ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
Revision: 1.58
Committed: Sun Nov 4 16:52:52 2007 UTC (16 years, 6 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.57: +4 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.17 /*
2 root 1.36 * libev event processing core, watcher management
3     *
4 root 1.17 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5     * All rights reserved.
6     *
7     * Redistribution and use in source and binary forms, with or without
8     * modification, are permitted provided that the following conditions are
9     * met:
10     *
11     * * Redistributions of source code must retain the above copyright
12     * notice, this list of conditions and the following disclaimer.
13     *
14     * * Redistributions in binary form must reproduce the above
15     * copyright notice, this list of conditions and the following
16     * disclaimer in the documentation and/or other materials provided
17     * with the distribution.
18     *
19     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30     */
31 root 1.58 #ifndef EV_EMBED
32 root 1.29 # include "config.h"
33     #endif
34 root 1.17
35 root 1.1 #include <math.h>
36     #include <stdlib.h>
37 root 1.7 #include <unistd.h>
38     #include <fcntl.h>
39     #include <signal.h>
40 root 1.16 #include <stddef.h>
41 root 1.1
42     #include <stdio.h>
43    
44 root 1.4 #include <assert.h>
45 root 1.1 #include <errno.h>
46 root 1.22 #include <sys/types.h>
47 root 1.45 #ifndef WIN32
48     # include <sys/wait.h>
49     #endif
50 root 1.1 #include <sys/time.h>
51     #include <time.h>
52    
53 root 1.40 /**/
54    
55 root 1.29 #ifndef EV_USE_MONOTONIC
56 root 1.37 # define EV_USE_MONOTONIC 1
57     #endif
58    
59 root 1.29 #ifndef EV_USE_SELECT
60     # define EV_USE_SELECT 1
61 root 1.10 #endif
62    
63 root 1.51 #ifndef EV_USEV_POLL
64     # define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65 root 1.41 #endif
66    
67 root 1.29 #ifndef EV_USE_EPOLL
68     # define EV_USE_EPOLL 0
69 root 1.10 #endif
70    
71 root 1.44 #ifndef EV_USE_KQUEUE
72     # define EV_USE_KQUEUE 0
73     #endif
74    
75 root 1.40 #ifndef EV_USE_REALTIME
76     # define EV_USE_REALTIME 1
77     #endif
78    
79     /**/
80    
81     #ifndef CLOCK_MONOTONIC
82     # undef EV_USE_MONOTONIC
83     # define EV_USE_MONOTONIC 0
84     #endif
85    
86 root 1.31 #ifndef CLOCK_REALTIME
87 root 1.40 # undef EV_USE_REALTIME
88 root 1.31 # define EV_USE_REALTIME 0
89     #endif
90 root 1.40
91     /**/
92 root 1.1
93 root 1.4 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94 root 1.40 #define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95 root 1.31 #define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96 root 1.40 /*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 root 1.1
98 root 1.58 #ifndef EV_EMBED
99     # include "ev.h"
100     #endif
101 root 1.1
102 root 1.40 #if __GNUC__ >= 3
103     # define expect(expr,value) __builtin_expect ((expr),(value))
104     # define inline inline
105     #else
106     # define expect(expr,value) (expr)
107     # define inline static
108     #endif
109    
110     #define expect_false(expr) expect ((expr) != 0, 0)
111     #define expect_true(expr) expect ((expr) != 0, 1)
112    
113 root 1.42 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114     #define ABSPRI(w) ((w)->priority - EV_MINPRI)
115    
116 root 1.10 typedef struct ev_watcher *W;
117     typedef struct ev_watcher_list *WL;
118 root 1.12 typedef struct ev_watcher_time *WT;
119 root 1.10
120 root 1.54 static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121    
122 root 1.53 /*****************************************************************************/
123 root 1.1
124 root 1.53 typedef struct
125     {
126     struct ev_watcher_list *head;
127     unsigned char events;
128     unsigned char reify;
129     } ANFD;
130 root 1.1
131 root 1.53 typedef struct
132     {
133     W w;
134     int events;
135     } ANPENDING;
136 root 1.51
137 root 1.55 #if EV_MULTIPLICITY
138 root 1.54
139 root 1.53 struct ev_loop
140     {
141 root 1.54 # define VAR(name,decl) decl;
142 root 1.53 # include "ev_vars.h"
143     };
144 root 1.54 # undef VAR
145     # include "ev_wrap.h"
146    
147 root 1.53 #else
148 root 1.54
149     # define VAR(name,decl) static decl;
150 root 1.53 # include "ev_vars.h"
151 root 1.54 # undef VAR
152    
153 root 1.51 #endif
154 root 1.1
155 root 1.8 /*****************************************************************************/
156    
157 root 1.51 inline ev_tstamp
158 root 1.1 ev_time (void)
159     {
160 root 1.29 #if EV_USE_REALTIME
161 root 1.1 struct timespec ts;
162     clock_gettime (CLOCK_REALTIME, &ts);
163     return ts.tv_sec + ts.tv_nsec * 1e-9;
164     #else
165     struct timeval tv;
166     gettimeofday (&tv, 0);
167     return tv.tv_sec + tv.tv_usec * 1e-6;
168     #endif
169     }
170    
171 root 1.51 inline ev_tstamp
172 root 1.1 get_clock (void)
173     {
174 root 1.29 #if EV_USE_MONOTONIC
175 root 1.40 if (expect_true (have_monotonic))
176 root 1.1 {
177     struct timespec ts;
178     clock_gettime (CLOCK_MONOTONIC, &ts);
179     return ts.tv_sec + ts.tv_nsec * 1e-9;
180     }
181     #endif
182    
183     return ev_time ();
184     }
185    
186 root 1.51 ev_tstamp
187     ev_now (EV_P)
188     {
189     return rt_now;
190     }
191    
192 root 1.30 #define array_roundsize(base,n) ((n) | 4 & ~3)
193 root 1.29
194 root 1.1 #define array_needsize(base,cur,cnt,init) \
195 root 1.40 if (expect_false ((cnt) > cur)) \
196 root 1.1 { \
197 root 1.23 int newcnt = cur; \
198     do \
199     { \
200 root 1.30 newcnt = array_roundsize (base, newcnt << 1); \
201 root 1.23 } \
202     while ((cnt) > newcnt); \
203     \
204 root 1.1 base = realloc (base, sizeof (*base) * (newcnt)); \
205     init (base + cur, newcnt - cur); \
206     cur = newcnt; \
207     }
208    
209 root 1.8 /*****************************************************************************/
210    
211 root 1.1 static void
212     anfds_init (ANFD *base, int count)
213     {
214     while (count--)
215     {
216 root 1.27 base->head = 0;
217     base->events = EV_NONE;
218 root 1.33 base->reify = 0;
219    
220 root 1.1 ++base;
221     }
222     }
223    
224     static void
225 root 1.51 event (EV_P_ W w, int events)
226 root 1.1 {
227 root 1.32 if (w->pending)
228     {
229 root 1.42 pendings [ABSPRI (w)][w->pending - 1].events |= events;
230 root 1.32 return;
231     }
232    
233 root 1.42 w->pending = ++pendingcnt [ABSPRI (w)];
234     array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
235     pendings [ABSPRI (w)][w->pending - 1].w = w;
236     pendings [ABSPRI (w)][w->pending - 1].events = events;
237 root 1.1 }
238    
239     static void
240 root 1.51 queue_events (EV_P_ W *events, int eventcnt, int type)
241 root 1.27 {
242     int i;
243    
244     for (i = 0; i < eventcnt; ++i)
245 root 1.51 event (EV_A_ events [i], type);
246 root 1.27 }
247    
248     static void
249 root 1.51 fd_event (EV_P_ int fd, int events)
250 root 1.1 {
251     ANFD *anfd = anfds + fd;
252     struct ev_io *w;
253    
254 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 root 1.1 {
256     int ev = w->events & events;
257    
258     if (ev)
259 root 1.51 event (EV_A_ (W)w, ev);
260 root 1.1 }
261     }
262    
263 root 1.27 /*****************************************************************************/
264    
265 root 1.9 static void
266 root 1.51 fd_reify (EV_P)
267 root 1.9 {
268     int i;
269    
270 root 1.27 for (i = 0; i < fdchangecnt; ++i)
271     {
272     int fd = fdchanges [i];
273     ANFD *anfd = anfds + fd;
274     struct ev_io *w;
275    
276     int events = 0;
277    
278 root 1.50 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 root 1.27 events |= w->events;
280    
281 root 1.33 anfd->reify = 0;
282 root 1.27
283     if (anfd->events != events)
284     {
285 root 1.51 method_modify (EV_A_ fd, anfd->events, events);
286 root 1.27 anfd->events = events;
287     }
288     }
289    
290     fdchangecnt = 0;
291     }
292    
293     static void
294 root 1.51 fd_change (EV_P_ int fd)
295 root 1.27 {
296 root 1.33 if (anfds [fd].reify || fdchangecnt < 0)
297 root 1.27 return;
298    
299 root 1.33 anfds [fd].reify = 1;
300 root 1.27
301     ++fdchangecnt;
302     array_needsize (fdchanges, fdchangemax, fdchangecnt, );
303     fdchanges [fdchangecnt - 1] = fd;
304 root 1.9 }
305    
306 root 1.41 static void
307 root 1.51 fd_kill (EV_P_ int fd)
308 root 1.41 {
309     struct ev_io *w;
310    
311 root 1.50 while ((w = (struct ev_io *)anfds [fd].head))
312 root 1.41 {
313 root 1.51 ev_io_stop (EV_A_ w);
314     event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 root 1.41 }
316     }
317    
318 root 1.19 /* called on EBADF to verify fds */
319     static void
320 root 1.51 fd_ebadf (EV_P)
321 root 1.19 {
322     int fd;
323    
324     for (fd = 0; fd < anfdmax; ++fd)
325 root 1.27 if (anfds [fd].events)
326 root 1.19 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
327 root 1.51 fd_kill (EV_A_ fd);
328 root 1.41 }
329    
330     /* called on ENOMEM in select/poll to kill some fds and retry */
331     static void
332 root 1.51 fd_enomem (EV_P)
333 root 1.41 {
334     int fd = anfdmax;
335    
336     while (fd--)
337     if (anfds [fd].events)
338     {
339     close (fd);
340 root 1.51 fd_kill (EV_A_ fd);
341 root 1.41 return;
342     }
343 root 1.19 }
344    
345 root 1.56 /* susually called after fork if method needs to re-arm all fds from scratch */
346     static void
347     fd_rearm_all (EV_P)
348     {
349     int fd;
350    
351     /* this should be highly optimised to not do anything but set a flag */
352     for (fd = 0; fd < anfdmax; ++fd)
353     if (anfds [fd].events)
354     {
355     anfds [fd].events = 0;
356     fd_change (fd);
357     }
358     }
359    
360 root 1.8 /*****************************************************************************/
361    
362 root 1.1 static void
363 root 1.54 upheap (WT *heap, int k)
364 root 1.1 {
365 root 1.54 WT w = heap [k];
366 root 1.1
367 root 1.54 while (k && heap [k >> 1]->at > w->at)
368 root 1.1 {
369 root 1.54 heap [k] = heap [k >> 1];
370     heap [k]->active = k + 1;
371 root 1.1 k >>= 1;
372     }
373    
374 root 1.54 heap [k] = w;
375     heap [k]->active = k + 1;
376 root 1.1
377     }
378    
379     static void
380 root 1.54 downheap (WT *heap, int N, int k)
381 root 1.1 {
382 root 1.54 WT w = heap [k];
383 root 1.1
384 root 1.4 while (k < (N >> 1))
385 root 1.1 {
386     int j = k << 1;
387    
388 root 1.54 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
389 root 1.1 ++j;
390    
391 root 1.54 if (w->at <= heap [j]->at)
392 root 1.1 break;
393    
394 root 1.54 heap [k] = heap [j];
395     heap [k]->active = k + 1;
396 root 1.1 k = j;
397     }
398    
399 root 1.54 heap [k] = w;
400     heap [k]->active = k + 1;
401 root 1.1 }
402    
403 root 1.8 /*****************************************************************************/
404    
405 root 1.7 typedef struct
406     {
407 root 1.50 struct ev_watcher_list *head;
408 root 1.34 sig_atomic_t volatile gotsig;
409 root 1.7 } ANSIG;
410    
411     static ANSIG *signals;
412 root 1.4 static int signalmax;
413 root 1.1
414 root 1.7 static int sigpipe [2];
415 root 1.34 static sig_atomic_t volatile gotsig;
416 root 1.7
417 root 1.1 static void
418 root 1.7 signals_init (ANSIG *base, int count)
419 root 1.1 {
420     while (count--)
421 root 1.7 {
422     base->head = 0;
423     base->gotsig = 0;
424 root 1.33
425 root 1.7 ++base;
426     }
427     }
428    
429     static void
430     sighandler (int signum)
431     {
432     signals [signum - 1].gotsig = 1;
433    
434     if (!gotsig)
435     {
436 root 1.48 int old_errno = errno;
437 root 1.7 gotsig = 1;
438 root 1.34 write (sigpipe [1], &signum, 1);
439 root 1.48 errno = old_errno;
440 root 1.7 }
441     }
442    
443     static void
444 root 1.51 sigcb (EV_P_ struct ev_io *iow, int revents)
445 root 1.7 {
446 root 1.50 struct ev_watcher_list *w;
447 root 1.38 int signum;
448 root 1.7
449 root 1.34 read (sigpipe [0], &revents, 1);
450 root 1.7 gotsig = 0;
451    
452 root 1.38 for (signum = signalmax; signum--; )
453     if (signals [signum].gotsig)
454 root 1.7 {
455 root 1.38 signals [signum].gotsig = 0;
456 root 1.7
457 root 1.38 for (w = signals [signum].head; w; w = w->next)
458 root 1.51 event (EV_A_ (W)w, EV_SIGNAL);
459 root 1.7 }
460     }
461    
462     static void
463 root 1.51 siginit (EV_P)
464 root 1.7 {
465 root 1.45 #ifndef WIN32
466 root 1.7 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
467     fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
468    
469     /* rather than sort out wether we really need nb, set it */
470     fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
471     fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472 root 1.45 #endif
473 root 1.7
474 root 1.28 ev_io_set (&sigev, sigpipe [0], EV_READ);
475 root 1.54 ev_io_start (EV_A_ &sigev);
476 root 1.52 ev_unref (EV_A); /* child watcher should not keep loop alive */
477 root 1.1 }
478    
479 root 1.8 /*****************************************************************************/
480    
481 root 1.45 #ifndef WIN32
482    
483 root 1.22 #ifndef WCONTINUED
484     # define WCONTINUED 0
485     #endif
486    
487     static void
488 root 1.51 child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
489 root 1.47 {
490     struct ev_child *w;
491    
492 root 1.50 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 root 1.47 if (w->pid == pid || !w->pid)
494     {
495     w->priority = sw->priority; /* need to do it *now* */
496     w->rpid = pid;
497     w->rstatus = status;
498 root 1.51 event (EV_A_ (W)w, EV_CHILD);
499 root 1.47 }
500     }
501    
502     static void
503 root 1.51 childcb (EV_P_ struct ev_signal *sw, int revents)
504 root 1.22 {
505     int pid, status;
506    
507 root 1.47 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508     {
509     /* make sure we are called again until all childs have been reaped */
510 root 1.51 event (EV_A_ (W)sw, EV_SIGNAL);
511 root 1.47
512 root 1.51 child_reap (EV_A_ sw, pid, pid, status);
513     child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 root 1.47 }
515 root 1.22 }
516    
517 root 1.45 #endif
518    
519 root 1.22 /*****************************************************************************/
520    
521 root 1.44 #if EV_USE_KQUEUE
522     # include "ev_kqueue.c"
523     #endif
524 root 1.29 #if EV_USE_EPOLL
525 root 1.1 # include "ev_epoll.c"
526     #endif
527 root 1.51 #if EV_USEV_POLL
528 root 1.41 # include "ev_poll.c"
529     #endif
530 root 1.29 #if EV_USE_SELECT
531 root 1.1 # include "ev_select.c"
532     #endif
533    
534 root 1.24 int
535     ev_version_major (void)
536     {
537     return EV_VERSION_MAJOR;
538     }
539    
540     int
541     ev_version_minor (void)
542     {
543     return EV_VERSION_MINOR;
544     }
545    
546 root 1.49 /* return true if we are running with elevated privileges and should ignore env variables */
547 root 1.41 static int
548 root 1.51 enable_secure (void)
549 root 1.41 {
550 root 1.49 #ifdef WIN32
551     return 0;
552     #else
553 root 1.41 return getuid () != geteuid ()
554     || getgid () != getegid ();
555 root 1.49 #endif
556 root 1.41 }
557    
558 root 1.51 int
559     ev_method (EV_P)
560 root 1.1 {
561 root 1.51 return method;
562     }
563    
564 root 1.56 static void
565 root 1.54 loop_init (EV_P_ int methods)
566 root 1.51 {
567     if (!method)
568 root 1.23 {
569 root 1.29 #if EV_USE_MONOTONIC
570 root 1.23 {
571     struct timespec ts;
572     if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573     have_monotonic = 1;
574     }
575 root 1.1 #endif
576    
577 root 1.51 rt_now = ev_time ();
578     mn_now = get_clock ();
579     now_floor = mn_now;
580 root 1.54 rtmn_diff = rt_now - mn_now;
581 root 1.1
582 root 1.41 if (methods == EVMETHOD_AUTO)
583 root 1.56 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584     methods = atoi (getenv ("LIBEV_METHODS"));
585 root 1.50 else
586     methods = EVMETHOD_ANY;
587 root 1.41
588 root 1.51 method = 0;
589 root 1.44 #if EV_USE_KQUEUE
590 root 1.51 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591 root 1.44 #endif
592 root 1.29 #if EV_USE_EPOLL
593 root 1.51 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594 root 1.41 #endif
595 root 1.51 #if EV_USEV_POLL
596     if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597 root 1.1 #endif
598 root 1.29 #if EV_USE_SELECT
599 root 1.51 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600 root 1.1 #endif
601 root 1.56 }
602     }
603    
604     void
605     loop_destroy (EV_P)
606     {
607     #if EV_USE_KQUEUE
608     if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609     #endif
610     #if EV_USE_EPOLL
611     if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612     #endif
613     #if EV_USEV_POLL
614     if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615     #endif
616     #if EV_USE_SELECT
617     if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618     #endif
619 root 1.1
620 root 1.56 method = 0;
621     /*TODO*/
622     }
623 root 1.22
624 root 1.56 void
625     loop_fork (EV_P)
626     {
627     /*TODO*/
628     #if EV_USE_EPOLL
629     if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630     #endif
631     #if EV_USE_KQUEUE
632     if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633 root 1.45 #endif
634 root 1.1 }
635    
636 root 1.55 #if EV_MULTIPLICITY
637 root 1.54 struct ev_loop *
638     ev_loop_new (int methods)
639     {
640     struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641    
642 root 1.56 loop_init (EV_A_ methods);
643    
644     if (ev_methods (EV_A))
645 root 1.55 return loop;
646 root 1.54
647 root 1.55 return 0;
648 root 1.54 }
649    
650     void
651 root 1.56 ev_loop_destroy (EV_P)
652 root 1.54 {
653 root 1.56 loop_destroy (EV_A);
654 root 1.54 free (loop);
655     }
656    
657 root 1.56 void
658     ev_loop_fork (EV_P)
659     {
660     loop_fork (EV_A);
661     }
662    
663     #endif
664    
665     #if EV_MULTIPLICITY
666     struct ev_loop default_loop_struct;
667     static struct ev_loop *default_loop;
668    
669     struct ev_loop *
670 root 1.54 #else
671 root 1.56 static int default_loop;
672 root 1.54
673     int
674 root 1.56 #endif
675     ev_default_loop (int methods)
676 root 1.54 {
677 root 1.56 if (sigpipe [0] == sigpipe [1])
678     if (pipe (sigpipe))
679     return 0;
680 root 1.54
681 root 1.56 if (!default_loop)
682     {
683     #if EV_MULTIPLICITY
684     struct ev_loop *loop = default_loop = &default_loop_struct;
685     #else
686     default_loop = 1;
687 root 1.54 #endif
688    
689 root 1.56 loop_init (EV_A_ methods);
690    
691     if (ev_method (EV_A))
692     {
693     ev_watcher_init (&sigev, sigcb);
694     ev_set_priority (&sigev, EV_MAXPRI);
695     siginit (EV_A);
696    
697     #ifndef WIN32
698     ev_signal_init (&childev, childcb, SIGCHLD);
699     ev_set_priority (&childev, EV_MAXPRI);
700     ev_signal_start (EV_A_ &childev);
701     ev_unref (EV_A); /* child watcher should not keep loop alive */
702     #endif
703     }
704     else
705     default_loop = 0;
706     }
707 root 1.8
708 root 1.56 return default_loop;
709 root 1.1 }
710    
711 root 1.24 void
712 root 1.56 ev_default_destroy (void)
713 root 1.1 {
714 root 1.57 #if EV_MULTIPLICITY
715 root 1.56 struct ev_loop *loop = default_loop;
716 root 1.57 #endif
717 root 1.56
718     ev_ref (EV_A); /* child watcher */
719     ev_signal_stop (EV_A_ &childev);
720    
721     ev_ref (EV_A); /* signal watcher */
722     ev_io_stop (EV_A_ &sigev);
723    
724     close (sigpipe [0]); sigpipe [0] = 0;
725     close (sigpipe [1]); sigpipe [1] = 0;
726    
727     loop_destroy (EV_A);
728 root 1.1 }
729    
730 root 1.24 void
731 root 1.56 ev_default_fork (EV_P)
732 root 1.1 {
733 root 1.56 loop_fork (EV_A);
734 root 1.7
735 root 1.54 ev_io_stop (EV_A_ &sigev);
736 root 1.7 close (sigpipe [0]);
737     close (sigpipe [1]);
738     pipe (sigpipe);
739 root 1.56
740     ev_ref (EV_A); /* signal watcher */
741 root 1.54 siginit (EV_A);
742 root 1.1 }
743    
744 root 1.8 /*****************************************************************************/
745    
746 root 1.1 static void
747 root 1.51 call_pending (EV_P)
748 root 1.1 {
749 root 1.42 int pri;
750    
751     for (pri = NUMPRI; pri--; )
752     while (pendingcnt [pri])
753     {
754     ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 root 1.1
756 root 1.42 if (p->w)
757     {
758     p->w->pending = 0;
759 root 1.51 p->w->cb (EV_A_ p->w, p->events);
760 root 1.42 }
761     }
762 root 1.1 }
763    
764     static void
765 root 1.51 timers_reify (EV_P)
766 root 1.1 {
767 root 1.51 while (timercnt && timers [0]->at <= mn_now)
768 root 1.1 {
769     struct ev_timer *w = timers [0];
770    
771 root 1.4 /* first reschedule or stop timer */
772 root 1.1 if (w->repeat)
773     {
774 root 1.33 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 root 1.51 w->at = mn_now + w->repeat;
776 root 1.12 downheap ((WT *)timers, timercnt, 0);
777     }
778     else
779 root 1.51 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 root 1.30
781 root 1.54 event (EV_A_ (W)w, EV_TIMEOUT);
782 root 1.12 }
783     }
784 root 1.4
785 root 1.12 static void
786 root 1.51 periodics_reify (EV_P)
787 root 1.12 {
788 root 1.51 while (periodiccnt && periodics [0]->at <= rt_now)
789 root 1.12 {
790     struct ev_periodic *w = periodics [0];
791 root 1.1
792 root 1.12 /* first reschedule or stop timer */
793     if (w->interval)
794     {
795 root 1.51 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
796     assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
797 root 1.12 downheap ((WT *)periodics, periodiccnt, 0);
798 root 1.1 }
799     else
800 root 1.51 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 root 1.12
802 root 1.51 event (EV_A_ (W)w, EV_PERIODIC);
803 root 1.12 }
804     }
805    
806     static void
807 root 1.54 periodics_reschedule (EV_P)
808 root 1.12 {
809     int i;
810    
811 root 1.13 /* adjust periodics after time jump */
812 root 1.12 for (i = 0; i < periodiccnt; ++i)
813     {
814     struct ev_periodic *w = periodics [i];
815    
816     if (w->interval)
817 root 1.4 {
818 root 1.51 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
819 root 1.12
820     if (fabs (diff) >= 1e-4)
821     {
822 root 1.51 ev_periodic_stop (EV_A_ w);
823     ev_periodic_start (EV_A_ w);
824 root 1.12
825     i = 0; /* restart loop, inefficient, but time jumps should be rare */
826     }
827 root 1.4 }
828 root 1.12 }
829 root 1.1 }
830    
831 root 1.51 inline int
832     time_update_monotonic (EV_P)
833 root 1.40 {
834 root 1.51 mn_now = get_clock ();
835 root 1.40
836 root 1.51 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 root 1.40 {
838 root 1.54 rt_now = rtmn_diff + mn_now;
839 root 1.40 return 0;
840     }
841     else
842     {
843 root 1.51 now_floor = mn_now;
844     rt_now = ev_time ();
845 root 1.40 return 1;
846     }
847     }
848    
849 root 1.4 static void
850 root 1.51 time_update (EV_P)
851 root 1.4 {
852     int i;
853 root 1.12
854 root 1.40 #if EV_USE_MONOTONIC
855     if (expect_true (have_monotonic))
856     {
857 root 1.51 if (time_update_monotonic (EV_A))
858 root 1.40 {
859 root 1.54 ev_tstamp odiff = rtmn_diff;
860 root 1.4
861 root 1.40 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862     {
863 root 1.54 rtmn_diff = rt_now - mn_now;
864 root 1.4
865 root 1.54 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 root 1.40 return; /* all is well */
867 root 1.4
868 root 1.51 rt_now = ev_time ();
869     mn_now = get_clock ();
870     now_floor = mn_now;
871 root 1.40 }
872 root 1.4
873 root 1.54 periodics_reschedule (EV_A);
874 root 1.40 /* no timer adjustment, as the monotonic clock doesn't jump */
875 root 1.54 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 root 1.4 }
877     }
878     else
879 root 1.40 #endif
880 root 1.4 {
881 root 1.51 rt_now = ev_time ();
882 root 1.40
883 root 1.51 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 root 1.13 {
885 root 1.54 periodics_reschedule (EV_A);
886 root 1.13
887     /* adjust timers. this is easy, as the offset is the same for all */
888     for (i = 0; i < timercnt; ++i)
889 root 1.54 timers [i]->at += rt_now - mn_now;
890 root 1.13 }
891 root 1.4
892 root 1.51 mn_now = rt_now;
893 root 1.4 }
894     }
895    
896 root 1.51 void
897     ev_ref (EV_P)
898     {
899     ++activecnt;
900     }
901 root 1.1
902 root 1.51 void
903     ev_unref (EV_P)
904     {
905     --activecnt;
906     }
907    
908     static int loop_done;
909    
910     void
911     ev_loop (EV_P_ int flags)
912 root 1.1 {
913     double block;
914 root 1.51 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
915 root 1.1
916 root 1.20 do
917 root 1.9 {
918 root 1.20 /* queue check watchers (and execute them) */
919 root 1.40 if (expect_false (preparecnt))
920 root 1.20 {
921 root 1.51 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922     call_pending (EV_A);
923 root 1.20 }
924 root 1.9
925 root 1.1 /* update fd-related kernel structures */
926 root 1.51 fd_reify (EV_A);
927 root 1.1
928     /* calculate blocking time */
929 root 1.12
930 root 1.21 /* we only need this for !monotonic clockor timers, but as we basically
931     always have timers, we just calculate it always */
932 root 1.40 #if EV_USE_MONOTONIC
933     if (expect_true (have_monotonic))
934 root 1.51 time_update_monotonic (EV_A);
935 root 1.40 else
936     #endif
937     {
938 root 1.51 rt_now = ev_time ();
939     mn_now = rt_now;
940 root 1.40 }
941 root 1.12
942 root 1.9 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 root 1.1 block = 0.;
944     else
945     {
946 root 1.4 block = MAX_BLOCKTIME;
947    
948 root 1.12 if (timercnt)
949 root 1.4 {
950 root 1.51 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
951 root 1.4 if (block > to) block = to;
952     }
953    
954 root 1.12 if (periodiccnt)
955 root 1.4 {
956 root 1.51 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
957 root 1.4 if (block > to) block = to;
958     }
959    
960 root 1.1 if (block < 0.) block = 0.;
961     }
962    
963 root 1.51 method_poll (EV_A_ block);
964 root 1.1
965 root 1.51 /* update rt_now, do magic */
966     time_update (EV_A);
967 root 1.4
968 root 1.9 /* queue pending timers and reschedule them */
969 root 1.51 timers_reify (EV_A); /* relative timers called last */
970     periodics_reify (EV_A); /* absolute timers called first */
971 root 1.1
972 root 1.9 /* queue idle watchers unless io or timers are pending */
973     if (!pendingcnt)
974 root 1.51 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 root 1.9
976 root 1.20 /* queue check watchers, to be executed first */
977     if (checkcnt)
978 root 1.51 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
979 root 1.9
980 root 1.51 call_pending (EV_A);
981 root 1.1 }
982 root 1.51 while (activecnt && !loop_done);
983 root 1.13
984 root 1.51 if (loop_done != 2)
985     loop_done = 0;
986     }
987    
988     void
989     ev_unloop (EV_P_ int how)
990     {
991     loop_done = how;
992 root 1.1 }
993    
994 root 1.8 /*****************************************************************************/
995    
996 root 1.51 inline void
997 root 1.10 wlist_add (WL *head, WL elem)
998 root 1.1 {
999     elem->next = *head;
1000     *head = elem;
1001     }
1002    
1003 root 1.51 inline void
1004 root 1.10 wlist_del (WL *head, WL elem)
1005 root 1.1 {
1006     while (*head)
1007     {
1008     if (*head == elem)
1009     {
1010     *head = elem->next;
1011     return;
1012     }
1013    
1014     head = &(*head)->next;
1015     }
1016     }
1017    
1018 root 1.51 inline void
1019     ev_clear_pending (EV_P_ W w)
1020 root 1.16 {
1021     if (w->pending)
1022     {
1023 root 1.42 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1024 root 1.16 w->pending = 0;
1025     }
1026     }
1027    
1028 root 1.51 inline void
1029     ev_start (EV_P_ W w, int active)
1030 root 1.1 {
1031 root 1.43 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1032     if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033    
1034 root 1.1 w->active = active;
1035 root 1.51 ev_ref (EV_A);
1036 root 1.1 }
1037    
1038 root 1.51 inline void
1039     ev_stop (EV_P_ W w)
1040 root 1.1 {
1041 root 1.51 ev_unref (EV_A);
1042 root 1.1 w->active = 0;
1043     }
1044    
1045 root 1.8 /*****************************************************************************/
1046    
1047 root 1.1 void
1048 root 1.51 ev_io_start (EV_P_ struct ev_io *w)
1049 root 1.1 {
1050 root 1.37 int fd = w->fd;
1051    
1052 root 1.1 if (ev_is_active (w))
1053     return;
1054    
1055 root 1.33 assert (("ev_io_start called with negative fd", fd >= 0));
1056    
1057 root 1.51 ev_start (EV_A_ (W)w, 1);
1058 root 1.1 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
1059 root 1.10 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 root 1.1
1061 root 1.51 fd_change (EV_A_ fd);
1062 root 1.1 }
1063    
1064     void
1065 root 1.51 ev_io_stop (EV_P_ struct ev_io *w)
1066 root 1.1 {
1067 root 1.51 ev_clear_pending (EV_A_ (W)w);
1068 root 1.1 if (!ev_is_active (w))
1069     return;
1070    
1071 root 1.10 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1072 root 1.51 ev_stop (EV_A_ (W)w);
1073 root 1.1
1074 root 1.51 fd_change (EV_A_ w->fd);
1075 root 1.1 }
1076    
1077     void
1078 root 1.51 ev_timer_start (EV_P_ struct ev_timer *w)
1079 root 1.1 {
1080     if (ev_is_active (w))
1081     return;
1082    
1083 root 1.51 w->at += mn_now;
1084 root 1.12
1085 root 1.33 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 root 1.13
1087 root 1.51 ev_start (EV_A_ (W)w, ++timercnt);
1088 root 1.12 array_needsize (timers, timermax, timercnt, );
1089     timers [timercnt - 1] = w;
1090     upheap ((WT *)timers, timercnt - 1);
1091     }
1092    
1093     void
1094 root 1.51 ev_timer_stop (EV_P_ struct ev_timer *w)
1095 root 1.12 {
1096 root 1.51 ev_clear_pending (EV_A_ (W)w);
1097 root 1.12 if (!ev_is_active (w))
1098     return;
1099    
1100     if (w->active < timercnt--)
1101 root 1.1 {
1102 root 1.12 timers [w->active - 1] = timers [timercnt];
1103     downheap ((WT *)timers, timercnt, w->active - 1);
1104     }
1105 root 1.4
1106 root 1.14 w->at = w->repeat;
1107    
1108 root 1.51 ev_stop (EV_A_ (W)w);
1109 root 1.12 }
1110 root 1.4
1111 root 1.12 void
1112 root 1.51 ev_timer_again (EV_P_ struct ev_timer *w)
1113 root 1.14 {
1114     if (ev_is_active (w))
1115     {
1116     if (w->repeat)
1117     {
1118 root 1.51 w->at = mn_now + w->repeat;
1119 root 1.14 downheap ((WT *)timers, timercnt, w->active - 1);
1120     }
1121     else
1122 root 1.51 ev_timer_stop (EV_A_ w);
1123 root 1.14 }
1124     else if (w->repeat)
1125 root 1.51 ev_timer_start (EV_A_ w);
1126 root 1.14 }
1127    
1128     void
1129 root 1.51 ev_periodic_start (EV_P_ struct ev_periodic *w)
1130 root 1.12 {
1131     if (ev_is_active (w))
1132     return;
1133 root 1.1
1134 root 1.33 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135 root 1.13
1136 root 1.12 /* this formula differs from the one in periodic_reify because we do not always round up */
1137     if (w->interval)
1138 root 1.51 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1139 root 1.12
1140 root 1.51 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 root 1.12 array_needsize (periodics, periodicmax, periodiccnt, );
1142     periodics [periodiccnt - 1] = w;
1143     upheap ((WT *)periodics, periodiccnt - 1);
1144 root 1.1 }
1145    
1146     void
1147 root 1.51 ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148 root 1.1 {
1149 root 1.51 ev_clear_pending (EV_A_ (W)w);
1150 root 1.1 if (!ev_is_active (w))
1151     return;
1152    
1153 root 1.12 if (w->active < periodiccnt--)
1154 root 1.2 {
1155 root 1.12 periodics [w->active - 1] = periodics [periodiccnt];
1156     downheap ((WT *)periodics, periodiccnt, w->active - 1);
1157 root 1.2 }
1158    
1159 root 1.51 ev_stop (EV_A_ (W)w);
1160 root 1.1 }
1161    
1162 root 1.28 void
1163 root 1.51 ev_idle_start (EV_P_ struct ev_idle *w)
1164 root 1.9 {
1165     if (ev_is_active (w))
1166     return;
1167    
1168 root 1.51 ev_start (EV_A_ (W)w, ++idlecnt);
1169 root 1.9 array_needsize (idles, idlemax, idlecnt, );
1170     idles [idlecnt - 1] = w;
1171     }
1172    
1173 root 1.28 void
1174 root 1.51 ev_idle_stop (EV_P_ struct ev_idle *w)
1175 root 1.9 {
1176 root 1.51 ev_clear_pending (EV_A_ (W)w);
1177 root 1.16 if (ev_is_active (w))
1178     return;
1179    
1180 root 1.9 idles [w->active - 1] = idles [--idlecnt];
1181 root 1.51 ev_stop (EV_A_ (W)w);
1182 root 1.9 }
1183    
1184 root 1.28 void
1185 root 1.51 ev_prepare_start (EV_P_ struct ev_prepare *w)
1186 root 1.20 {
1187     if (ev_is_active (w))
1188     return;
1189    
1190 root 1.51 ev_start (EV_A_ (W)w, ++preparecnt);
1191 root 1.20 array_needsize (prepares, preparemax, preparecnt, );
1192     prepares [preparecnt - 1] = w;
1193     }
1194    
1195 root 1.28 void
1196 root 1.51 ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197 root 1.20 {
1198 root 1.51 ev_clear_pending (EV_A_ (W)w);
1199 root 1.20 if (ev_is_active (w))
1200     return;
1201    
1202     prepares [w->active - 1] = prepares [--preparecnt];
1203 root 1.51 ev_stop (EV_A_ (W)w);
1204 root 1.20 }
1205    
1206 root 1.28 void
1207 root 1.51 ev_check_start (EV_P_ struct ev_check *w)
1208 root 1.9 {
1209     if (ev_is_active (w))
1210     return;
1211    
1212 root 1.51 ev_start (EV_A_ (W)w, ++checkcnt);
1213 root 1.9 array_needsize (checks, checkmax, checkcnt, );
1214     checks [checkcnt - 1] = w;
1215     }
1216    
1217 root 1.28 void
1218 root 1.51 ev_check_stop (EV_P_ struct ev_check *w)
1219 root 1.9 {
1220 root 1.51 ev_clear_pending (EV_A_ (W)w);
1221 root 1.16 if (ev_is_active (w))
1222     return;
1223    
1224 root 1.9 checks [w->active - 1] = checks [--checkcnt];
1225 root 1.51 ev_stop (EV_A_ (W)w);
1226 root 1.9 }
1227    
1228 root 1.56 #ifndef SA_RESTART
1229     # define SA_RESTART 0
1230     #endif
1231    
1232     void
1233     ev_signal_start (EV_P_ struct ev_signal *w)
1234     {
1235     #if EV_MULTIPLICITY
1236     assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237     #endif
1238     if (ev_is_active (w))
1239     return;
1240    
1241     assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242    
1243     ev_start (EV_A_ (W)w, 1);
1244     array_needsize (signals, signalmax, w->signum, signals_init);
1245     wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246    
1247     if (!w->next)
1248     {
1249     struct sigaction sa;
1250     sa.sa_handler = sighandler;
1251     sigfillset (&sa.sa_mask);
1252     sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253     sigaction (w->signum, &sa, 0);
1254     }
1255     }
1256    
1257     void
1258     ev_signal_stop (EV_P_ struct ev_signal *w)
1259     {
1260     ev_clear_pending (EV_A_ (W)w);
1261     if (!ev_is_active (w))
1262     return;
1263    
1264     wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1265     ev_stop (EV_A_ (W)w);
1266    
1267     if (!signals [w->signum - 1].head)
1268     signal (w->signum, SIG_DFL);
1269     }
1270    
1271 root 1.28 void
1272 root 1.51 ev_child_start (EV_P_ struct ev_child *w)
1273 root 1.22 {
1274 root 1.56 #if EV_MULTIPLICITY
1275     assert (("child watchers are only supported in the default loop", loop == default_loop));
1276     #endif
1277 root 1.22 if (ev_is_active (w))
1278     return;
1279    
1280 root 1.51 ev_start (EV_A_ (W)w, 1);
1281 root 1.22 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1282     }
1283    
1284 root 1.28 void
1285 root 1.51 ev_child_stop (EV_P_ struct ev_child *w)
1286 root 1.22 {
1287 root 1.51 ev_clear_pending (EV_A_ (W)w);
1288 root 1.22 if (ev_is_active (w))
1289     return;
1290    
1291     wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1292 root 1.51 ev_stop (EV_A_ (W)w);
1293 root 1.22 }
1294    
1295 root 1.1 /*****************************************************************************/
1296 root 1.10
1297 root 1.16 struct ev_once
1298     {
1299     struct ev_io io;
1300     struct ev_timer to;
1301     void (*cb)(int revents, void *arg);
1302     void *arg;
1303     };
1304    
1305     static void
1306 root 1.51 once_cb (EV_P_ struct ev_once *once, int revents)
1307 root 1.16 {
1308     void (*cb)(int revents, void *arg) = once->cb;
1309     void *arg = once->arg;
1310    
1311 root 1.51 ev_io_stop (EV_A_ &once->io);
1312     ev_timer_stop (EV_A_ &once->to);
1313 root 1.16 free (once);
1314    
1315     cb (revents, arg);
1316     }
1317    
1318     static void
1319 root 1.51 once_cb_io (EV_P_ struct ev_io *w, int revents)
1320 root 1.16 {
1321 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1322 root 1.16 }
1323    
1324     static void
1325 root 1.51 once_cb_to (EV_P_ struct ev_timer *w, int revents)
1326 root 1.16 {
1327 root 1.51 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1328 root 1.16 }
1329    
1330     void
1331 root 1.51 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332 root 1.16 {
1333     struct ev_once *once = malloc (sizeof (struct ev_once));
1334    
1335     if (!once)
1336 root 1.29 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 root 1.16 else
1338     {
1339     once->cb = cb;
1340     once->arg = arg;
1341    
1342 root 1.28 ev_watcher_init (&once->io, once_cb_io);
1343 root 1.16 if (fd >= 0)
1344     {
1345 root 1.28 ev_io_set (&once->io, fd, events);
1346 root 1.51 ev_io_start (EV_A_ &once->io);
1347 root 1.16 }
1348    
1349 root 1.28 ev_watcher_init (&once->to, once_cb_to);
1350 root 1.16 if (timeout >= 0.)
1351     {
1352 root 1.28 ev_timer_set (&once->to, timeout, 0.);
1353 root 1.51 ev_timer_start (EV_A_ &once->to);
1354 root 1.16 }
1355     }
1356     }
1357