266     replaces the background of the character area.
267    
268 root 1.46 =item --background-interval seconds
269    
270 sf-exg 1.51 Since some operations in the underlying XRender extension can effectively
271 root 1.46 freeze your X-server for prolonged time, this extension enforces a minimum
272     time between updates, which is normally about 0.1 seconds.
273    
274     If you want to do updates more often, you can decrease this safety
275     interval with this switch.
276    
277 root 1.36 =back
278    
279 root 1.33 =cut
280 root 1.12
281 root 1.52 our %_IMG_CACHE;
282 root 1.36 our $HOME;
283 root 1.63 our ($self, $frame);
284 root 1.29 our ($x, $y, $w, $h);
285 root 1.3
286 root 1.16 # enforce at least this interval between updates
287 root 1.46 our $MIN_INTERVAL = 6/59.951;
288 root 1.9
289 root 1.1 {
290     package urxvt::bgdsl; # background language
291    
292 root 1.63 sub FR_PARENT() { 0 } # parent frame, if any - must be #0
293     sub FR_CACHE () { 1 } # cached values
294     sub FR_AGAIN () { 2 } # what this expr is sensitive to
295     sub FR_STATE () { 3 } # watchers etc.
296    
297 root 1.43 use List::Util qw(min max sum shuffle);
298    
299 root 1.15 =head2 PROVIDERS/GENERATORS
300    
301 root 1.31 These functions provide an image, by loading it from disk, grabbing it
302 sf-exg 1.32 from the root screen or by simply generating it. They are used as starting
303 root 1.31 points to get an image you can play with.
304    
305 root 1.15 =over 4
306    
307     =item load $path
308    
309 root 1.29 Loads the image at the given C<$path>. The image is set to plane tiling
310     mode.
311    
312 sf-exg 1.65 If the image is already in memory (e.g. because another terminal instance
313 root 1.64 uses it), then the in-memory copy us returned instead.
314 root 1.54
315 root 1.64 =item load_uc $path
316    
317     Load uncached - same as load, but does not cache the image, which means it
318 root 1.72 is I<always> loaded from the filesystem again, even if another copy of it
319     is in memory at the time.
320 root 1.29
321 root 1.15 =cut
322    
323 root 1.72 sub load_uc($) {
324     $self->new_img_from_file ($_[0])
325     }
326    
327 root 1.63 sub load($) {
328 root 1.54 my ($path) = @_;
329    
330     $_IMG_CACHE{$path} || do {
331 root 1.72 my $img = load_uc $path;
332 root 1.54 Scalar::Util::weaken ($_IMG_CACHE{$path} = $img);
333     $img
334     }
335     }
336    
337 root 1.31 =item root
338    
339     Returns the root window pixmap, that is, hopefully, the background image
340 root 1.62 of your screen.
341 root 1.31
342     This function makes your expression root sensitive, that means it will be
343     reevaluated when the bg image changes.
344    
345     =cut
346    
347 root 1.2 sub root() {
348 root 1.63 $frame->[FR_AGAIN]{rootpmap} = 1;
349 root 1.52 $self->new_img_from_root
350 root 1.1 }
351    
352 root 1.31 =item solid $colour
353    
354     =item solid $width, $height, $colour
355    
356     Creates a new image and completely fills it with the given colour. The
357     image is set to tiling mode.
358    
359 root 1.40 If C<$width> and C<$height> are omitted, it creates a 1x1 image, which is
360 root 1.31 useful for solid backgrounds or for use in filtering effects.
361    
362     =cut
363    
364 root 1.42 sub solid($;$$) {
365 root 1.31 my $colour = pop;
366    
367 root 1.59 my $img = $self->new_img (urxvt::PictStandardARGB32, 0, 0, $_[0] || 1, $_[1] || 1);
368 root 1.31 $img->fill ($colour);
369 root 1.15 $img
370     }
371    
372 root 1.45 =item clone $img
373 root 1.31
374 root 1.45 Returns an exact copy of the image. This is useful if you want to have
375     multiple copies of the same image to apply different effects to.
376 root 1.31
377 root 1.20 =cut
378    
379 root 1.45 sub clone($) {
380     $_[0]->clone
381 root 1.20 }
382    
383 root 1.56 =item merge $img ...
384    
385 root 1.57 Takes any number of images and merges them together, creating a single
386 root 1.62 image containing them all. The tiling mode of the first image is used as
387 sf-exg 1.65 the tiling mode of the resulting image.
388 root 1.56
389 root 1.61 This function is called automatically when an expression returns multiple
390     images.
391    
392 root 1.56 =cut
393    
394     sub merge(@) {
395 root 1.61 return $_[0] unless $#_;
396    
397 root 1.58 # rather annoyingly clumsy, but optimisation is for another time
398    
399 root 1.59 my $x0 = +1e9;
400     my $y0 = +1e9;
401 root 1.58 my $x1 = -1e9;
402     my $y1 = -1e9;
403    
404     for (@_) {
405     my ($x, $y, $w, $h) = $_->geometry;
406    
407     $x0 = $x if $x0 > $x;
408     $y0 = $y if $y0 > $y;
409    
410     $x += $w;
411     $y += $h;
412    
413 root 1.59 $x1 = $x if $x1 < $x;
414     $y1 = $y if $y1 < $y;
415 root 1.58 }
416    
417 root 1.59 my $base = $self->new_img (urxvt::PictStandardARGB32, $x0, $y0, $x1 - $x0, $y1 - $y0);
418 root 1.62 $base->repeat_mode ($_[0]->repeat_mode);
419 root 1.58 $base->fill ([0, 0, 0, 0]);
420    
421 root 1.59 $base->draw ($_)
422 root 1.58 for @_;
423    
424     $base
425 root 1.56 }
426    
427 root 1.28 =head2 TILING MODES
428    
429     The following operators modify the tiling mode of an image, that is, the
430     way that pixels outside the image area are painted when the image is used.
431 root 1.15
432     =over 4
433    
434 root 1.28 =item tile $img
435    
436     Tiles the whole plane with the image and returns this new image - or in
437     other words, it returns a copy of the image in plane tiling mode.
438    
439 root 1.34 Example: load an image and tile it over the background, without
440     resizing. The C<tile> call is superfluous because C<load> already defaults
441     to tiling mode.
442    
443     tile load "mybg.png"
444    
445 root 1.28 =item mirror $img
446    
447     Similar to tile, but reflects the image each time it uses a new copy, so
448     that top edges always touch top edges, right edges always touch right
449     edges and so on (with normal tiling, left edges always touch right edges
450     and top always touch bottom edges).
451    
452 root 1.36 Example: load an image and mirror it over the background, avoiding sharp
453 root 1.34 edges at the image borders at the expense of mirroring the image itself
454    
455     mirror load "mybg.png"
456    
457 root 1.28 =item pad $img
458    
459     Takes an image and modifies it so that all pixels outside the image area
460     become transparent. This mode is most useful when you want to place an
461     image over another image or the background colour while leaving all
462     background pixels outside the image unchanged.
463    
464 root 1.36 Example: load an image and display it in the upper left corner. The rest
465 sf-exg 1.51 of the space is left "empty" (transparent or whatever your compositor does
466 root 1.34 in alpha mode, else background colour).
467    
468     pad load "mybg.png"
469    
470 root 1.28 =item extend $img
471    
472     Extends the image over the whole plane, using the closest pixel in the
473 sf-exg 1.51 area outside the image. This mode is mostly useful when you use more complex
474 root 1.28 filtering operations and want the pixels outside the image to have the
475     same values as the pixels near the edge.
476    
477 root 1.34 Example: just for curiosity, how does this pixel extension stuff work?
478    
479     extend move 50, 50, load "mybg.png"
480    
481 root 1.15 =cut
482    
483 root 1.28 sub pad($) {
484     my $img = $_[0]->clone;
485     $img->repeat_mode (urxvt::RepeatNone);
486     $img
487     }
488    
489     sub tile($) {
490     my $img = $_[0]->clone;
491     $img->repeat_mode (urxvt::RepeatNormal);
492     $img
493     }
494    
495     sub mirror($) {
496     my $img = $_[0]->clone;
497     $img->repeat_mode (urxvt::RepeatReflect);
498     $img
499     }
500 root 1.4
501 root 1.28 sub extend($) {
502 root 1.24 my $img = $_[0]->clone;
503 root 1.28 $img->repeat_mode (urxvt::RepeatPad);
504 root 1.24 $img
505     }
506    
507 root 1.28 =back
508    
509 root 1.45 =head2 VARIABLE VALUES
510 root 1.28
511 root 1.45 The following functions provide variable data such as the terminal window
512     dimensions. They are not (Perl-) variables, they just return stuff that
513     varies. Most of them make your expression sensitive to some events, for
514     example using C<TW> (terminal width) means your expression is evaluated
515     again when the terminal is resized.
516 root 1.28
517     =over 4
518    
519 root 1.45 =item TX
520    
521     =item TY
522    
523     Return the X and Y coordinates of the terminal window (the terminal
524     window is the full window by default, and the character area only when in
525     border-respect mode).
526    
527     Using these functions make your expression sensitive to window moves.
528    
529     These functions are mainly useful to align images to the root window.
530    
531     Example: load an image and align it so it looks as if anchored to the
532 root 1.64 background (that's exactly what C<rootalign> does btw.):
533 root 1.45
534 root 1.64 move -TX, -TY, keep { load "mybg.png" }
535 root 1.45
536     =item TW
537    
538     Return the width (C<TW>) and height (C<TH>) of the terminal window (the
539     terminal window is the full window by default, and the character area only
540     when in border-respect mode).
541    
542     Using these functions make your expression sensitive to window resizes.
543    
544     These functions are mainly useful to scale images, or to clip images to
545     the window size to conserve memory.
546    
547     Example: take the screen background, clip it to the window size, blur it a
548     bit, align it to the window position and use it as background.
549    
550 root 1.64 clip move -TX, -TY, keep { blur 5, root }
551 root 1.45
552     =cut
553    
554 root 1.63 sub TX() { $frame->[FR_AGAIN]{position} = 1; $x }
555     sub TY() { $frame->[FR_AGAIN]{position} = 1; $y }
556     sub TW() { $frame->[FR_AGAIN]{size} = 1; $w }
557     sub TH() { $frame->[FR_AGAIN]{size} = 1; $h }
558 root 1.45
559     =item now
560    
561     Returns the current time as (fractional) seconds since the epoch.
562    
563     Using this expression does I<not> make your expression sensitive to time,
564     but the next two functions do.
565    
566     =item again $seconds
567    
568     When this function is used the expression will be reevaluated again in
569     C<$seconds> seconds.
570    
571     Example: load some image and rotate it according to the time of day (as if it were
572     the hour pointer of a clock). Update this image every minute.
573    
574 root 1.64 again 60;
575     rotate 50, 50, (now % 86400) * -72 / 8640, scale keep { load "myclock.png" }
576 root 1.28
577 root 1.45 =item counter $seconds
578    
579     Like C<again>, but also returns an increasing counter value, starting at
580     0, which might be useful for some simple animation effects.
581 root 1.28
582     =cut
583    
584 root 1.45 sub now() { urxvt::NOW }
585    
586     sub again($) {
587 root 1.63 $frame->[FR_AGAIN]{time} = $_[0];
588 root 1.45 }
589    
590     sub counter($) {
591 root 1.63 $frame->[FR_AGAIN]{time} = $_[0];
592     $frame->[FR_STATE]{counter} + 0
593 root 1.28 }
594    
595 root 1.45 =back
596    
597     =head2 SHAPE CHANGING OPERATORS
598    
599     The following operators modify the shape, size or position of the image.
600    
601     =over 4
602    
603 root 1.28 =item clip $img
604    
605     =item clip $width, $height, $img
606    
607     =item clip $x, $y, $width, $height, $img
608    
609     Clips an image to the given rectangle. If the rectangle is outside the
610     image area (e.g. when C<$x> or C<$y> are negative) or the rectangle is
611     larger than the image, then the tiling mode defines how the extra pixels
612     will be filled.
613    
614     If C<$x> an C<$y> are missing, then C<0> is assumed for both.
615    
616     If C<$width> and C<$height> are missing, then the window size will be
617     assumed.
618    
619     Example: load an image, blur it, and clip it to the window size to save
620     memory.
621    
622 root 1.64 clip keep { blur 10, load "mybg.png" }
623 root 1.28
624     =cut
625    
626 root 1.20 sub clip($;$$;$$) {
627 root 1.7 my $img = pop;
628 root 1.30 my $h = pop || TH;
629     my $w = pop || TW;
630 root 1.21 $img->sub_rect ($_[0], $_[1], $w, $h)
631 root 1.4 }
632    
633 root 1.28 =item scale $img
634    
635 root 1.43 =item scale $size_factor, $img
636 root 1.28
637 root 1.43 =item scale $width_factor, $height_factor, $img
638 root 1.28
639 root 1.43 Scales the image by the given factors in horizontal
640     (C<$width>) and vertical (C<$height>) direction.
641 root 1.28
642 root 1.43 If only one factor is give, it is used for both directions.
643 root 1.28
644 root 1.43 If no factors are given, scales the image to the window size without
645 root 1.28 keeping aspect.
646    
647     =item resize $width, $height, $img
648    
649     Resizes the image to exactly C<$width> times C<$height> pixels.
650    
651 root 1.43 =item fit $img
652    
653     =item fit $width, $height, $img
654    
655     Fits the image into the given C<$width> and C<$height> without changing
656     aspect, or the terminal size. That means it will be shrunk or grown until
657     the whole image fits into the given area, possibly leaving borders.
658    
659     =item cover $img
660    
661     =item cover $width, $height, $img
662    
663     Similar to C<fit>, but shrinks or grows until all of the area is covered
664     by the image, so instead of potentially leaving borders, it will cut off
665     image data that doesn't fit.
666    
667 root 1.28 =cut
668    
669 root 1.33 sub scale($;$;$) {
670 root 1.28 my $img = pop;
671    
672 root 1.43 @_ == 2 ? $img->scale ($_[0] * $img->w, $_[1] * $img->h)
673     : @_ ? $img->scale ($_[0] * $img->w, $_[0] * $img->h)
674 root 1.30 : $img->scale (TW, TH)
675 root 1.28 }
676    
677 root 1.2 sub resize($$$) {
678 root 1.7 my $img = pop;
679     $img->scale ($_[0], $_[1])
680 root 1.1 }
681    
682 root 1.43 sub fit($;$$) {
683     my $img = pop;
684     my $w = ($_[0] || TW) / $img->w;
685     my $h = ($_[1] || TH) / $img->h;
686     scale +(min $w, $h), $img
687     }
688    
689     sub cover($;$$) {
690     my $img = pop;
691     my $w = ($_[0] || TW) / $img->w;
692     my $h = ($_[1] || TH) / $img->h;
693     scale +(max $w, $h), $img
694     }
695    
696 root 1.36 =item move $dx, $dy, $img
697    
698     Moves the image by C<$dx> pixels in the horizontal, and C<$dy> pixels in
699     the vertical.
700    
701     Example: move the image right by 20 pixels and down by 30.
702    
703     move 20, 30, ...
704    
705 root 1.46 =item align $xalign, $yalign, $img
706    
707     Aligns the image according to a factor - C<0> means the image is moved to
708     the left or top edge (for C<$xalign> or C<$yalign>), C<0.5> means it is
709     exactly centered and C<1> means it touches the right or bottom edge.
710    
711     Example: remove any visible border around an image, center it vertically but move
712     it to the right hand side.
713    
714     align 1, 0.5, pad $img
715    
716 root 1.44 =item center $img
717    
718     =item center $width, $height, $img
719    
720     Centers the image, i.e. the center of the image is moved to the center of
721     the terminal window (or the box specified by C<$width> and C<$height> if
722     given).
723    
724 root 1.46 Example: load an image and center it.
725    
726 root 1.64 center keep { pad load "mybg.png" }
727 root 1.46
728 root 1.36 =item rootalign $img
729    
730     Moves the image so that it appears glued to the screen as opposed to the
731     window. This gives the illusion of a larger area behind the window. It is
732     exactly equivalent to C<move -TX, -TY>, that is, it moves the image to the
733     top left of the screen.
734    
735     Example: load a background image, put it in mirror mode and root align it.
736    
737 root 1.64 rootalign keep { mirror load "mybg.png" }
738 root 1.36
739     Example: take the screen background and align it, giving the illusion of
740     transparency as long as the window isn't in front of other windows.
741    
742 root 1.46 rootalign root
743 root 1.36
744     =cut
745    
746 root 1.7 sub move($$;$) {
747 root 1.20 my $img = pop->clone;
748     $img->move ($_[0], $_[1]);
749     $img
750 root 1.1 }
751    
752 root 1.46 sub align($;$$) {
753     my $img = pop;
754    
755     move $_[0] * (TW - $img->w),
756     $_[1] * (TH - $img->h),
757     $img
758     }
759    
760 root 1.44 sub center($;$$) {
761     my $img = pop;
762     my $w = $_[0] || TW;
763 root 1.46 my $h = $_[1] || TH;
764 root 1.44
765     move 0.5 * ($w - $img->w), 0.5 * ($h - $img->h), $img
766     }
767    
768 root 1.36 sub rootalign($) {
769     move -TX, -TY, $_[0]
770 root 1.1 }
771    
772 root 1.64 =item rotate $center_x, $center_y, $degrees, $img
773 root 1.52
774 root 1.64 Rotates the image clockwise by C<$degrees> degrees, around the point at
775     C<$center_x> and C<$center_y> (specified as factor of image width/height).
776 root 1.52
777 root 1.64 Example: rotate the image by 90 degrees around it's center.
778 root 1.52
779 root 1.64 rotate 0.5, 0.5, 90, keep { load "$HOME/mybg.png" }
780 root 1.52
781     =cut
782    
783 root 1.53 sub rotate($$$$) {
784 root 1.52 my $img = pop;
785     $img->rotate (
786 root 1.60 $_[0] * ($img->w + $img->x),
787     $_[1] * ($img->h + $img->y),
788 root 1.52 $_[2] * (3.14159265 / 180),
789     )
790     }
791    
792 root 1.45 =back
793    
794     =head2 COLOUR MODIFICATIONS
795    
796     The following operators change the pixels of the image.
797    
798     =over 4
799    
800 root 1.70 =item tint $color, $img
801    
802     Tints the image in the given colour.
803    
804     Example: tint the image red.
805    
806     tint "red", load "rgb.png"
807    
808     Example: the same, but specify the colour by component.
809    
810     tint [1, 0, 0], load "rgb.png"
811    
812     =cut
813    
814     sub tint($$) {
815     $_[1]->tint ($_[0])
816     }
817    
818 root 1.36 =item contrast $factor, $img
819    
820     =item contrast $r, $g, $b, $img
821    
822     =item contrast $r, $g, $b, $a, $img
823    
824     Adjusts the I<contrast> of an image.
825    
826 root 1.45 The first form applies a single C<$factor> to red, green and blue, the
827     second form applies separate factors to each colour channel, and the last
828     form includes the alpha channel.
829    
830     Values from 0 to 1 lower the contrast, values higher than 1 increase the
831     contrast.
832    
833     Due to limitations in the underlying XRender extension, lowering contrast
834     also reduces brightness, while increasing contrast currently also
835     increases brightness.
836 root 1.38
837 root 1.45 =item brightness $bias, $img
838 root 1.36
839     =item brightness $r, $g, $b, $img
840    
841     =item brightness $r, $g, $b, $a, $img
842    
843 root 1.38 Adjusts the brightness of an image.
844    
845 root 1.45 The first form applies a single C<$bias> to red, green and blue, the
846     second form applies separate biases to each colour channel, and the last
847     form includes the alpha channel.
848    
849     Values less than 0 reduce brightness, while values larger than 0 increase
850     it. Useful range is from -1 to 1 - the former results in a black, the
851     latter in a white picture.
852    
853 sf-exg 1.51 Due to idiosyncrasies in the underlying XRender extension, biases less
854 root 1.45 than zero can be I<very> slow.
855    
856 root 1.75 You can also try the experimental(!) C<muladd> operator.
857    
858 root 1.36 =cut
859 root 1.1
860 root 1.2 sub contrast($$;$$;$) {
861 root 1.7 my $img = pop;
862     my ($r, $g, $b, $a) = @_;
863 root 1.4
864 root 1.49 ($g, $b) = ($r, $r) if @_ < 3;
865     $a = 1 if @_ < 4;
866 root 1.4
867 root 1.1 $img = $img->clone;
868 root 1.37 $img->contrast ($r, $g, $b, $a);
869 root 1.1 $img
870     }
871    
872 root 1.2 sub brightness($$;$$;$) {
873 root 1.7 my $img = pop;
874     my ($r, $g, $b, $a) = @_;
875 root 1.4
876 root 1.49 ($g, $b) = ($r, $r) if @_ < 3;
877     $a = 1 if @_ < 4;
878 root 1.4
879 root 1.1 $img = $img->clone;
880     $img->brightness ($r, $g, $b, $a);
881     $img
882     }
883    
884 root 1.75 =item muladd $mul, $add, $img # EXPERIMENTAL
885    
886     First multipliesthe pixels by C<$mul>, then adds C<$add>. This cna be used
887     to implement brightness and contrast at the same time, with a wider value
888     range than contrast and brightness operators.
889    
890     Due to numerous bugs in XRender implementations, it can also introduce a
891     number of visual artifacts.
892    
893     Example: increase contrast by a factor of C<$c> without changing image
894     brightness too much.
895    
896     muladd $c, (1 - $c) * 0.5, $img
897    
898     =cut
899    
900     sub muladd($$$) {
901     $_[2]->muladd ($_[0], $_[1])
902     }
903    
904 root 1.38 =item blur $radius, $img
905    
906     =item blur $radius_horz, $radius_vert, $img
907    
908     Gaussian-blurs the image with (roughly) C<$radius> pixel radius. The radii
909     can also be specified separately.
910    
911 root 1.39 Blurring is often I<very> slow, at least compared or other
912     operators. Larger blur radii are slower than smaller ones, too, so if you
913     don't want to freeze your screen for long times, start experimenting with
914     low values for radius (<5).
915    
916 root 1.38 =cut
917    
918 root 1.36 sub blur($$;$) {
919     my $img = pop;
920     $img->blur ($_[0], @_ >= 2 ? $_[1] : $_[0])
921     }
922    
923 root 1.52 =back
924    
925     =head2 OTHER STUFF
926 root 1.38
927 root 1.56 Anything that didn't fit any of the other categories, even after applying
928 root 1.52 force and closing our eyes.
929    
930     =over 4
931    
932 root 1.66 =item keep { ... }
933 root 1.52
934 root 1.66 This operator takes a code block as argument, that is, one or more
935 root 1.52 statements enclosed by braces.
936    
937 root 1.68 The trick is that this code block is only evaluated when the outcome
938     changes - on other calls the C<keep> simply returns the image it computed
939     previously (yes, it should only be used with images). Or in other words,
940     C<keep> I<caches> the result of the code block so it doesn't need to be
941     computed again.
942    
943     This can be extremely useful to avoid redoing slow operations - for
944     example, if your background expression takes the root background, blurs it
945     and then root-aligns it it would have to blur the root background on every
946     window move or resize.
947    
948     Another example is C<load>, which can be quite slow.
949 root 1.52
950 root 1.63 In fact, urxvt itself encloses the whole expression in some kind of
951 root 1.68 C<keep> block so it only is reevaluated as required.
952 root 1.63
953 root 1.68 Putting the blur into a C<keep> block will make sure the blur is only done
954     once, while the C<rootalign> is still done each time the window moves.
955 root 1.52
956 sf-exg 1.73 rootalign keep { blur 10, root }
957 root 1.52
958 root 1.63 This leaves the question of how to force reevaluation of the block,
959     in case the root background changes: If expression inside the block
960     is sensitive to some event (root background changes, window geometry
961     changes), then it will be reevaluated automatically as needed.
962 root 1.38
963     =cut
964    
965 root 1.68 sub keep(&) {
966 root 1.63 my $id = $_[0]+0;
967    
968     local $frame = $self->{frame_cache}{$id} ||= [$frame];
969    
970     unless ($frame->[FR_CACHE]) {
971     $frame->[FR_CACHE] = [ $_[0]() ];
972    
973     my $self = $self;
974     my $frame = $frame;
975     Scalar::Util::weaken $frame;
976     $self->compile_frame ($frame, sub {
977     # clear this frame cache, also for all parents
978     for (my $frame = $frame; $frame; $frame = $frame->[0]) {
979     undef $frame->[FR_CACHE];
980     }
981    
982     $self->recalculate;
983     });
984 root 1.55 };
985    
986     # in scalar context we always return the first original result, which
987     # is not quite how perl works.
988     wantarray
989 root 1.63 ? @{ $frame->[FR_CACHE] }
990     : $frame->[FR_CACHE][0]
991 root 1.52 }
992    
993 root 1.68 # sub keep_clear() {
994     # delete $self->{frame_cache};
995     # }
996 root 1.36
997 root 1.15 =back
998    
999     =cut
1000    
1001 root 1.1 }
1002    
1003     sub parse_expr {
1004 root 1.63 my $expr = eval
1005     "sub {\n"
1006     . "package urxvt::bgdsl;\n"
1007     . "#line 0 'background expression'\n"
1008     . "$_[0]\n"
1009     . "}";
1010 root 1.1 die if $@;
1011     $expr
1012     }
1013    
1014     # compiles a parsed expression
1015     sub set_expr {
1016     my ($self, $expr) = @_;
1017    
1018 root 1.74 $self->{root} = []; # the outermost frame
1019 root 1.1 $self->{expr} = $expr;
1020     $self->recalculate;
1021     }
1022    
1023 root 1.63 # takes a hash of sensitivity indicators and installs watchers
1024     sub compile_frame {
1025     my ($self, $frame, $cb) = @_;
1026    
1027     my $state = $frame->[urxvt::bgdsl::FR_STATE] ||= {};
1028     my $again = $frame->[urxvt::bgdsl::FR_AGAIN];
1029    
1030     # don't keep stuff alive
1031     Scalar::Util::weaken $state;
1032    
1033     if ($again->{nested}) {
1034     $state->{nested} = 1;
1035     } else {
1036     delete $state->{nested};
1037     }
1038    
1039     if (my $interval = $again->{time}) {
1040     $state->{time} = [$interval, urxvt::timer->new->after ($interval)->interval ($interval)]
1041     if $state->{time}[0] != $interval;
1042    
1043     # callback *might* have changed, although we could just rule that out
1044     $state->{time}[1]->cb (sub {
1045     ++$state->{counter};
1046     $cb->();
1047     });
1048     } else {
1049     delete $state->{time};
1050     }
1051    
1052     if ($again->{position}) {
1053     $state->{position} = $self->on (position_change => $cb);
1054     } else {
1055     delete $state->{position};
1056     }
1057    
1058     if ($again->{size}) {
1059     $state->{size} = $self->on (size_change => $cb);
1060     } else {
1061     delete $state->{size};
1062     }
1063    
1064     if ($again->{rootpmap}) {
1065     $state->{rootpmap} = $self->on (rootpmap_change => $cb);
1066     } else {
1067     delete $state->{rootpmap};
1068     }
1069     }
1070    
1071 root 1.1 # evaluate the current bg expression
1072     sub recalculate {
1073 root 1.33 my ($arg_self) = @_;
1074 root 1.1
1075 root 1.10 # rate limit evaluation
1076    
1077 root 1.33 if ($arg_self->{next_refresh} > urxvt::NOW) {
1078     $arg_self->{next_refresh_timer} = urxvt::timer->new->after ($arg_self->{next_refresh} - urxvt::NOW)->cb (sub {
1079     $arg_self->recalculate;
1080 root 1.9 });
1081 root 1.12 return;
1082 root 1.9 }
1083    
1084 root 1.33 $arg_self->{next_refresh} = urxvt::NOW + $MIN_INTERVAL;
1085 root 1.9
1086 root 1.10 # set environment to evaluate user expression
1087 root 1.6
1088 root 1.63 local $self = $arg_self;
1089     local $HOME = $ENV{HOME};
1090 root 1.74 local $frame = $self->{root};
1091 root 1.1
1092 root 1.63 ($x, $y, $w, $h) = $self->background_geometry ($self->{border});
1093 root 1.22
1094 root 1.10 # evaluate user expression
1095    
1096 root 1.63 my @img = eval { $self->{expr}->() };
1097 root 1.61 die $@ if $@;
1098 root 1.63 die "background-expr did not return anything.\n" unless @img;
1099     die "background-expr: expected image(s), got something else.\n"
1100     if grep { !UNIVERSAL::isa $_, "urxvt::img" } @img;
1101 root 1.1
1102 root 1.63 my $img = urxvt::bgdsl::merge @img;
1103 root 1.10
1104 root 1.63 $frame->[FR_AGAIN]{size} = 1
1105 root 1.55 if $img->repeat_mode != urxvt::RepeatNormal;
1106    
1107 root 1.63 # if the expression is sensitive to external events, prepare reevaluation then
1108     $self->compile_frame ($frame, sub { $arg_self->recalculate });
1109 root 1.9
1110 root 1.10 # clear stuff we no longer need
1111    
1112 root 1.63 # unless (%{ $frame->[FR_STATE] }) {
1113     # delete $self->{state};
1114     # delete $self->{expr};
1115     # }
1116 root 1.5
1117 root 1.34 # set background pixmap
1118 root 1.1
1119 root 1.33 $self->set_background ($img, $self->{border});
1120 root 1.1 $self->scr_recolour (0);
1121     $self->want_refresh;
1122     }
1123    
1124     sub on_start {
1125     my ($self) = @_;
1126    
1127 root 1.47 my $expr = $self->x_resource ("%.expr")
1128 root 1.33 or return;
1129    
1130 root 1.48 $self->has_render
1131     or die "background extension needs RENDER extension 0.10 or higher, ignoring background-expr.\n";
1132    
1133 root 1.33 $self->set_expr (parse_expr $expr);
1134 root 1.47 $self->{border} = $self->x_resource_boolean ("%.border");
1135 root 1.1
1136 root 1.47 $MIN_INTERVAL = $self->x_resource ("%.interval");
1137 root 1.46
1138 root 1.1 ()
1139     }
1140